Properties

Label 10.24.a.b
Level $10$
Weight $24$
Character orbit 10.a
Self dual yes
Analytic conductor $33.520$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,24,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 24, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 24);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.5204037345\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{117349}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 29337 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 240\sqrt{117349}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2048 q^{2} + ( - 3 \beta + 343242) q^{3} + 4194304 q^{4} - 48828125 q^{5} + (6144 \beta - 702959616) q^{6} + (83861 \beta - 1764797554) q^{7} - 8589934592 q^{8} + ( - 2059452 \beta + 84505613337) q^{9}+ \cdots + ( - 13\!\cdots\!70 \beta - 97\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4096 q^{2} + 686484 q^{3} + 8388608 q^{4} - 97656250 q^{5} - 1405919232 q^{6} - 3529595108 q^{7} - 17179869184 q^{8} + 169011226674 q^{9} + 200000000000 q^{10} + 936557269824 q^{11} + 2879322587136 q^{12}+ \cdots - 19\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
171.781
−170.781
−2048.00 96597.1 4.19430e6 −4.88281e7 −1.97831e8 5.12983e9 −8.58993e9 −8.48122e10 1.00000e11
1.2 −2048.00 589887. 4.19430e6 −4.88281e7 −1.20809e9 −8.65943e9 −8.58993e9 2.53823e11 1.00000e11
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.24.a.b 2
5.b even 2 1 50.24.a.c 2
5.c odd 4 2 50.24.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.24.a.b 2 1.a even 1 1 trivial
50.24.a.c 2 5.b even 2 1
50.24.b.b 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 686484T_{3} + 56981348964 \) acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2048)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + \cdots + 56981348964 \) Copy content Toggle raw display
$5$ \( (T + 48828125)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + \cdots - 44\!\cdots\!84 \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 43\!\cdots\!56 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 54\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 16\!\cdots\!44 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 16\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 88\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 71\!\cdots\!04 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 14\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 51\!\cdots\!56 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 91\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 23\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 17\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 28\!\cdots\!04 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 13\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 81\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 14\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 13\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 32\!\cdots\!64 \) Copy content Toggle raw display
show more
show less