Properties

Label 1.80.a.a
Level $1$
Weight $80$
Character orbit 1.a
Self dual yes
Analytic conductor $39.524$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1,80,Mod(1,1)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 80, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1.1");
 
S:= CuspForms(chi, 80);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 80 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.5237048722\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3 x^{5} + \cdots - 76\!\cdots\!88 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: multiple of \( 2^{54}\cdot 3^{24}\cdot 5^{6}\cdot 7^{3}\cdot 11\cdot 13^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2681096220) q^{2} + ( - \beta_{2} - 429230 \beta_1 + 32\!\cdots\!80) q^{3} + (\beta_{3} - 8640 \beta_{2} + \cdots + 25\!\cdots\!48) q^{4} + ( - \beta_{4} - 1928 \beta_{3} + \cdots + 10\!\cdots\!90) q^{5}+ \cdots + (78\!\cdots\!28 \beta_{5} + \cdots + 20\!\cdots\!04) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 16086577320 q^{2} + 19\!\cdots\!80 q^{3} + 15\!\cdots\!88 q^{4} + 60\!\cdots\!40 q^{5} - 22\!\cdots\!28 q^{6} - 20\!\cdots\!00 q^{7} + 54\!\cdots\!60 q^{8} + 98\!\cdots\!22 q^{9} + 27\!\cdots\!40 q^{10}+ \cdots + 12\!\cdots\!24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3 x^{5} + \cdots - 76\!\cdots\!88 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 24\nu - 12 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 597229958995063 \nu^{5} + \cdots + 70\!\cdots\!24 ) / 13\!\cdots\!68 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 26\!\cdots\!35 \nu^{5} + \cdots - 56\!\cdots\!04 ) / 68\!\cdots\!04 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 23\!\cdots\!29 \nu^{5} + \cdots + 68\!\cdots\!76 ) / 35\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 53\!\cdots\!83 \nu^{5} + \cdots - 85\!\cdots\!08 ) / 82\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 12 ) / 24 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 8640\beta_{2} + 109101065932\beta _1 + 862745281906774673011680 ) / 576 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 369 \beta_{5} - 10406371 \beta_{4} - 15040375037 \beta_{3} + \cdots + 11\!\cdots\!28 ) / 1728 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 126301704456581 \beta_{5} + \cdots + 56\!\cdots\!08 ) / 1728 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 28\!\cdots\!01 \beta_{5} + \cdots + 60\!\cdots\!64 ) / 288 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.13988e10
−3.49960e10
−1.94020e10
9.55147e9
4.48729e10
5.13724e10
−1.23625e12 −2.24416e18 9.23858e23 −5.14707e27 2.77435e30 4.93307e32 −3.94854e35 −4.42334e37 6.36308e39
1.2 −8.42585e11 1.18388e19 1.05486e23 5.37236e27 −9.97521e30 −2.88361e33 4.20430e35 9.08882e37 −4.52667e39
1.3 −4.68329e11 −9.12223e18 −3.85131e23 5.54574e27 4.27221e30 1.91401e33 4.63456e35 3.39455e37 −2.59723e39
1.4 2.26554e11 2.57159e18 −5.53136e23 −2.99197e27 5.82605e29 −6.95219e31 −2.62259e35 −4.26565e37 −6.77842e38
1.5 1.07427e12 −9.45275e18 5.49591e23 −5.27758e26 −1.01548e31 −3.45278e33 −5.89470e34 4.00848e37 −5.66955e38
1.6 1.23026e12 8.35089e18 9.09069e23 3.84167e27 1.02737e31 3.79445e33 3.74744e35 2.04677e37 4.72625e39
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1.80.a.a 6
3.b odd 2 1 9.80.a.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1.80.a.a 6 1.a even 1 1 trivial
9.80.a.b 6 3.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{80}^{\mathrm{new}}(\Gamma_0(1))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + \cdots - 14\!\cdots\!56 \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 49\!\cdots\!64 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 93\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots - 24\!\cdots\!56 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 60\!\cdots\!44 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 31\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 13\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 34\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 48\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 31\!\cdots\!96 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 25\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 29\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 20\!\cdots\!56 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 10\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 38\!\cdots\!36 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 70\!\cdots\!56 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 14\!\cdots\!56 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 22\!\cdots\!76 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 46\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 98\!\cdots\!56 \) Copy content Toggle raw display
show more
show less