Properties

Label 10.12.a.a
Level 1010
Weight 1212
Character orbit 10.a
Self dual yes
Analytic conductor 7.6837.683
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,12,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: N N == 10=25 10 = 2 \cdot 5
Weight: k k == 12 12
Character orbit: [χ][\chi] == 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 7.683431805607.68343180560
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q32q212q3+1024q4+3125q5+384q614176q732768q8177003q9100000q10756348q1112288q12905482q13+453632q1437500q15+1048576q16++133875865044q99+O(q100) q - 32 q^{2} - 12 q^{3} + 1024 q^{4} + 3125 q^{5} + 384 q^{6} - 14176 q^{7} - 32768 q^{8} - 177003 q^{9} - 100000 q^{10} - 756348 q^{11} - 12288 q^{12} - 905482 q^{13} + 453632 q^{14} - 37500 q^{15} + 1048576 q^{16}+ \cdots + 133875865044 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−32.0000 −12.0000 1024.00 3125.00 384.000 −14176.0 −32768.0 −177003. −100000.
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
55 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.12.a.a 1
3.b odd 2 1 90.12.a.g 1
4.b odd 2 1 80.12.a.d 1
5.b even 2 1 50.12.a.d 1
5.c odd 4 2 50.12.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.12.a.a 1 1.a even 1 1 trivial
50.12.a.d 1 5.b even 2 1
50.12.b.c 2 5.c odd 4 2
80.12.a.d 1 4.b odd 2 1
90.12.a.g 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3+12 T_{3} + 12 acting on S12new(Γ0(10))S_{12}^{\mathrm{new}}(\Gamma_0(10)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+32 T + 32 Copy content Toggle raw display
33 T+12 T + 12 Copy content Toggle raw display
55 T3125 T - 3125 Copy content Toggle raw display
77 T+14176 T + 14176 Copy content Toggle raw display
1111 T+756348 T + 756348 Copy content Toggle raw display
1313 T+905482 T + 905482 Copy content Toggle raw display
1717 T2803794 T - 2803794 Copy content Toggle raw display
1919 T+5428660 T + 5428660 Copy content Toggle raw display
2323 T+10236672 T + 10236672 Copy content Toggle raw display
2929 T+197498010 T + 197498010 Copy content Toggle raw display
3131 T+44362288 T + 44362288 Copy content Toggle raw display
3737 T576737054 T - 576737054 Copy content Toggle raw display
4141 T930058362 T - 930058362 Copy content Toggle raw display
4343 T1605598988 T - 1605598988 Copy content Toggle raw display
4747 T+1803684456 T + 1803684456 Copy content Toggle raw display
5353 T1558674798 T - 1558674798 Copy content Toggle raw display
5959 T+9501997020 T + 9501997020 Copy content Toggle raw display
6161 T6736320422 T - 6736320422 Copy content Toggle raw display
6767 T8402906564 T - 8402906564 Copy content Toggle raw display
7171 T+4806306168 T + 4806306168 Copy content Toggle raw display
7373 T7462713338 T - 7462713338 Copy content Toggle raw display
7979 T+20644540720 T + 20644540720 Copy content Toggle raw display
8383 T+68013349212 T + 68013349212 Copy content Toggle raw display
8989 T69871323210 T - 69871323210 Copy content Toggle raw display
9797 T39960952514 T - 39960952514 Copy content Toggle raw display
show more
show less