Properties

Label 10.20.a.c
Level $10$
Weight $20$
Character orbit 10.a
Self dual yes
Analytic conductor $22.882$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,20,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 20, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 20);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.8816696556\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 512 q^{2} + 24642 q^{3} + 262144 q^{4} - 1953125 q^{5} + 12616704 q^{6} - 171901114 q^{7} + 134217728 q^{8} - 555033303 q^{9} - 1000000000 q^{10} - 11873833248 q^{11} + 6459752448 q^{12} + 35971967642 q^{13}+ \cdots + 65\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
512.000 24642.0 262144. −1.95312e6 1.26167e7 −1.71901e8 1.34218e8 −5.55033e8 −1.00000e9
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.20.a.c 1
3.b odd 2 1 90.20.a.b 1
4.b odd 2 1 80.20.a.b 1
5.b even 2 1 50.20.a.a 1
5.c odd 4 2 50.20.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.20.a.c 1 1.a even 1 1 trivial
50.20.a.a 1 5.b even 2 1
50.20.b.d 2 5.c odd 4 2
80.20.a.b 1 4.b odd 2 1
90.20.a.b 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 24642 \) acting on \(S_{20}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 512 \) Copy content Toggle raw display
$3$ \( T - 24642 \) Copy content Toggle raw display
$5$ \( T + 1953125 \) Copy content Toggle raw display
$7$ \( T + 171901114 \) Copy content Toggle raw display
$11$ \( T + 11873833248 \) Copy content Toggle raw display
$13$ \( T - 35971967642 \) Copy content Toggle raw display
$17$ \( T + 746262181734 \) Copy content Toggle raw display
$19$ \( T - 2682185926820 \) Copy content Toggle raw display
$23$ \( T - 15924407922 \) Copy content Toggle raw display
$29$ \( T + 106190769937650 \) Copy content Toggle raw display
$31$ \( T + 158223244950508 \) Copy content Toggle raw display
$37$ \( T + 80246066291254 \) Copy content Toggle raw display
$41$ \( T - 1895936900328342 \) Copy content Toggle raw display
$43$ \( T - 3278663887209722 \) Copy content Toggle raw display
$47$ \( T - 1296653846339646 \) Copy content Toggle raw display
$53$ \( T - 12\!\cdots\!02 \) Copy content Toggle raw display
$59$ \( T + 11\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T + 17\!\cdots\!18 \) Copy content Toggle raw display
$67$ \( T - 53\!\cdots\!86 \) Copy content Toggle raw display
$71$ \( T - 40\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T + 59\!\cdots\!18 \) Copy content Toggle raw display
$79$ \( T + 18\!\cdots\!40 \) Copy content Toggle raw display
$83$ \( T + 89\!\cdots\!98 \) Copy content Toggle raw display
$89$ \( T - 49\!\cdots\!10 \) Copy content Toggle raw display
$97$ \( T + 10\!\cdots\!34 \) Copy content Toggle raw display
show more
show less