Properties

Label 10.28.a.b.1.1
Level $10$
Weight $28$
Character 10.1
Self dual yes
Analytic conductor $46.186$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1855574838\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{12929}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3232 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{3}\cdot 5\cdot 7 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(57.3529\) of defining polynomial
Character \(\chi\) \(=\) 10.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8192.00 q^{2} -3.70167e6 q^{3} +6.71089e7 q^{4} -1.22070e9 q^{5} +3.03241e10 q^{6} +2.21874e11 q^{7} -5.49756e11 q^{8} +6.07675e12 q^{9} +1.00000e13 q^{10} -4.96342e12 q^{11} -2.48415e14 q^{12} -2.20961e14 q^{13} -1.81759e15 q^{14} +4.51864e15 q^{15} +4.50360e15 q^{16} -2.82835e16 q^{17} -4.97808e16 q^{18} -3.08583e17 q^{19} -8.19200e16 q^{20} -8.21302e17 q^{21} +4.06603e16 q^{22} -1.01717e18 q^{23} +2.03501e18 q^{24} +1.49012e18 q^{25} +1.81011e18 q^{26} +5.73331e18 q^{27} +1.48897e19 q^{28} -1.98720e19 q^{29} -3.70167e19 q^{30} -2.14960e20 q^{31} -3.68935e19 q^{32} +1.83729e19 q^{33} +2.31699e20 q^{34} -2.70842e20 q^{35} +4.07804e20 q^{36} -1.51125e21 q^{37} +2.52791e21 q^{38} +8.17924e20 q^{39} +6.71089e20 q^{40} +6.15572e21 q^{41} +6.72811e21 q^{42} +1.65500e22 q^{43} -3.33089e20 q^{44} -7.41791e21 q^{45} +8.33262e21 q^{46} -4.19797e21 q^{47} -1.66708e22 q^{48} -1.64845e22 q^{49} -1.22070e22 q^{50} +1.04696e23 q^{51} -1.48284e22 q^{52} +2.49598e23 q^{53} -4.69673e22 q^{54} +6.05886e21 q^{55} -1.21976e23 q^{56} +1.14227e24 q^{57} +1.62792e23 q^{58} +9.83832e23 q^{59} +3.03241e23 q^{60} -3.10904e23 q^{61} +1.76095e24 q^{62} +1.34827e24 q^{63} +3.02231e23 q^{64} +2.69728e23 q^{65} -1.50511e23 q^{66} -5.68487e24 q^{67} -1.89808e24 q^{68} +3.76521e24 q^{69} +2.21874e24 q^{70} -1.00834e25 q^{71} -3.34073e24 q^{72} +8.83463e24 q^{73} +1.23802e25 q^{74} -5.51592e24 q^{75} -2.07087e25 q^{76} -1.10125e24 q^{77} -6.70043e24 q^{78} -5.62142e25 q^{79} -5.49756e24 q^{80} -6.75617e25 q^{81} -5.04276e25 q^{82} +1.02556e26 q^{83} -5.51167e25 q^{84} +3.45258e25 q^{85} -1.35577e26 q^{86} +7.35596e25 q^{87} +2.72867e24 q^{88} -1.49929e26 q^{89} +6.07675e25 q^{90} -4.90254e25 q^{91} -6.82608e25 q^{92} +7.95709e26 q^{93} +3.43898e25 q^{94} +3.76689e26 q^{95} +1.36567e26 q^{96} -5.13532e26 q^{97} +1.35041e26 q^{98} -3.01615e25 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 16384 q^{2} - 2245644 q^{3} + 134217728 q^{4} - 2441406250 q^{5} + 18396315648 q^{6} - 120196732292 q^{7} - 1099511627776 q^{8} + 571163616594 q^{9} + 20000000000000 q^{10} + 7112122732704 q^{11}+ \cdots - 96\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8192.00 −0.707107
\(3\) −3.70167e6 −1.34048 −0.670240 0.742144i \(-0.733809\pi\)
−0.670240 + 0.742144i \(0.733809\pi\)
\(4\) 6.71089e7 0.500000
\(5\) −1.22070e9 −0.447214
\(6\) 3.03241e10 0.947863
\(7\) 2.21874e11 0.865530 0.432765 0.901507i \(-0.357538\pi\)
0.432765 + 0.901507i \(0.357538\pi\)
\(8\) −5.49756e11 −0.353553
\(9\) 6.07675e12 0.796889
\(10\) 1.00000e13 0.316228
\(11\) −4.96342e12 −0.0433491 −0.0216745 0.999765i \(-0.506900\pi\)
−0.0216745 + 0.999765i \(0.506900\pi\)
\(12\) −2.48415e14 −0.670240
\(13\) −2.20961e14 −0.202339 −0.101170 0.994869i \(-0.532258\pi\)
−0.101170 + 0.994869i \(0.532258\pi\)
\(14\) −1.81759e15 −0.612022
\(15\) 4.51864e15 0.599481
\(16\) 4.50360e15 0.250000
\(17\) −2.82835e16 −0.692585 −0.346293 0.938127i \(-0.612560\pi\)
−0.346293 + 0.938127i \(0.612560\pi\)
\(18\) −4.97808e16 −0.563485
\(19\) −3.08583e17 −1.68344 −0.841722 0.539911i \(-0.818458\pi\)
−0.841722 + 0.539911i \(0.818458\pi\)
\(20\) −8.19200e16 −0.223607
\(21\) −8.21302e17 −1.16023
\(22\) 4.06603e16 0.0306524
\(23\) −1.01717e18 −0.420790 −0.210395 0.977616i \(-0.567475\pi\)
−0.210395 + 0.977616i \(0.567475\pi\)
\(24\) 2.03501e18 0.473932
\(25\) 1.49012e18 0.200000
\(26\) 1.81011e18 0.143075
\(27\) 5.73331e18 0.272267
\(28\) 1.48897e19 0.432765
\(29\) −1.98720e19 −0.359641 −0.179820 0.983699i \(-0.557552\pi\)
−0.179820 + 0.983699i \(0.557552\pi\)
\(30\) −3.70167e19 −0.423897
\(31\) −2.14960e20 −1.58115 −0.790577 0.612363i \(-0.790219\pi\)
−0.790577 + 0.612363i \(0.790219\pi\)
\(32\) −3.68935e19 −0.176777
\(33\) 1.83729e19 0.0581086
\(34\) 2.31699e20 0.489732
\(35\) −2.70842e20 −0.387077
\(36\) 4.07804e20 0.398444
\(37\) −1.51125e21 −1.02003 −0.510015 0.860166i \(-0.670360\pi\)
−0.510015 + 0.860166i \(0.670360\pi\)
\(38\) 2.52791e21 1.19038
\(39\) 8.17924e20 0.271232
\(40\) 6.71089e20 0.158114
\(41\) 6.15572e21 1.03919 0.519597 0.854411i \(-0.326082\pi\)
0.519597 + 0.854411i \(0.326082\pi\)
\(42\) 6.72811e21 0.820404
\(43\) 1.65500e22 1.46883 0.734417 0.678698i \(-0.237455\pi\)
0.734417 + 0.678698i \(0.237455\pi\)
\(44\) −3.33089e20 −0.0216745
\(45\) −7.41791e21 −0.356380
\(46\) 8.33262e21 0.297544
\(47\) −4.19797e21 −0.112129 −0.0560646 0.998427i \(-0.517855\pi\)
−0.0560646 + 0.998427i \(0.517855\pi\)
\(48\) −1.66708e22 −0.335120
\(49\) −1.64845e22 −0.250858
\(50\) −1.22070e22 −0.141421
\(51\) 1.04696e23 0.928397
\(52\) −1.48284e22 −0.101170
\(53\) 2.49598e23 1.31679 0.658396 0.752672i \(-0.271235\pi\)
0.658396 + 0.752672i \(0.271235\pi\)
\(54\) −4.69673e22 −0.192522
\(55\) 6.05886e21 0.0193863
\(56\) −1.21976e23 −0.306011
\(57\) 1.14227e24 2.25663
\(58\) 1.62792e23 0.254305
\(59\) 9.83832e23 1.22017 0.610083 0.792338i \(-0.291136\pi\)
0.610083 + 0.792338i \(0.291136\pi\)
\(60\) 3.03241e23 0.299741
\(61\) −3.10904e23 −0.245852 −0.122926 0.992416i \(-0.539228\pi\)
−0.122926 + 0.992416i \(0.539228\pi\)
\(62\) 1.76095e24 1.11804
\(63\) 1.34827e24 0.689731
\(64\) 3.02231e23 0.125000
\(65\) 2.69728e23 0.0904888
\(66\) −1.50511e23 −0.0410890
\(67\) −5.68487e24 −1.26681 −0.633403 0.773822i \(-0.718343\pi\)
−0.633403 + 0.773822i \(0.718343\pi\)
\(68\) −1.89808e24 −0.346293
\(69\) 3.76521e24 0.564061
\(70\) 2.21874e24 0.273705
\(71\) −1.00834e25 −1.02712 −0.513560 0.858054i \(-0.671674\pi\)
−0.513560 + 0.858054i \(0.671674\pi\)
\(72\) −3.34073e24 −0.281743
\(73\) 8.83463e24 0.618486 0.309243 0.950983i \(-0.399924\pi\)
0.309243 + 0.950983i \(0.399924\pi\)
\(74\) 1.23802e25 0.721270
\(75\) −5.51592e24 −0.268096
\(76\) −2.07087e25 −0.841722
\(77\) −1.10125e24 −0.0375199
\(78\) −6.70043e24 −0.191790
\(79\) −5.62142e25 −1.35482 −0.677408 0.735608i \(-0.736897\pi\)
−0.677408 + 0.735608i \(0.736897\pi\)
\(80\) −5.49756e24 −0.111803
\(81\) −6.75617e25 −1.16186
\(82\) −5.04276e25 −0.734821
\(83\) 1.02556e26 1.26884 0.634421 0.772987i \(-0.281238\pi\)
0.634421 + 0.772987i \(0.281238\pi\)
\(84\) −5.51167e25 −0.580113
\(85\) 3.45258e25 0.309733
\(86\) −1.35577e26 −1.03862
\(87\) 7.35596e25 0.482092
\(88\) 2.72867e24 0.0153262
\(89\) −1.49929e26 −0.722972 −0.361486 0.932377i \(-0.617731\pi\)
−0.361486 + 0.932377i \(0.617731\pi\)
\(90\) 6.07675e25 0.251998
\(91\) −4.90254e25 −0.175131
\(92\) −6.82608e25 −0.210395
\(93\) 7.95709e26 2.11951
\(94\) 3.43898e25 0.0792873
\(95\) 3.76689e26 0.752859
\(96\) 1.36567e26 0.236966
\(97\) −5.13532e26 −0.774728 −0.387364 0.921927i \(-0.626614\pi\)
−0.387364 + 0.921927i \(0.626614\pi\)
\(98\) 1.35041e26 0.177383
\(99\) −3.01615e25 −0.0345444
\(100\) 1.00000e26 0.100000
\(101\) −7.06297e26 −0.617517 −0.308758 0.951140i \(-0.599913\pi\)
−0.308758 + 0.951140i \(0.599913\pi\)
\(102\) −8.57672e26 −0.656476
\(103\) 5.07949e26 0.340814 0.170407 0.985374i \(-0.445492\pi\)
0.170407 + 0.985374i \(0.445492\pi\)
\(104\) 1.21474e26 0.0715377
\(105\) 1.00257e27 0.518869
\(106\) −2.04471e27 −0.931113
\(107\) 2.94045e27 1.17959 0.589797 0.807552i \(-0.299208\pi\)
0.589797 + 0.807552i \(0.299208\pi\)
\(108\) 3.84756e26 0.136133
\(109\) 5.73706e27 1.79239 0.896194 0.443663i \(-0.146321\pi\)
0.896194 + 0.443663i \(0.146321\pi\)
\(110\) −4.96342e25 −0.0137082
\(111\) 5.59415e27 1.36733
\(112\) 9.99230e26 0.216382
\(113\) 5.78909e27 1.11186 0.555931 0.831228i \(-0.312362\pi\)
0.555931 + 0.831228i \(0.312362\pi\)
\(114\) −9.35750e27 −1.59567
\(115\) 1.24166e27 0.188183
\(116\) −1.33359e27 −0.179820
\(117\) −1.34272e27 −0.161242
\(118\) −8.05955e27 −0.862787
\(119\) −6.27537e27 −0.599453
\(120\) −2.48415e27 −0.211949
\(121\) −1.30854e28 −0.998121
\(122\) 2.54692e27 0.173843
\(123\) −2.27864e28 −1.39302
\(124\) −1.44257e28 −0.790577
\(125\) −1.81899e27 −0.0894427
\(126\) −1.10450e28 −0.487714
\(127\) 3.77532e28 1.49832 0.749158 0.662392i \(-0.230459\pi\)
0.749158 + 0.662392i \(0.230459\pi\)
\(128\) −2.47588e27 −0.0883883
\(129\) −6.12625e28 −1.96895
\(130\) −2.20961e27 −0.0639853
\(131\) 5.70081e28 1.48859 0.744293 0.667853i \(-0.232787\pi\)
0.744293 + 0.667853i \(0.232787\pi\)
\(132\) 1.23299e27 0.0290543
\(133\) −6.84665e28 −1.45707
\(134\) 4.65704e28 0.895768
\(135\) −6.99867e27 −0.121761
\(136\) 1.55490e28 0.244866
\(137\) 7.42178e28 1.05872 0.529359 0.848398i \(-0.322432\pi\)
0.529359 + 0.848398i \(0.322432\pi\)
\(138\) −3.08446e28 −0.398852
\(139\) 1.13293e29 1.32893 0.664467 0.747317i \(-0.268658\pi\)
0.664467 + 0.747317i \(0.268658\pi\)
\(140\) −1.81759e28 −0.193538
\(141\) 1.55395e28 0.150307
\(142\) 8.26036e28 0.726283
\(143\) 1.09672e27 0.00877121
\(144\) 2.73673e28 0.199222
\(145\) 2.42578e28 0.160836
\(146\) −7.23733e28 −0.437336
\(147\) 6.10201e28 0.336270
\(148\) −1.01418e29 −0.510015
\(149\) −2.59311e29 −1.19071 −0.595355 0.803463i \(-0.702988\pi\)
−0.595355 + 0.803463i \(0.702988\pi\)
\(150\) 4.51864e28 0.189573
\(151\) 3.80757e29 1.46036 0.730179 0.683256i \(-0.239437\pi\)
0.730179 + 0.683256i \(0.239437\pi\)
\(152\) 1.69645e29 0.595188
\(153\) −1.71872e29 −0.551913
\(154\) 9.02145e27 0.0265306
\(155\) 2.62402e29 0.707113
\(156\) 5.48899e28 0.135616
\(157\) −1.65707e29 −0.375575 −0.187787 0.982210i \(-0.560132\pi\)
−0.187787 + 0.982210i \(0.560132\pi\)
\(158\) 4.60507e29 0.957999
\(159\) −9.23930e29 −1.76513
\(160\) 4.50360e28 0.0790569
\(161\) −2.25682e29 −0.364207
\(162\) 5.53465e29 0.821557
\(163\) 6.32120e29 0.863509 0.431754 0.901991i \(-0.357895\pi\)
0.431754 + 0.901991i \(0.357895\pi\)
\(164\) 4.13103e29 0.519597
\(165\) −2.24279e28 −0.0259869
\(166\) −8.40141e29 −0.897207
\(167\) −1.17045e30 −1.15260 −0.576301 0.817237i \(-0.695504\pi\)
−0.576301 + 0.817237i \(0.695504\pi\)
\(168\) 4.51516e29 0.410202
\(169\) −1.14371e30 −0.959059
\(170\) −2.82835e29 −0.219015
\(171\) −1.87518e30 −1.34152
\(172\) 1.11065e30 0.734417
\(173\) −2.98638e29 −0.182609 −0.0913045 0.995823i \(-0.529104\pi\)
−0.0913045 + 0.995823i \(0.529104\pi\)
\(174\) −6.02601e29 −0.340890
\(175\) 3.30617e29 0.173106
\(176\) −2.23532e28 −0.0108373
\(177\) −3.64182e30 −1.63561
\(178\) 1.22822e30 0.511219
\(179\) 2.50314e30 0.965983 0.482992 0.875625i \(-0.339550\pi\)
0.482992 + 0.875625i \(0.339550\pi\)
\(180\) −4.97808e29 −0.178190
\(181\) 1.42305e30 0.472671 0.236336 0.971671i \(-0.424054\pi\)
0.236336 + 0.971671i \(0.424054\pi\)
\(182\) 4.01616e29 0.123836
\(183\) 1.15086e30 0.329559
\(184\) 5.59192e29 0.148772
\(185\) 1.84479e30 0.456171
\(186\) −6.51845e30 −1.49872
\(187\) 1.40383e29 0.0300229
\(188\) −2.81721e29 −0.0560646
\(189\) 1.27207e30 0.235655
\(190\) −3.08583e30 −0.532352
\(191\) 7.99660e30 1.28515 0.642577 0.766221i \(-0.277865\pi\)
0.642577 + 0.766221i \(0.277865\pi\)
\(192\) −1.11876e30 −0.167560
\(193\) 4.05061e30 0.565583 0.282792 0.959181i \(-0.408740\pi\)
0.282792 + 0.959181i \(0.408740\pi\)
\(194\) 4.20686e30 0.547816
\(195\) −9.98442e29 −0.121299
\(196\) −1.10625e30 −0.125429
\(197\) 3.68848e30 0.390439 0.195219 0.980760i \(-0.437458\pi\)
0.195219 + 0.980760i \(0.437458\pi\)
\(198\) 2.47083e29 0.0244266
\(199\) −5.24093e30 −0.484052 −0.242026 0.970270i \(-0.577812\pi\)
−0.242026 + 0.970270i \(0.577812\pi\)
\(200\) −8.19200e29 −0.0707107
\(201\) 2.10435e31 1.69813
\(202\) 5.78598e30 0.436650
\(203\) −4.40908e30 −0.311280
\(204\) 7.02605e30 0.464199
\(205\) −7.51431e30 −0.464742
\(206\) −4.16112e30 −0.240992
\(207\) −6.18106e30 −0.335323
\(208\) −9.95119e29 −0.0505848
\(209\) 1.53163e30 0.0729757
\(210\) −8.21302e30 −0.366896
\(211\) 4.12328e31 1.72754 0.863772 0.503882i \(-0.168095\pi\)
0.863772 + 0.503882i \(0.168095\pi\)
\(212\) 1.67503e31 0.658396
\(213\) 3.73256e31 1.37683
\(214\) −2.40881e31 −0.834098
\(215\) −2.02026e31 −0.656883
\(216\) −3.15192e30 −0.0962608
\(217\) −4.76938e31 −1.36854
\(218\) −4.69980e31 −1.26741
\(219\) −3.27029e31 −0.829069
\(220\) 4.06603e29 0.00969314
\(221\) 6.24955e30 0.140137
\(222\) −4.58272e31 −0.966849
\(223\) −7.30751e31 −1.45095 −0.725477 0.688246i \(-0.758381\pi\)
−0.725477 + 0.688246i \(0.758381\pi\)
\(224\) −8.18569e30 −0.153006
\(225\) 9.05507e30 0.159378
\(226\) −4.74242e31 −0.786206
\(227\) −4.75425e31 −0.742562 −0.371281 0.928521i \(-0.621081\pi\)
−0.371281 + 0.928521i \(0.621081\pi\)
\(228\) 7.66567e31 1.12831
\(229\) −1.75469e31 −0.243457 −0.121728 0.992563i \(-0.538844\pi\)
−0.121728 + 0.992563i \(0.538844\pi\)
\(230\) −1.01717e31 −0.133066
\(231\) 4.07647e30 0.0502947
\(232\) 1.09248e31 0.127152
\(233\) 1.39810e32 1.53544 0.767722 0.640783i \(-0.221390\pi\)
0.767722 + 0.640783i \(0.221390\pi\)
\(234\) 1.09996e31 0.114015
\(235\) 5.12448e30 0.0501457
\(236\) 6.60238e31 0.610083
\(237\) 2.08086e32 1.81610
\(238\) 5.14078e31 0.423877
\(239\) −1.11791e32 −0.871032 −0.435516 0.900181i \(-0.643434\pi\)
−0.435516 + 0.900181i \(0.643434\pi\)
\(240\) 2.03501e31 0.149870
\(241\) −2.45179e32 −1.70708 −0.853538 0.521031i \(-0.825548\pi\)
−0.853538 + 0.521031i \(0.825548\pi\)
\(242\) 1.07195e32 0.705778
\(243\) 2.06371e32 1.28518
\(244\) −2.08644e31 −0.122926
\(245\) 2.01226e31 0.112187
\(246\) 1.86666e32 0.985014
\(247\) 6.81848e31 0.340627
\(248\) 1.18175e32 0.559022
\(249\) −3.79629e32 −1.70086
\(250\) 1.49012e31 0.0632456
\(251\) −7.91625e31 −0.318364 −0.159182 0.987249i \(-0.550886\pi\)
−0.159182 + 0.987249i \(0.550886\pi\)
\(252\) 9.04809e31 0.344866
\(253\) 5.04862e30 0.0182409
\(254\) −3.09274e32 −1.05947
\(255\) −1.27803e32 −0.415192
\(256\) 2.02824e31 0.0625000
\(257\) 1.09612e32 0.320450 0.160225 0.987081i \(-0.448778\pi\)
0.160225 + 0.987081i \(0.448778\pi\)
\(258\) 5.01862e32 1.39225
\(259\) −3.35306e32 −0.882866
\(260\) 1.81011e31 0.0452444
\(261\) −1.20757e32 −0.286594
\(262\) −4.67010e32 −1.05259
\(263\) 7.62148e32 1.63169 0.815843 0.578273i \(-0.196273\pi\)
0.815843 + 0.578273i \(0.196273\pi\)
\(264\) −1.01006e31 −0.0205445
\(265\) −3.04685e32 −0.588887
\(266\) 5.60877e32 1.03031
\(267\) 5.54989e32 0.969130
\(268\) −3.81505e32 −0.633403
\(269\) −5.43143e32 −0.857548 −0.428774 0.903412i \(-0.641054\pi\)
−0.428774 + 0.903412i \(0.641054\pi\)
\(270\) 5.73331e31 0.0860983
\(271\) 9.35499e32 1.33647 0.668233 0.743952i \(-0.267051\pi\)
0.668233 + 0.743952i \(0.267051\pi\)
\(272\) −1.27378e32 −0.173146
\(273\) 1.81476e32 0.234759
\(274\) −6.07992e32 −0.748627
\(275\) −7.39607e30 −0.00866981
\(276\) 2.52679e32 0.282031
\(277\) −7.26315e31 −0.0772055 −0.0386027 0.999255i \(-0.512291\pi\)
−0.0386027 + 0.999255i \(0.512291\pi\)
\(278\) −9.28097e32 −0.939699
\(279\) −1.30626e33 −1.26000
\(280\) 1.48897e32 0.136852
\(281\) −8.29253e32 −0.726360 −0.363180 0.931719i \(-0.618309\pi\)
−0.363180 + 0.931719i \(0.618309\pi\)
\(282\) −1.27300e32 −0.106283
\(283\) −8.40984e32 −0.669377 −0.334689 0.942329i \(-0.608631\pi\)
−0.334689 + 0.942329i \(0.608631\pi\)
\(284\) −6.76688e32 −0.513560
\(285\) −1.39438e33 −1.00919
\(286\) −8.98434e30 −0.00620218
\(287\) 1.36579e33 0.899454
\(288\) −2.24193e32 −0.140871
\(289\) −8.67753e32 −0.520326
\(290\) −1.98720e32 −0.113728
\(291\) 1.90093e33 1.03851
\(292\) 5.92882e32 0.309243
\(293\) 1.91703e33 0.954806 0.477403 0.878684i \(-0.341578\pi\)
0.477403 + 0.878684i \(0.341578\pi\)
\(294\) −4.99876e32 −0.237779
\(295\) −1.20097e33 −0.545675
\(296\) 8.30818e32 0.360635
\(297\) −2.84568e31 −0.0118025
\(298\) 2.12427e33 0.841959
\(299\) 2.24754e32 0.0851424
\(300\) −3.70167e32 −0.134048
\(301\) 3.67200e33 1.27132
\(302\) −3.11916e33 −1.03263
\(303\) 2.61448e33 0.827769
\(304\) −1.38974e33 −0.420861
\(305\) 3.79521e32 0.109948
\(306\) 1.40798e33 0.390262
\(307\) 1.55063e32 0.0411284 0.0205642 0.999789i \(-0.493454\pi\)
0.0205642 + 0.999789i \(0.493454\pi\)
\(308\) −7.39037e31 −0.0187600
\(309\) −1.88026e33 −0.456855
\(310\) −2.14960e33 −0.500004
\(311\) 3.36700e33 0.749856 0.374928 0.927054i \(-0.377667\pi\)
0.374928 + 0.927054i \(0.377667\pi\)
\(312\) −4.49658e32 −0.0958949
\(313\) 9.72130e33 1.98553 0.992763 0.120088i \(-0.0383175\pi\)
0.992763 + 0.120088i \(0.0383175\pi\)
\(314\) 1.35747e33 0.265572
\(315\) −1.64584e33 −0.308457
\(316\) −3.77247e33 −0.677408
\(317\) 4.33019e33 0.745087 0.372543 0.928015i \(-0.378486\pi\)
0.372543 + 0.928015i \(0.378486\pi\)
\(318\) 7.56884e33 1.24814
\(319\) 9.86332e31 0.0155901
\(320\) −3.68935e32 −0.0559017
\(321\) −1.08846e34 −1.58122
\(322\) 1.84879e33 0.257533
\(323\) 8.72782e33 1.16593
\(324\) −4.53399e33 −0.580929
\(325\) −3.29257e32 −0.0404678
\(326\) −5.17833e33 −0.610593
\(327\) −2.12367e34 −2.40266
\(328\) −3.38414e33 −0.367411
\(329\) −9.31419e32 −0.0970511
\(330\) 1.83729e32 0.0183755
\(331\) 4.05518e33 0.389343 0.194672 0.980868i \(-0.437636\pi\)
0.194672 + 0.980868i \(0.437636\pi\)
\(332\) 6.88243e33 0.634421
\(333\) −9.18349e33 −0.812850
\(334\) 9.58830e33 0.815013
\(335\) 6.93953e33 0.566533
\(336\) −3.69882e33 −0.290057
\(337\) −1.02439e34 −0.771726 −0.385863 0.922556i \(-0.626096\pi\)
−0.385863 + 0.922556i \(0.626096\pi\)
\(338\) 9.36927e33 0.678157
\(339\) −2.14293e34 −1.49043
\(340\) 2.31699e33 0.154867
\(341\) 1.06693e33 0.0685415
\(342\) 1.53615e34 0.948597
\(343\) −1.82373e34 −1.08265
\(344\) −9.09844e33 −0.519312
\(345\) −4.59620e33 −0.252256
\(346\) 2.44644e33 0.129124
\(347\) −1.38931e34 −0.705262 −0.352631 0.935763i \(-0.614713\pi\)
−0.352631 + 0.935763i \(0.614713\pi\)
\(348\) 4.93650e33 0.241046
\(349\) −1.31006e34 −0.615386 −0.307693 0.951486i \(-0.599557\pi\)
−0.307693 + 0.951486i \(0.599557\pi\)
\(350\) −2.70842e33 −0.122404
\(351\) −1.26684e33 −0.0550902
\(352\) 1.83118e32 0.00766310
\(353\) −1.98132e34 −0.797986 −0.398993 0.916954i \(-0.630640\pi\)
−0.398993 + 0.916954i \(0.630640\pi\)
\(354\) 2.98338e34 1.15655
\(355\) 1.23089e34 0.459342
\(356\) −1.00616e34 −0.361486
\(357\) 2.32293e34 0.803555
\(358\) −2.05057e34 −0.683053
\(359\) −4.57990e32 −0.0146920 −0.00734600 0.999973i \(-0.502338\pi\)
−0.00734600 + 0.999973i \(0.502338\pi\)
\(360\) 4.07804e33 0.125999
\(361\) 6.16230e34 1.83399
\(362\) −1.16576e34 −0.334229
\(363\) 4.84377e34 1.33796
\(364\) −3.29004e33 −0.0875653
\(365\) −1.07845e34 −0.276595
\(366\) −9.42786e33 −0.233034
\(367\) 5.67067e34 1.35096 0.675480 0.737379i \(-0.263937\pi\)
0.675480 + 0.737379i \(0.263937\pi\)
\(368\) −4.58090e33 −0.105198
\(369\) 3.74068e34 0.828122
\(370\) −1.51125e34 −0.322562
\(371\) 5.53793e34 1.13972
\(372\) 5.33991e34 1.05975
\(373\) −8.62803e34 −1.65136 −0.825681 0.564137i \(-0.809209\pi\)
−0.825681 + 0.564137i \(0.809209\pi\)
\(374\) −1.15002e33 −0.0212294
\(375\) 6.73330e33 0.119896
\(376\) 2.30786e33 0.0396436
\(377\) 4.39094e33 0.0727695
\(378\) −1.04208e34 −0.166633
\(379\) 6.41552e34 0.989925 0.494963 0.868914i \(-0.335182\pi\)
0.494963 + 0.868914i \(0.335182\pi\)
\(380\) 2.52791e34 0.376430
\(381\) −1.39750e35 −2.00846
\(382\) −6.55081e34 −0.908741
\(383\) −8.39805e34 −1.12459 −0.562296 0.826936i \(-0.690082\pi\)
−0.562296 + 0.826936i \(0.690082\pi\)
\(384\) 9.16489e33 0.118483
\(385\) 1.34430e33 0.0167794
\(386\) −3.31826e34 −0.399928
\(387\) 1.00570e35 1.17050
\(388\) −3.44626e34 −0.387364
\(389\) 7.41980e33 0.0805514 0.0402757 0.999189i \(-0.487176\pi\)
0.0402757 + 0.999189i \(0.487176\pi\)
\(390\) 8.17924e33 0.0857710
\(391\) 2.87690e34 0.291433
\(392\) 9.06244e33 0.0886917
\(393\) −2.11025e35 −1.99542
\(394\) −3.02160e34 −0.276082
\(395\) 6.86208e34 0.605892
\(396\) −2.02410e33 −0.0172722
\(397\) −2.92884e34 −0.241559 −0.120780 0.992679i \(-0.538539\pi\)
−0.120780 + 0.992679i \(0.538539\pi\)
\(398\) 4.29337e34 0.342276
\(399\) 2.53440e35 1.95318
\(400\) 6.71089e33 0.0500000
\(401\) −9.68409e34 −0.697605 −0.348803 0.937196i \(-0.613412\pi\)
−0.348803 + 0.937196i \(0.613412\pi\)
\(402\) −1.72388e35 −1.20076
\(403\) 4.74976e34 0.319929
\(404\) −4.73988e34 −0.308758
\(405\) 8.24728e34 0.519598
\(406\) 3.61192e34 0.220108
\(407\) 7.50096e33 0.0442173
\(408\) −5.75574e34 −0.328238
\(409\) 6.56278e34 0.362096 0.181048 0.983474i \(-0.442051\pi\)
0.181048 + 0.983474i \(0.442051\pi\)
\(410\) 6.15572e34 0.328622
\(411\) −2.74730e35 −1.41919
\(412\) 3.40879e34 0.170407
\(413\) 2.18286e35 1.05609
\(414\) 5.06353e34 0.237109
\(415\) −1.25191e35 −0.567444
\(416\) 8.15202e33 0.0357689
\(417\) −4.19374e35 −1.78141
\(418\) −1.25471e34 −0.0516016
\(419\) 4.33969e35 1.72810 0.864050 0.503405i \(-0.167920\pi\)
0.864050 + 0.503405i \(0.167920\pi\)
\(420\) 6.72811e34 0.259434
\(421\) −2.32277e35 −0.867356 −0.433678 0.901068i \(-0.642784\pi\)
−0.433678 + 0.901068i \(0.642784\pi\)
\(422\) −3.37779e35 −1.22156
\(423\) −2.55100e34 −0.0893545
\(424\) −1.37218e35 −0.465556
\(425\) −4.21457e34 −0.138517
\(426\) −3.05771e35 −0.973569
\(427\) −6.89813e34 −0.212792
\(428\) 1.97330e35 0.589797
\(429\) −4.05970e33 −0.0117576
\(430\) 1.65500e35 0.464486
\(431\) 4.59488e35 1.24977 0.624887 0.780715i \(-0.285145\pi\)
0.624887 + 0.780715i \(0.285145\pi\)
\(432\) 2.58205e34 0.0680667
\(433\) −2.35374e35 −0.601413 −0.300706 0.953717i \(-0.597222\pi\)
−0.300706 + 0.953717i \(0.597222\pi\)
\(434\) 3.90708e35 0.967701
\(435\) −8.97945e34 −0.215598
\(436\) 3.85008e35 0.896194
\(437\) 3.13880e35 0.708377
\(438\) 2.67902e35 0.586240
\(439\) −6.18421e34 −0.131224 −0.0656120 0.997845i \(-0.520900\pi\)
−0.0656120 + 0.997845i \(0.520900\pi\)
\(440\) −3.33089e33 −0.00685409
\(441\) −1.00172e35 −0.199906
\(442\) −5.11963e34 −0.0990919
\(443\) 4.85749e34 0.0911930 0.0455965 0.998960i \(-0.485481\pi\)
0.0455965 + 0.998960i \(0.485481\pi\)
\(444\) 3.75417e35 0.683665
\(445\) 1.83019e35 0.323323
\(446\) 5.98631e35 1.02598
\(447\) 9.59882e35 1.59612
\(448\) 6.70572e34 0.108191
\(449\) 3.57024e35 0.558949 0.279474 0.960153i \(-0.409840\pi\)
0.279474 + 0.960153i \(0.409840\pi\)
\(450\) −7.41791e34 −0.112697
\(451\) −3.05534e34 −0.0450481
\(452\) 3.88499e35 0.555931
\(453\) −1.40944e36 −1.95758
\(454\) 3.89468e35 0.525071
\(455\) 5.98454e34 0.0783208
\(456\) −6.27971e35 −0.797837
\(457\) −1.26417e36 −1.55932 −0.779660 0.626203i \(-0.784608\pi\)
−0.779660 + 0.626203i \(0.784608\pi\)
\(458\) 1.43744e35 0.172150
\(459\) −1.62158e35 −0.188568
\(460\) 8.33262e34 0.0940916
\(461\) 8.29211e35 0.909290 0.454645 0.890673i \(-0.349766\pi\)
0.454645 + 0.890673i \(0.349766\pi\)
\(462\) −3.33944e34 −0.0355637
\(463\) −1.37072e36 −1.41777 −0.708884 0.705325i \(-0.750801\pi\)
−0.708884 + 0.705325i \(0.750801\pi\)
\(464\) −8.94956e34 −0.0899102
\(465\) −9.71325e35 −0.947872
\(466\) −1.14533e36 −1.08572
\(467\) 2.06002e35 0.189712 0.0948559 0.995491i \(-0.469761\pi\)
0.0948559 + 0.995491i \(0.469761\pi\)
\(468\) −9.01087e34 −0.0806209
\(469\) −1.26132e36 −1.09646
\(470\) −4.19797e34 −0.0354583
\(471\) 6.13394e35 0.503451
\(472\) −5.40867e35 −0.431394
\(473\) −8.21444e34 −0.0636726
\(474\) −1.70464e36 −1.28418
\(475\) −4.59825e35 −0.336689
\(476\) −4.21133e35 −0.299727
\(477\) 1.51675e36 1.04934
\(478\) 9.15790e35 0.615913
\(479\) 9.78763e35 0.639953 0.319977 0.947425i \(-0.396325\pi\)
0.319977 + 0.947425i \(0.396325\pi\)
\(480\) −1.66708e35 −0.105974
\(481\) 3.33927e35 0.206392
\(482\) 2.00850e36 1.20708
\(483\) 8.35400e35 0.488212
\(484\) −8.78144e35 −0.499060
\(485\) 6.26871e35 0.346469
\(486\) −1.69059e36 −0.908760
\(487\) 1.92059e35 0.100414 0.0502068 0.998739i \(-0.484012\pi\)
0.0502068 + 0.998739i \(0.484012\pi\)
\(488\) 1.70921e35 0.0869217
\(489\) −2.33990e36 −1.15752
\(490\) −1.64845e35 −0.0793283
\(491\) 3.36034e36 1.57319 0.786597 0.617466i \(-0.211841\pi\)
0.786597 + 0.617466i \(0.211841\pi\)
\(492\) −1.52917e36 −0.696510
\(493\) 5.62051e35 0.249082
\(494\) −5.58570e35 −0.240860
\(495\) 3.68182e34 0.0154487
\(496\) −9.68092e35 −0.395288
\(497\) −2.23725e36 −0.889003
\(498\) 3.10992e36 1.20269
\(499\) −4.56833e36 −1.71949 −0.859746 0.510722i \(-0.829378\pi\)
−0.859746 + 0.510722i \(0.829378\pi\)
\(500\) −1.22070e35 −0.0447214
\(501\) 4.33261e36 1.54504
\(502\) 6.48500e35 0.225118
\(503\) 3.45540e36 1.16770 0.583850 0.811862i \(-0.301546\pi\)
0.583850 + 0.811862i \(0.301546\pi\)
\(504\) −7.41220e35 −0.243857
\(505\) 8.62179e35 0.276162
\(506\) −4.13583e34 −0.0128982
\(507\) 4.23363e36 1.28560
\(508\) 2.53357e36 0.749158
\(509\) −1.49420e36 −0.430247 −0.215124 0.976587i \(-0.569015\pi\)
−0.215124 + 0.976587i \(0.569015\pi\)
\(510\) 1.04696e36 0.293585
\(511\) 1.96017e36 0.535318
\(512\) −1.66153e35 −0.0441942
\(513\) −1.76920e36 −0.458346
\(514\) −8.97939e35 −0.226592
\(515\) −6.20055e35 −0.152417
\(516\) −4.11126e36 −0.984473
\(517\) 2.08363e34 0.00486069
\(518\) 2.74683e36 0.624281
\(519\) 1.10546e36 0.244784
\(520\) −1.48284e35 −0.0319926
\(521\) −3.77861e36 −0.794371 −0.397185 0.917738i \(-0.630013\pi\)
−0.397185 + 0.917738i \(0.630013\pi\)
\(522\) 9.89245e35 0.202652
\(523\) 6.89623e36 1.37670 0.688350 0.725379i \(-0.258335\pi\)
0.688350 + 0.725379i \(0.258335\pi\)
\(524\) 3.82575e36 0.744293
\(525\) −1.22384e36 −0.232045
\(526\) −6.24352e36 −1.15378
\(527\) 6.07982e36 1.09508
\(528\) 8.27443e34 0.0145271
\(529\) −4.80859e36 −0.822936
\(530\) 2.49598e36 0.416406
\(531\) 5.97850e36 0.972336
\(532\) −4.59471e36 −0.728536
\(533\) −1.36017e36 −0.210270
\(534\) −4.54647e36 −0.685279
\(535\) −3.58941e36 −0.527530
\(536\) 3.12529e36 0.447884
\(537\) −9.26580e36 −1.29488
\(538\) 4.44943e36 0.606378
\(539\) 8.18193e34 0.0108745
\(540\) −4.69673e35 −0.0608807
\(541\) −1.35606e36 −0.171442 −0.0857208 0.996319i \(-0.527319\pi\)
−0.0857208 + 0.996319i \(0.527319\pi\)
\(542\) −7.66361e36 −0.945025
\(543\) −5.26766e36 −0.633607
\(544\) 1.04348e36 0.122433
\(545\) −7.00325e36 −0.801580
\(546\) −1.48665e36 −0.166000
\(547\) −7.28023e36 −0.793079 −0.396539 0.918018i \(-0.629789\pi\)
−0.396539 + 0.918018i \(0.629789\pi\)
\(548\) 4.98067e36 0.529359
\(549\) −1.88928e36 −0.195916
\(550\) 6.05886e34 0.00613048
\(551\) 6.13217e36 0.605436
\(552\) −2.06995e36 −0.199426
\(553\) −1.24724e37 −1.17263
\(554\) 5.94997e35 0.0545925
\(555\) −6.82879e36 −0.611489
\(556\) 7.60297e36 0.664467
\(557\) 2.29248e37 1.95551 0.977757 0.209740i \(-0.0672618\pi\)
0.977757 + 0.209740i \(0.0672618\pi\)
\(558\) 1.07009e37 0.890957
\(559\) −3.65689e36 −0.297203
\(560\) −1.21976e36 −0.0967692
\(561\) −5.19651e35 −0.0402451
\(562\) 6.79324e36 0.513614
\(563\) −9.81459e36 −0.724450 −0.362225 0.932091i \(-0.617983\pi\)
−0.362225 + 0.932091i \(0.617983\pi\)
\(564\) 1.04284e36 0.0751535
\(565\) −7.06676e36 −0.497240
\(566\) 6.88934e36 0.473321
\(567\) −1.49902e37 −1.00562
\(568\) 5.54343e36 0.363142
\(569\) 2.24316e37 1.43497 0.717487 0.696572i \(-0.245292\pi\)
0.717487 + 0.696572i \(0.245292\pi\)
\(570\) 1.14227e37 0.713607
\(571\) −7.07828e34 −0.00431857 −0.00215929 0.999998i \(-0.500687\pi\)
−0.00215929 + 0.999998i \(0.500687\pi\)
\(572\) 7.35997e34 0.00438561
\(573\) −2.96008e37 −1.72272
\(574\) −1.11886e37 −0.636010
\(575\) −1.51569e36 −0.0841580
\(576\) 1.83659e36 0.0996111
\(577\) 1.36809e37 0.724837 0.362418 0.932016i \(-0.381951\pi\)
0.362418 + 0.932016i \(0.381951\pi\)
\(578\) 7.10863e36 0.367926
\(579\) −1.49940e37 −0.758153
\(580\) 1.62792e36 0.0804182
\(581\) 2.27545e37 1.09822
\(582\) −1.55724e37 −0.734336
\(583\) −1.23886e36 −0.0570817
\(584\) −4.85689e36 −0.218668
\(585\) 1.63907e36 0.0721095
\(586\) −1.57043e37 −0.675150
\(587\) 1.21248e37 0.509402 0.254701 0.967020i \(-0.418023\pi\)
0.254701 + 0.967020i \(0.418023\pi\)
\(588\) 4.09499e36 0.168135
\(589\) 6.63329e37 2.66178
\(590\) 9.83832e36 0.385850
\(591\) −1.36535e37 −0.523376
\(592\) −6.80606e36 −0.255007
\(593\) −6.58205e36 −0.241059 −0.120529 0.992710i \(-0.538459\pi\)
−0.120529 + 0.992710i \(0.538459\pi\)
\(594\) 2.33118e35 0.00834563
\(595\) 7.66036e36 0.268084
\(596\) −1.74020e37 −0.595355
\(597\) 1.94002e37 0.648862
\(598\) −1.84118e36 −0.0602047
\(599\) 1.55149e37 0.496005 0.248003 0.968759i \(-0.420226\pi\)
0.248003 + 0.968759i \(0.420226\pi\)
\(600\) 3.03241e36 0.0947863
\(601\) 5.61441e36 0.171593 0.0857964 0.996313i \(-0.472657\pi\)
0.0857964 + 0.996313i \(0.472657\pi\)
\(602\) −3.00810e37 −0.898959
\(603\) −3.45455e37 −1.00950
\(604\) 2.55522e37 0.730179
\(605\) 1.59733e37 0.446373
\(606\) −2.14178e37 −0.585321
\(607\) −2.30412e36 −0.0615825 −0.0307913 0.999526i \(-0.509803\pi\)
−0.0307913 + 0.999526i \(0.509803\pi\)
\(608\) 1.13847e37 0.297594
\(609\) 1.63209e37 0.417265
\(610\) −3.10904e36 −0.0777451
\(611\) 9.27587e35 0.0226881
\(612\) −1.15341e37 −0.275957
\(613\) 4.94431e37 1.15715 0.578575 0.815629i \(-0.303609\pi\)
0.578575 + 0.815629i \(0.303609\pi\)
\(614\) −1.27028e36 −0.0290821
\(615\) 2.78155e37 0.622977
\(616\) 6.05419e35 0.0132653
\(617\) 1.46372e37 0.313768 0.156884 0.987617i \(-0.449855\pi\)
0.156884 + 0.987617i \(0.449855\pi\)
\(618\) 1.54031e37 0.323045
\(619\) −5.85835e37 −1.20213 −0.601065 0.799200i \(-0.705257\pi\)
−0.601065 + 0.799200i \(0.705257\pi\)
\(620\) 1.76095e37 0.353557
\(621\) −5.83172e36 −0.114567
\(622\) −2.75825e37 −0.530228
\(623\) −3.32654e37 −0.625754
\(624\) 3.68360e36 0.0678079
\(625\) 2.22045e36 0.0400000
\(626\) −7.96369e37 −1.40398
\(627\) −5.66958e36 −0.0978226
\(628\) −1.11204e37 −0.187787
\(629\) 4.27435e37 0.706458
\(630\) 1.34827e37 0.218112
\(631\) 4.50840e36 0.0713881 0.0356941 0.999363i \(-0.488636\pi\)
0.0356941 + 0.999363i \(0.488636\pi\)
\(632\) 3.09041e37 0.479000
\(633\) −1.52630e38 −2.31574
\(634\) −3.54729e37 −0.526856
\(635\) −4.60854e37 −0.670067
\(636\) −6.20039e37 −0.882567
\(637\) 3.64242e36 0.0507584
\(638\) −8.08003e35 −0.0110239
\(639\) −6.12746e37 −0.818500
\(640\) 3.02231e36 0.0395285
\(641\) −1.41328e38 −1.80986 −0.904929 0.425563i \(-0.860076\pi\)
−0.904929 + 0.425563i \(0.860076\pi\)
\(642\) 8.91663e37 1.11809
\(643\) −4.71217e37 −0.578592 −0.289296 0.957240i \(-0.593421\pi\)
−0.289296 + 0.957240i \(0.593421\pi\)
\(644\) −1.51453e37 −0.182103
\(645\) 7.47833e37 0.880539
\(646\) −7.14983e37 −0.824436
\(647\) −3.72863e37 −0.421057 −0.210529 0.977588i \(-0.567519\pi\)
−0.210529 + 0.977588i \(0.567519\pi\)
\(648\) 3.71424e37 0.410778
\(649\) −4.88317e36 −0.0528930
\(650\) 2.69728e36 0.0286151
\(651\) 1.76547e38 1.83450
\(652\) 4.24208e37 0.431754
\(653\) 5.32316e37 0.530691 0.265345 0.964153i \(-0.414514\pi\)
0.265345 + 0.964153i \(0.414514\pi\)
\(654\) 1.73971e38 1.69894
\(655\) −6.95899e37 −0.665716
\(656\) 2.77229e37 0.259799
\(657\) 5.36859e37 0.492865
\(658\) 7.63019e36 0.0686255
\(659\) 1.58587e38 1.39738 0.698692 0.715423i \(-0.253766\pi\)
0.698692 + 0.715423i \(0.253766\pi\)
\(660\) −1.50511e36 −0.0129935
\(661\) 1.90328e38 1.60984 0.804922 0.593380i \(-0.202207\pi\)
0.804922 + 0.593380i \(0.202207\pi\)
\(662\) −3.32201e37 −0.275307
\(663\) −2.31338e37 −0.187851
\(664\) −5.63809e37 −0.448604
\(665\) 8.35772e37 0.651622
\(666\) 7.52312e37 0.574772
\(667\) 2.02131e37 0.151333
\(668\) −7.85474e37 −0.576301
\(669\) 2.70500e38 1.94498
\(670\) −5.68487e37 −0.400599
\(671\) 1.54314e36 0.0106574
\(672\) 3.03007e37 0.205101
\(673\) −2.51031e38 −1.66542 −0.832709 0.553711i \(-0.813211\pi\)
−0.832709 + 0.553711i \(0.813211\pi\)
\(674\) 8.39183e37 0.545693
\(675\) 8.54329e36 0.0544533
\(676\) −7.67531e37 −0.479529
\(677\) −2.63747e38 −1.61525 −0.807627 0.589694i \(-0.799248\pi\)
−0.807627 + 0.589694i \(0.799248\pi\)
\(678\) 1.75549e38 1.05389
\(679\) −1.13939e38 −0.670550
\(680\) −1.89808e37 −0.109507
\(681\) 1.75987e38 0.995390
\(682\) −8.74033e36 −0.0484662
\(683\) −1.50962e38 −0.820707 −0.410353 0.911927i \(-0.634595\pi\)
−0.410353 + 0.911927i \(0.634595\pi\)
\(684\) −1.25842e38 −0.670759
\(685\) −9.05979e37 −0.473473
\(686\) 1.49400e38 0.765553
\(687\) 6.49529e37 0.326349
\(688\) 7.45344e37 0.367209
\(689\) −5.51514e37 −0.266439
\(690\) 3.76521e37 0.178372
\(691\) 5.64059e36 0.0262042 0.0131021 0.999914i \(-0.495829\pi\)
0.0131021 + 0.999914i \(0.495829\pi\)
\(692\) −2.00412e37 −0.0913045
\(693\) −6.69203e36 −0.0298992
\(694\) 1.13812e38 0.498695
\(695\) −1.38297e38 −0.594318
\(696\) −4.04398e37 −0.170445
\(697\) −1.74105e38 −0.719730
\(698\) 1.07320e38 0.435144
\(699\) −5.17531e38 −2.05823
\(700\) 2.21874e37 0.0865530
\(701\) −1.95153e38 −0.746761 −0.373381 0.927678i \(-0.621801\pi\)
−0.373381 + 0.927678i \(0.621801\pi\)
\(702\) 1.03779e37 0.0389547
\(703\) 4.66346e38 1.71716
\(704\) −1.50010e36 −0.00541863
\(705\) −1.89691e37 −0.0672193
\(706\) 1.62309e38 0.564261
\(707\) −1.56709e38 −0.534479
\(708\) −2.44398e38 −0.817804
\(709\) 3.20482e38 1.05215 0.526077 0.850437i \(-0.323662\pi\)
0.526077 + 0.850437i \(0.323662\pi\)
\(710\) −1.00834e38 −0.324804
\(711\) −3.41600e38 −1.07964
\(712\) 8.24245e37 0.255609
\(713\) 2.18649e38 0.665334
\(714\) −1.90295e38 −0.568200
\(715\) −1.33877e36 −0.00392261
\(716\) 1.67983e38 0.482992
\(717\) 4.13812e38 1.16760
\(718\) 3.75185e36 0.0103888
\(719\) −6.47800e38 −1.76036 −0.880179 0.474642i \(-0.842578\pi\)
−0.880179 + 0.474642i \(0.842578\pi\)
\(720\) −3.34073e37 −0.0890949
\(721\) 1.12700e38 0.294985
\(722\) −5.04816e38 −1.29682
\(723\) 9.07570e38 2.28830
\(724\) 9.54992e37 0.236336
\(725\) −2.96116e37 −0.0719282
\(726\) −3.96801e38 −0.946082
\(727\) 2.86591e37 0.0670729 0.0335365 0.999437i \(-0.489323\pi\)
0.0335365 + 0.999437i \(0.489323\pi\)
\(728\) 2.69520e37 0.0619180
\(729\) −2.48719e38 −0.560903
\(730\) 8.83463e37 0.195582
\(731\) −4.68092e38 −1.01729
\(732\) 7.72331e37 0.164780
\(733\) 3.01689e38 0.631910 0.315955 0.948774i \(-0.397675\pi\)
0.315955 + 0.948774i \(0.397675\pi\)
\(734\) −4.64541e38 −0.955272
\(735\) −7.44874e37 −0.150385
\(736\) 3.75268e37 0.0743859
\(737\) 2.82164e37 0.0549149
\(738\) −3.06436e38 −0.585571
\(739\) −7.89496e37 −0.148132 −0.0740662 0.997253i \(-0.523598\pi\)
−0.0740662 + 0.997253i \(0.523598\pi\)
\(740\) 1.23802e38 0.228086
\(741\) −2.52398e38 −0.456604
\(742\) −4.53667e38 −0.805906
\(743\) 5.54426e38 0.967152 0.483576 0.875302i \(-0.339338\pi\)
0.483576 + 0.875302i \(0.339338\pi\)
\(744\) −4.37446e38 −0.749358
\(745\) 3.16541e38 0.532501
\(746\) 7.06808e38 1.16769
\(747\) 6.23209e38 1.01113
\(748\) 9.42094e36 0.0150115
\(749\) 6.52407e38 1.02097
\(750\) −5.51592e37 −0.0847795
\(751\) 7.27919e38 1.09886 0.549432 0.835538i \(-0.314844\pi\)
0.549432 + 0.835538i \(0.314844\pi\)
\(752\) −1.89060e37 −0.0280323
\(753\) 2.93033e38 0.426761
\(754\) −3.59706e37 −0.0514558
\(755\) −4.64792e38 −0.653092
\(756\) 8.53671e37 0.117827
\(757\) 6.83088e37 0.0926151 0.0463076 0.998927i \(-0.485255\pi\)
0.0463076 + 0.998927i \(0.485255\pi\)
\(758\) −5.25559e38 −0.699983
\(759\) −1.86883e37 −0.0244515
\(760\) −2.07087e38 −0.266176
\(761\) −6.08504e38 −0.768371 −0.384185 0.923256i \(-0.625518\pi\)
−0.384185 + 0.923256i \(0.625518\pi\)
\(762\) 1.14483e39 1.42020
\(763\) 1.27290e39 1.55137
\(764\) 5.36643e38 0.642577
\(765\) 2.09805e38 0.246823
\(766\) 6.87969e38 0.795207
\(767\) −2.17388e38 −0.246887
\(768\) −7.50788e37 −0.0837801
\(769\) 2.25503e38 0.247256 0.123628 0.992329i \(-0.460547\pi\)
0.123628 + 0.992329i \(0.460547\pi\)
\(770\) −1.10125e37 −0.0118648
\(771\) −4.05746e38 −0.429557
\(772\) 2.71832e38 0.282792
\(773\) −1.63456e39 −1.67101 −0.835504 0.549484i \(-0.814824\pi\)
−0.835504 + 0.549484i \(0.814824\pi\)
\(774\) −8.23870e38 −0.827667
\(775\) −3.20315e38 −0.316231
\(776\) 2.82317e38 0.273908
\(777\) 1.24119e39 1.18347
\(778\) −6.07830e37 −0.0569584
\(779\) −1.89955e39 −1.74943
\(780\) −6.70043e37 −0.0606493
\(781\) 5.00483e37 0.0445247
\(782\) −2.35676e38 −0.206074
\(783\) −1.13932e38 −0.0979182
\(784\) −7.42395e37 −0.0627145
\(785\) 2.02279e38 0.167962
\(786\) 1.72872e39 1.41098
\(787\) 2.62879e38 0.210910 0.105455 0.994424i \(-0.466370\pi\)
0.105455 + 0.994424i \(0.466370\pi\)
\(788\) 2.47529e38 0.195219
\(789\) −2.82122e39 −2.18724
\(790\) −5.62142e38 −0.428430
\(791\) 1.28445e39 0.962350
\(792\) 1.65814e37 0.0122133
\(793\) 6.86975e37 0.0497454
\(794\) 2.39931e38 0.170808
\(795\) 1.12784e39 0.789392
\(796\) −3.51713e38 −0.242026
\(797\) −2.10383e39 −1.42339 −0.711693 0.702490i \(-0.752071\pi\)
−0.711693 + 0.702490i \(0.752071\pi\)
\(798\) −2.07618e39 −1.38110
\(799\) 1.18733e38 0.0776590
\(800\) −5.49756e37 −0.0353553
\(801\) −9.11084e38 −0.576129
\(802\) 7.93321e38 0.493281
\(803\) −4.38500e37 −0.0268108
\(804\) 1.41220e39 0.849065
\(805\) 2.75491e38 0.162878
\(806\) −3.89101e38 −0.226224
\(807\) 2.01053e39 1.14953
\(808\) 3.88291e38 0.218325
\(809\) 3.20140e39 1.77025 0.885125 0.465354i \(-0.154073\pi\)
0.885125 + 0.465354i \(0.154073\pi\)
\(810\) −6.75617e38 −0.367411
\(811\) 6.63176e38 0.354689 0.177344 0.984149i \(-0.443249\pi\)
0.177344 + 0.984149i \(0.443249\pi\)
\(812\) −2.95888e38 −0.155640
\(813\) −3.46291e39 −1.79151
\(814\) −6.14479e37 −0.0312664
\(815\) −7.71631e38 −0.386173
\(816\) 4.71510e38 0.232099
\(817\) −5.10704e39 −2.47270
\(818\) −5.37623e38 −0.256040
\(819\) −2.97915e38 −0.139560
\(820\) −5.04276e38 −0.232371
\(821\) −3.63383e39 −1.64715 −0.823573 0.567211i \(-0.808022\pi\)
−0.823573 + 0.567211i \(0.808022\pi\)
\(822\) 2.25059e39 1.00352
\(823\) 3.19652e39 1.40210 0.701051 0.713111i \(-0.252714\pi\)
0.701051 + 0.713111i \(0.252714\pi\)
\(824\) −2.79248e38 −0.120496
\(825\) 2.73778e37 0.0116217
\(826\) −1.78820e39 −0.746768
\(827\) −2.85534e39 −1.17310 −0.586549 0.809914i \(-0.699514\pi\)
−0.586549 + 0.809914i \(0.699514\pi\)
\(828\) −4.14804e38 −0.167662
\(829\) 2.36694e39 0.941240 0.470620 0.882336i \(-0.344030\pi\)
0.470620 + 0.882336i \(0.344030\pi\)
\(830\) 1.02556e39 0.401243
\(831\) 2.68858e38 0.103492
\(832\) −6.67813e37 −0.0252924
\(833\) 4.66239e38 0.173741
\(834\) 3.43551e39 1.25965
\(835\) 1.42877e39 0.515459
\(836\) 1.02786e38 0.0364879
\(837\) −1.23243e39 −0.430495
\(838\) −3.55507e39 −1.22195
\(839\) 2.29389e39 0.775866 0.387933 0.921688i \(-0.373189\pi\)
0.387933 + 0.921688i \(0.373189\pi\)
\(840\) −5.51167e38 −0.183448
\(841\) −2.65824e39 −0.870658
\(842\) 1.90281e39 0.613313
\(843\) 3.06962e39 0.973672
\(844\) 2.76708e39 0.863772
\(845\) 1.39613e39 0.428904
\(846\) 2.08978e38 0.0631831
\(847\) −2.90330e39 −0.863903
\(848\) 1.12409e39 0.329198
\(849\) 3.11304e39 0.897287
\(850\) 3.45258e38 0.0979463
\(851\) 1.53719e39 0.429219
\(852\) 2.50488e39 0.688417
\(853\) 1.11980e39 0.302919 0.151460 0.988463i \(-0.451603\pi\)
0.151460 + 0.988463i \(0.451603\pi\)
\(854\) 5.65095e38 0.150467
\(855\) 2.28904e39 0.599945
\(856\) −1.61653e39 −0.417049
\(857\) 4.56953e39 1.16046 0.580231 0.814452i \(-0.302962\pi\)
0.580231 + 0.814452i \(0.302962\pi\)
\(858\) 3.32570e37 0.00831391
\(859\) 3.49246e39 0.859455 0.429728 0.902959i \(-0.358610\pi\)
0.429728 + 0.902959i \(0.358610\pi\)
\(860\) −1.35577e39 −0.328441
\(861\) −5.05571e39 −1.20570
\(862\) −3.76413e39 −0.883723
\(863\) 7.89699e39 1.82522 0.912612 0.408827i \(-0.134062\pi\)
0.912612 + 0.408827i \(0.134062\pi\)
\(864\) −2.11522e38 −0.0481304
\(865\) 3.64548e38 0.0816652
\(866\) 1.92819e39 0.425263
\(867\) 3.21213e39 0.697487
\(868\) −3.20068e39 −0.684268
\(869\) 2.79015e38 0.0587300
\(870\) 7.35596e38 0.152451
\(871\) 1.25613e39 0.256325
\(872\) −3.15398e39 −0.633705
\(873\) −3.12061e39 −0.617372
\(874\) −2.57131e39 −0.500898
\(875\) −4.03586e38 −0.0774153
\(876\) −2.19465e39 −0.414534
\(877\) −2.35733e39 −0.438456 −0.219228 0.975674i \(-0.570354\pi\)
−0.219228 + 0.975674i \(0.570354\pi\)
\(878\) 5.06610e38 0.0927894
\(879\) −7.09620e39 −1.27990
\(880\) 2.72867e37 0.00484657
\(881\) 4.52972e39 0.792312 0.396156 0.918183i \(-0.370344\pi\)
0.396156 + 0.918183i \(0.370344\pi\)
\(882\) 8.20610e38 0.141355
\(883\) −9.79510e39 −1.66165 −0.830824 0.556535i \(-0.812131\pi\)
−0.830824 + 0.556535i \(0.812131\pi\)
\(884\) 4.19400e38 0.0700686
\(885\) 4.44558e39 0.731466
\(886\) −3.97926e38 −0.0644832
\(887\) −9.29591e39 −1.48362 −0.741811 0.670609i \(-0.766033\pi\)
−0.741811 + 0.670609i \(0.766033\pi\)
\(888\) −3.07541e39 −0.483424
\(889\) 8.37643e39 1.29684
\(890\) −1.49929e39 −0.228624
\(891\) 3.35337e38 0.0503654
\(892\) −4.90399e39 −0.725477
\(893\) 1.29542e39 0.188763
\(894\) −7.86336e39 −1.12863
\(895\) −3.05559e39 −0.432001
\(896\) −5.49332e38 −0.0765028
\(897\) −8.31963e38 −0.114132
\(898\) −2.92474e39 −0.395236
\(899\) 4.27168e39 0.568647
\(900\) 6.07675e38 0.0796889
\(901\) −7.05952e39 −0.911991
\(902\) 2.50294e38 0.0318538
\(903\) −1.35925e40 −1.70418
\(904\) −3.18258e39 −0.393103
\(905\) −1.73712e39 −0.211385
\(906\) 1.15461e40 1.38422
\(907\) 1.36999e40 1.61815 0.809077 0.587703i \(-0.199967\pi\)
0.809077 + 0.587703i \(0.199967\pi\)
\(908\) −3.19052e39 −0.371281
\(909\) −4.29199e39 −0.492092
\(910\) −4.90254e38 −0.0553812
\(911\) −3.75210e39 −0.417615 −0.208807 0.977957i \(-0.566958\pi\)
−0.208807 + 0.977957i \(0.566958\pi\)
\(912\) 5.14434e39 0.564156
\(913\) −5.09029e38 −0.0550031
\(914\) 1.03560e40 1.10261
\(915\) −1.40486e39 −0.147383
\(916\) −1.17755e39 −0.121728
\(917\) 1.26486e40 1.28842
\(918\) 1.32840e39 0.133338
\(919\) 9.82750e39 0.972039 0.486019 0.873948i \(-0.338448\pi\)
0.486019 + 0.873948i \(0.338448\pi\)
\(920\) −6.82608e38 −0.0665328
\(921\) −5.73993e38 −0.0551318
\(922\) −6.79290e39 −0.642965
\(923\) 2.22805e39 0.207827
\(924\) 2.73567e38 0.0251474
\(925\) −2.25194e39 −0.204006
\(926\) 1.12289e40 1.00251
\(927\) 3.08668e39 0.271591
\(928\) 7.33148e38 0.0635761
\(929\) −3.06657e39 −0.262084 −0.131042 0.991377i \(-0.541832\pi\)
−0.131042 + 0.991377i \(0.541832\pi\)
\(930\) 7.95709e39 0.670246
\(931\) 5.08683e39 0.422306
\(932\) 9.38251e39 0.767722
\(933\) −1.24635e40 −1.00517
\(934\) −1.68757e39 −0.134146
\(935\) −1.71366e38 −0.0134267
\(936\) 7.38171e38 0.0570076
\(937\) 5.24978e39 0.399629 0.199814 0.979834i \(-0.435966\pi\)
0.199814 + 0.979834i \(0.435966\pi\)
\(938\) 1.03327e40 0.775314
\(939\) −3.59850e40 −2.66156
\(940\) 3.43898e38 0.0250728
\(941\) 4.32653e39 0.310942 0.155471 0.987840i \(-0.450310\pi\)
0.155471 + 0.987840i \(0.450310\pi\)
\(942\) −5.02492e39 −0.355994
\(943\) −6.26138e39 −0.437283
\(944\) 4.43078e39 0.305041
\(945\) −1.55282e39 −0.105388
\(946\) 6.72927e38 0.0450233
\(947\) 1.94230e39 0.128113 0.0640564 0.997946i \(-0.479596\pi\)
0.0640564 + 0.997946i \(0.479596\pi\)
\(948\) 1.39644e40 0.908052
\(949\) −1.95211e39 −0.125144
\(950\) 3.76689e39 0.238075
\(951\) −1.60289e40 −0.998775
\(952\) 3.44992e39 0.211939
\(953\) 3.12687e40 1.89389 0.946946 0.321393i \(-0.104151\pi\)
0.946946 + 0.321393i \(0.104151\pi\)
\(954\) −1.24252e40 −0.741993
\(955\) −9.76147e39 −0.574738
\(956\) −7.50215e39 −0.435516
\(957\) −3.65107e38 −0.0208982
\(958\) −8.01803e39 −0.452515
\(959\) 1.64670e40 0.916353
\(960\) 1.36567e39 0.0749352
\(961\) 2.77249e40 1.50004
\(962\) −2.73553e39 −0.145941
\(963\) 1.78684e40 0.940005
\(964\) −1.64537e40 −0.853538
\(965\) −4.94459e39 −0.252937
\(966\) −6.84360e39 −0.345218
\(967\) 8.16162e39 0.405994 0.202997 0.979179i \(-0.434932\pi\)
0.202997 + 0.979179i \(0.434932\pi\)
\(968\) 7.19375e39 0.352889
\(969\) −3.23075e40 −1.56290
\(970\) −5.13532e39 −0.244991
\(971\) −2.55969e40 −1.20428 −0.602140 0.798391i \(-0.705685\pi\)
−0.602140 + 0.798391i \(0.705685\pi\)
\(972\) 1.38493e40 0.642590
\(973\) 2.51367e40 1.15023
\(974\) −1.57334e39 −0.0710032
\(975\) 1.21880e39 0.0542464
\(976\) −1.40019e39 −0.0614629
\(977\) −1.33514e40 −0.578028 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(978\) 1.91684e40 0.818488
\(979\) 7.44162e38 0.0313402
\(980\) 1.35041e39 0.0560936
\(981\) 3.48627e40 1.42833
\(982\) −2.75279e40 −1.11242
\(983\) 1.76204e40 0.702333 0.351167 0.936313i \(-0.385785\pi\)
0.351167 + 0.936313i \(0.385785\pi\)
\(984\) 1.25270e40 0.492507
\(985\) −4.50253e39 −0.174610
\(986\) −4.60432e39 −0.176128
\(987\) 3.44780e39 0.130095
\(988\) 4.57581e39 0.170313
\(989\) −1.68340e40 −0.618071
\(990\) −3.01615e38 −0.0109239
\(991\) −7.00587e39 −0.250304 −0.125152 0.992138i \(-0.539942\pi\)
−0.125152 + 0.992138i \(0.539942\pi\)
\(992\) 7.93061e39 0.279511
\(993\) −1.50109e40 −0.521907
\(994\) 1.83275e40 0.628620
\(995\) 6.39762e39 0.216475
\(996\) −2.54765e40 −0.850430
\(997\) −1.98983e40 −0.655287 −0.327644 0.944801i \(-0.606255\pi\)
−0.327644 + 0.944801i \(0.606255\pi\)
\(998\) 3.74238e40 1.21586
\(999\) −8.66446e39 −0.277720
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.a.b.1.1 2
5.2 odd 4 50.28.b.d.49.2 4
5.3 odd 4 50.28.b.d.49.3 4
5.4 even 2 50.28.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.a.b.1.1 2 1.1 even 1 trivial
50.28.a.d.1.2 2 5.4 even 2
50.28.b.d.49.2 4 5.2 odd 4
50.28.b.d.49.3 4 5.3 odd 4