Properties

Label 10.28.a.b.1.1
Level 1010
Weight 2828
Character 10.1
Self dual yes
Analytic conductor 46.18646.186
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: N N == 10=25 10 = 2 \cdot 5
Weight: k k == 28 28
Character orbit: [χ][\chi] == 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 46.185557483846.1855574838
Analytic rank: 00
Dimension: 22
Coefficient field: Q(12929)\Q(\sqrt{12929})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x3232 x^{2} - x - 3232 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 243357 2^{4}\cdot 3^{3}\cdot 5\cdot 7
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 57.352957.3529 of defining polynomial
Character χ\chi == 10.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8192.00q23.70167e6q3+6.71089e7q41.22070e9q5+3.03241e10q6+2.21874e11q75.49756e11q8+6.07675e12q9+1.00000e13q104.96342e12q112.48415e14q122.20961e14q131.81759e15q14+4.51864e15q15+4.50360e15q162.82835e16q174.97808e16q183.08583e17q198.19200e16q208.21302e17q21+4.06603e16q221.01717e18q23+2.03501e18q24+1.49012e18q25+1.81011e18q26+5.73331e18q27+1.48897e19q281.98720e19q293.70167e19q302.14960e20q313.68935e19q32+1.83729e19q33+2.31699e20q342.70842e20q35+4.07804e20q361.51125e21q37+2.52791e21q38+8.17924e20q39+6.71089e20q40+6.15572e21q41+6.72811e21q42+1.65500e22q433.33089e20q447.41791e21q45+8.33262e21q464.19797e21q471.66708e22q481.64845e22q491.22070e22q50+1.04696e23q511.48284e22q52+2.49598e23q534.69673e22q54+6.05886e21q551.21976e23q56+1.14227e24q57+1.62792e23q58+9.83832e23q59+3.03241e23q603.10904e23q61+1.76095e24q62+1.34827e24q63+3.02231e23q64+2.69728e23q651.50511e23q665.68487e24q671.89808e24q68+3.76521e24q69+2.21874e24q701.00834e25q713.34073e24q72+8.83463e24q73+1.23802e25q745.51592e24q752.07087e25q761.10125e24q776.70043e24q785.62142e25q795.49756e24q806.75617e25q815.04276e25q82+1.02556e26q835.51167e25q84+3.45258e25q851.35577e26q86+7.35596e25q87+2.72867e24q881.49929e26q89+6.07675e25q904.90254e25q916.82608e25q92+7.95709e26q93+3.43898e25q94+3.76689e26q95+1.36567e26q965.13532e26q97+1.35041e26q983.01615e25q99+O(q100)q-8192.00 q^{2} -3.70167e6 q^{3} +6.71089e7 q^{4} -1.22070e9 q^{5} +3.03241e10 q^{6} +2.21874e11 q^{7} -5.49756e11 q^{8} +6.07675e12 q^{9} +1.00000e13 q^{10} -4.96342e12 q^{11} -2.48415e14 q^{12} -2.20961e14 q^{13} -1.81759e15 q^{14} +4.51864e15 q^{15} +4.50360e15 q^{16} -2.82835e16 q^{17} -4.97808e16 q^{18} -3.08583e17 q^{19} -8.19200e16 q^{20} -8.21302e17 q^{21} +4.06603e16 q^{22} -1.01717e18 q^{23} +2.03501e18 q^{24} +1.49012e18 q^{25} +1.81011e18 q^{26} +5.73331e18 q^{27} +1.48897e19 q^{28} -1.98720e19 q^{29} -3.70167e19 q^{30} -2.14960e20 q^{31} -3.68935e19 q^{32} +1.83729e19 q^{33} +2.31699e20 q^{34} -2.70842e20 q^{35} +4.07804e20 q^{36} -1.51125e21 q^{37} +2.52791e21 q^{38} +8.17924e20 q^{39} +6.71089e20 q^{40} +6.15572e21 q^{41} +6.72811e21 q^{42} +1.65500e22 q^{43} -3.33089e20 q^{44} -7.41791e21 q^{45} +8.33262e21 q^{46} -4.19797e21 q^{47} -1.66708e22 q^{48} -1.64845e22 q^{49} -1.22070e22 q^{50} +1.04696e23 q^{51} -1.48284e22 q^{52} +2.49598e23 q^{53} -4.69673e22 q^{54} +6.05886e21 q^{55} -1.21976e23 q^{56} +1.14227e24 q^{57} +1.62792e23 q^{58} +9.83832e23 q^{59} +3.03241e23 q^{60} -3.10904e23 q^{61} +1.76095e24 q^{62} +1.34827e24 q^{63} +3.02231e23 q^{64} +2.69728e23 q^{65} -1.50511e23 q^{66} -5.68487e24 q^{67} -1.89808e24 q^{68} +3.76521e24 q^{69} +2.21874e24 q^{70} -1.00834e25 q^{71} -3.34073e24 q^{72} +8.83463e24 q^{73} +1.23802e25 q^{74} -5.51592e24 q^{75} -2.07087e25 q^{76} -1.10125e24 q^{77} -6.70043e24 q^{78} -5.62142e25 q^{79} -5.49756e24 q^{80} -6.75617e25 q^{81} -5.04276e25 q^{82} +1.02556e26 q^{83} -5.51167e25 q^{84} +3.45258e25 q^{85} -1.35577e26 q^{86} +7.35596e25 q^{87} +2.72867e24 q^{88} -1.49929e26 q^{89} +6.07675e25 q^{90} -4.90254e25 q^{91} -6.82608e25 q^{92} +7.95709e26 q^{93} +3.43898e25 q^{94} +3.76689e26 q^{95} +1.36567e26 q^{96} -5.13532e26 q^{97} +1.35041e26 q^{98} -3.01615e25 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q16384q22245644q3+134217728q42441406250q5+18396315648q6120196732292q71099511627776q8+571163616594q9+20000000000000q10+7112122732704q11+96 ⁣ ⁣12q99+O(q100) 2 q - 16384 q^{2} - 2245644 q^{3} + 134217728 q^{4} - 2441406250 q^{5} + 18396315648 q^{6} - 120196732292 q^{7} - 1099511627776 q^{8} + 571163616594 q^{9} + 20000000000000 q^{10} + 7112122732704 q^{11}+ \cdots - 96\!\cdots\!12 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −8192.00 −0.707107
33 −3.70167e6 −1.34048 −0.670240 0.742144i 0.733809π-0.733809\pi
−0.670240 + 0.742144i 0.733809π0.733809\pi
44 6.71089e7 0.500000
55 −1.22070e9 −0.447214
66 3.03241e10 0.947863
77 2.21874e11 0.865530 0.432765 0.901507i 0.357538π-0.357538\pi
0.432765 + 0.901507i 0.357538π0.357538\pi
88 −5.49756e11 −0.353553
99 6.07675e12 0.796889
1010 1.00000e13 0.316228
1111 −4.96342e12 −0.0433491 −0.0216745 0.999765i 0.506900π-0.506900\pi
−0.0216745 + 0.999765i 0.506900π0.506900\pi
1212 −2.48415e14 −0.670240
1313 −2.20961e14 −0.202339 −0.101170 0.994869i 0.532258π-0.532258\pi
−0.101170 + 0.994869i 0.532258π0.532258\pi
1414 −1.81759e15 −0.612022
1515 4.51864e15 0.599481
1616 4.50360e15 0.250000
1717 −2.82835e16 −0.692585 −0.346293 0.938127i 0.612560π-0.612560\pi
−0.346293 + 0.938127i 0.612560π0.612560\pi
1818 −4.97808e16 −0.563485
1919 −3.08583e17 −1.68344 −0.841722 0.539911i 0.818458π-0.818458\pi
−0.841722 + 0.539911i 0.818458π0.818458\pi
2020 −8.19200e16 −0.223607
2121 −8.21302e17 −1.16023
2222 4.06603e16 0.0306524
2323 −1.01717e18 −0.420790 −0.210395 0.977616i 0.567475π-0.567475\pi
−0.210395 + 0.977616i 0.567475π0.567475\pi
2424 2.03501e18 0.473932
2525 1.49012e18 0.200000
2626 1.81011e18 0.143075
2727 5.73331e18 0.272267
2828 1.48897e19 0.432765
2929 −1.98720e19 −0.359641 −0.179820 0.983699i 0.557552π-0.557552\pi
−0.179820 + 0.983699i 0.557552π0.557552\pi
3030 −3.70167e19 −0.423897
3131 −2.14960e20 −1.58115 −0.790577 0.612363i 0.790219π-0.790219\pi
−0.790577 + 0.612363i 0.790219π0.790219\pi
3232 −3.68935e19 −0.176777
3333 1.83729e19 0.0581086
3434 2.31699e20 0.489732
3535 −2.70842e20 −0.387077
3636 4.07804e20 0.398444
3737 −1.51125e21 −1.02003 −0.510015 0.860166i 0.670360π-0.670360\pi
−0.510015 + 0.860166i 0.670360π0.670360\pi
3838 2.52791e21 1.19038
3939 8.17924e20 0.271232
4040 6.71089e20 0.158114
4141 6.15572e21 1.03919 0.519597 0.854411i 0.326082π-0.326082\pi
0.519597 + 0.854411i 0.326082π0.326082\pi
4242 6.72811e21 0.820404
4343 1.65500e22 1.46883 0.734417 0.678698i 0.237455π-0.237455\pi
0.734417 + 0.678698i 0.237455π0.237455\pi
4444 −3.33089e20 −0.0216745
4545 −7.41791e21 −0.356380
4646 8.33262e21 0.297544
4747 −4.19797e21 −0.112129 −0.0560646 0.998427i 0.517855π-0.517855\pi
−0.0560646 + 0.998427i 0.517855π0.517855\pi
4848 −1.66708e22 −0.335120
4949 −1.64845e22 −0.250858
5050 −1.22070e22 −0.141421
5151 1.04696e23 0.928397
5252 −1.48284e22 −0.101170
5353 2.49598e23 1.31679 0.658396 0.752672i 0.271235π-0.271235\pi
0.658396 + 0.752672i 0.271235π0.271235\pi
5454 −4.69673e22 −0.192522
5555 6.05886e21 0.0193863
5656 −1.21976e23 −0.306011
5757 1.14227e24 2.25663
5858 1.62792e23 0.254305
5959 9.83832e23 1.22017 0.610083 0.792338i 0.291136π-0.291136\pi
0.610083 + 0.792338i 0.291136π0.291136\pi
6060 3.03241e23 0.299741
6161 −3.10904e23 −0.245852 −0.122926 0.992416i 0.539228π-0.539228\pi
−0.122926 + 0.992416i 0.539228π0.539228\pi
6262 1.76095e24 1.11804
6363 1.34827e24 0.689731
6464 3.02231e23 0.125000
6565 2.69728e23 0.0904888
6666 −1.50511e23 −0.0410890
6767 −5.68487e24 −1.26681 −0.633403 0.773822i 0.718343π-0.718343\pi
−0.633403 + 0.773822i 0.718343π0.718343\pi
6868 −1.89808e24 −0.346293
6969 3.76521e24 0.564061
7070 2.21874e24 0.273705
7171 −1.00834e25 −1.02712 −0.513560 0.858054i 0.671674π-0.671674\pi
−0.513560 + 0.858054i 0.671674π0.671674\pi
7272 −3.34073e24 −0.281743
7373 8.83463e24 0.618486 0.309243 0.950983i 0.399924π-0.399924\pi
0.309243 + 0.950983i 0.399924π0.399924\pi
7474 1.23802e25 0.721270
7575 −5.51592e24 −0.268096
7676 −2.07087e25 −0.841722
7777 −1.10125e24 −0.0375199
7878 −6.70043e24 −0.191790
7979 −5.62142e25 −1.35482 −0.677408 0.735608i 0.736897π-0.736897\pi
−0.677408 + 0.735608i 0.736897π0.736897\pi
8080 −5.49756e24 −0.111803
8181 −6.75617e25 −1.16186
8282 −5.04276e25 −0.734821
8383 1.02556e26 1.26884 0.634421 0.772987i 0.281238π-0.281238\pi
0.634421 + 0.772987i 0.281238π0.281238\pi
8484 −5.51167e25 −0.580113
8585 3.45258e25 0.309733
8686 −1.35577e26 −1.03862
8787 7.35596e25 0.482092
8888 2.72867e24 0.0153262
8989 −1.49929e26 −0.722972 −0.361486 0.932377i 0.617731π-0.617731\pi
−0.361486 + 0.932377i 0.617731π0.617731\pi
9090 6.07675e25 0.251998
9191 −4.90254e25 −0.175131
9292 −6.82608e25 −0.210395
9393 7.95709e26 2.11951
9494 3.43898e25 0.0792873
9595 3.76689e26 0.752859
9696 1.36567e26 0.236966
9797 −5.13532e26 −0.774728 −0.387364 0.921927i 0.626614π-0.626614\pi
−0.387364 + 0.921927i 0.626614π0.626614\pi
9898 1.35041e26 0.177383
9999 −3.01615e25 −0.0345444
100100 1.00000e26 0.100000
101101 −7.06297e26 −0.617517 −0.308758 0.951140i 0.599913π-0.599913\pi
−0.308758 + 0.951140i 0.599913π0.599913\pi
102102 −8.57672e26 −0.656476
103103 5.07949e26 0.340814 0.170407 0.985374i 0.445492π-0.445492\pi
0.170407 + 0.985374i 0.445492π0.445492\pi
104104 1.21474e26 0.0715377
105105 1.00257e27 0.518869
106106 −2.04471e27 −0.931113
107107 2.94045e27 1.17959 0.589797 0.807552i 0.299208π-0.299208\pi
0.589797 + 0.807552i 0.299208π0.299208\pi
108108 3.84756e26 0.136133
109109 5.73706e27 1.79239 0.896194 0.443663i 0.146321π-0.146321\pi
0.896194 + 0.443663i 0.146321π0.146321\pi
110110 −4.96342e25 −0.0137082
111111 5.59415e27 1.36733
112112 9.99230e26 0.216382
113113 5.78909e27 1.11186 0.555931 0.831228i 0.312362π-0.312362\pi
0.555931 + 0.831228i 0.312362π0.312362\pi
114114 −9.35750e27 −1.59567
115115 1.24166e27 0.188183
116116 −1.33359e27 −0.179820
117117 −1.34272e27 −0.161242
118118 −8.05955e27 −0.862787
119119 −6.27537e27 −0.599453
120120 −2.48415e27 −0.211949
121121 −1.30854e28 −0.998121
122122 2.54692e27 0.173843
123123 −2.27864e28 −1.39302
124124 −1.44257e28 −0.790577
125125 −1.81899e27 −0.0894427
126126 −1.10450e28 −0.487714
127127 3.77532e28 1.49832 0.749158 0.662392i 0.230459π-0.230459\pi
0.749158 + 0.662392i 0.230459π0.230459\pi
128128 −2.47588e27 −0.0883883
129129 −6.12625e28 −1.96895
130130 −2.20961e27 −0.0639853
131131 5.70081e28 1.48859 0.744293 0.667853i 0.232787π-0.232787\pi
0.744293 + 0.667853i 0.232787π0.232787\pi
132132 1.23299e27 0.0290543
133133 −6.84665e28 −1.45707
134134 4.65704e28 0.895768
135135 −6.99867e27 −0.121761
136136 1.55490e28 0.244866
137137 7.42178e28 1.05872 0.529359 0.848398i 0.322432π-0.322432\pi
0.529359 + 0.848398i 0.322432π0.322432\pi
138138 −3.08446e28 −0.398852
139139 1.13293e29 1.32893 0.664467 0.747317i 0.268658π-0.268658\pi
0.664467 + 0.747317i 0.268658π0.268658\pi
140140 −1.81759e28 −0.193538
141141 1.55395e28 0.150307
142142 8.26036e28 0.726283
143143 1.09672e27 0.00877121
144144 2.73673e28 0.199222
145145 2.42578e28 0.160836
146146 −7.23733e28 −0.437336
147147 6.10201e28 0.336270
148148 −1.01418e29 −0.510015
149149 −2.59311e29 −1.19071 −0.595355 0.803463i 0.702988π-0.702988\pi
−0.595355 + 0.803463i 0.702988π0.702988\pi
150150 4.51864e28 0.189573
151151 3.80757e29 1.46036 0.730179 0.683256i 0.239437π-0.239437\pi
0.730179 + 0.683256i 0.239437π0.239437\pi
152152 1.69645e29 0.595188
153153 −1.71872e29 −0.551913
154154 9.02145e27 0.0265306
155155 2.62402e29 0.707113
156156 5.48899e28 0.135616
157157 −1.65707e29 −0.375575 −0.187787 0.982210i 0.560132π-0.560132\pi
−0.187787 + 0.982210i 0.560132π0.560132\pi
158158 4.60507e29 0.957999
159159 −9.23930e29 −1.76513
160160 4.50360e28 0.0790569
161161 −2.25682e29 −0.364207
162162 5.53465e29 0.821557
163163 6.32120e29 0.863509 0.431754 0.901991i 0.357895π-0.357895\pi
0.431754 + 0.901991i 0.357895π0.357895\pi
164164 4.13103e29 0.519597
165165 −2.24279e28 −0.0259869
166166 −8.40141e29 −0.897207
167167 −1.17045e30 −1.15260 −0.576301 0.817237i 0.695504π-0.695504\pi
−0.576301 + 0.817237i 0.695504π0.695504\pi
168168 4.51516e29 0.410202
169169 −1.14371e30 −0.959059
170170 −2.82835e29 −0.219015
171171 −1.87518e30 −1.34152
172172 1.11065e30 0.734417
173173 −2.98638e29 −0.182609 −0.0913045 0.995823i 0.529104π-0.529104\pi
−0.0913045 + 0.995823i 0.529104π0.529104\pi
174174 −6.02601e29 −0.340890
175175 3.30617e29 0.173106
176176 −2.23532e28 −0.0108373
177177 −3.64182e30 −1.63561
178178 1.22822e30 0.511219
179179 2.50314e30 0.965983 0.482992 0.875625i 0.339550π-0.339550\pi
0.482992 + 0.875625i 0.339550π0.339550\pi
180180 −4.97808e29 −0.178190
181181 1.42305e30 0.472671 0.236336 0.971671i 0.424054π-0.424054\pi
0.236336 + 0.971671i 0.424054π0.424054\pi
182182 4.01616e29 0.123836
183183 1.15086e30 0.329559
184184 5.59192e29 0.148772
185185 1.84479e30 0.456171
186186 −6.51845e30 −1.49872
187187 1.40383e29 0.0300229
188188 −2.81721e29 −0.0560646
189189 1.27207e30 0.235655
190190 −3.08583e30 −0.532352
191191 7.99660e30 1.28515 0.642577 0.766221i 0.277865π-0.277865\pi
0.642577 + 0.766221i 0.277865π0.277865\pi
192192 −1.11876e30 −0.167560
193193 4.05061e30 0.565583 0.282792 0.959181i 0.408740π-0.408740\pi
0.282792 + 0.959181i 0.408740π0.408740\pi
194194 4.20686e30 0.547816
195195 −9.98442e29 −0.121299
196196 −1.10625e30 −0.125429
197197 3.68848e30 0.390439 0.195219 0.980760i 0.437458π-0.437458\pi
0.195219 + 0.980760i 0.437458π0.437458\pi
198198 2.47083e29 0.0244266
199199 −5.24093e30 −0.484052 −0.242026 0.970270i 0.577812π-0.577812\pi
−0.242026 + 0.970270i 0.577812π0.577812\pi
200200 −8.19200e29 −0.0707107
201201 2.10435e31 1.69813
202202 5.78598e30 0.436650
203203 −4.40908e30 −0.311280
204204 7.02605e30 0.464199
205205 −7.51431e30 −0.464742
206206 −4.16112e30 −0.240992
207207 −6.18106e30 −0.335323
208208 −9.95119e29 −0.0505848
209209 1.53163e30 0.0729757
210210 −8.21302e30 −0.366896
211211 4.12328e31 1.72754 0.863772 0.503882i 0.168095π-0.168095\pi
0.863772 + 0.503882i 0.168095π0.168095\pi
212212 1.67503e31 0.658396
213213 3.73256e31 1.37683
214214 −2.40881e31 −0.834098
215215 −2.02026e31 −0.656883
216216 −3.15192e30 −0.0962608
217217 −4.76938e31 −1.36854
218218 −4.69980e31 −1.26741
219219 −3.27029e31 −0.829069
220220 4.06603e29 0.00969314
221221 6.24955e30 0.140137
222222 −4.58272e31 −0.966849
223223 −7.30751e31 −1.45095 −0.725477 0.688246i 0.758381π-0.758381\pi
−0.725477 + 0.688246i 0.758381π0.758381\pi
224224 −8.18569e30 −0.153006
225225 9.05507e30 0.159378
226226 −4.74242e31 −0.786206
227227 −4.75425e31 −0.742562 −0.371281 0.928521i 0.621081π-0.621081\pi
−0.371281 + 0.928521i 0.621081π0.621081\pi
228228 7.66567e31 1.12831
229229 −1.75469e31 −0.243457 −0.121728 0.992563i 0.538844π-0.538844\pi
−0.121728 + 0.992563i 0.538844π0.538844\pi
230230 −1.01717e31 −0.133066
231231 4.07647e30 0.0502947
232232 1.09248e31 0.127152
233233 1.39810e32 1.53544 0.767722 0.640783i 0.221390π-0.221390\pi
0.767722 + 0.640783i 0.221390π0.221390\pi
234234 1.09996e31 0.114015
235235 5.12448e30 0.0501457
236236 6.60238e31 0.610083
237237 2.08086e32 1.81610
238238 5.14078e31 0.423877
239239 −1.11791e32 −0.871032 −0.435516 0.900181i 0.643434π-0.643434\pi
−0.435516 + 0.900181i 0.643434π0.643434\pi
240240 2.03501e31 0.149870
241241 −2.45179e32 −1.70708 −0.853538 0.521031i 0.825548π-0.825548\pi
−0.853538 + 0.521031i 0.825548π0.825548\pi
242242 1.07195e32 0.705778
243243 2.06371e32 1.28518
244244 −2.08644e31 −0.122926
245245 2.01226e31 0.112187
246246 1.86666e32 0.985014
247247 6.81848e31 0.340627
248248 1.18175e32 0.559022
249249 −3.79629e32 −1.70086
250250 1.49012e31 0.0632456
251251 −7.91625e31 −0.318364 −0.159182 0.987249i 0.550886π-0.550886\pi
−0.159182 + 0.987249i 0.550886π0.550886\pi
252252 9.04809e31 0.344866
253253 5.04862e30 0.0182409
254254 −3.09274e32 −1.05947
255255 −1.27803e32 −0.415192
256256 2.02824e31 0.0625000
257257 1.09612e32 0.320450 0.160225 0.987081i 0.448778π-0.448778\pi
0.160225 + 0.987081i 0.448778π0.448778\pi
258258 5.01862e32 1.39225
259259 −3.35306e32 −0.882866
260260 1.81011e31 0.0452444
261261 −1.20757e32 −0.286594
262262 −4.67010e32 −1.05259
263263 7.62148e32 1.63169 0.815843 0.578273i 0.196273π-0.196273\pi
0.815843 + 0.578273i 0.196273π0.196273\pi
264264 −1.01006e31 −0.0205445
265265 −3.04685e32 −0.588887
266266 5.60877e32 1.03031
267267 5.54989e32 0.969130
268268 −3.81505e32 −0.633403
269269 −5.43143e32 −0.857548 −0.428774 0.903412i 0.641054π-0.641054\pi
−0.428774 + 0.903412i 0.641054π0.641054\pi
270270 5.73331e31 0.0860983
271271 9.35499e32 1.33647 0.668233 0.743952i 0.267051π-0.267051\pi
0.668233 + 0.743952i 0.267051π0.267051\pi
272272 −1.27378e32 −0.173146
273273 1.81476e32 0.234759
274274 −6.07992e32 −0.748627
275275 −7.39607e30 −0.00866981
276276 2.52679e32 0.282031
277277 −7.26315e31 −0.0772055 −0.0386027 0.999255i 0.512291π-0.512291\pi
−0.0386027 + 0.999255i 0.512291π0.512291\pi
278278 −9.28097e32 −0.939699
279279 −1.30626e33 −1.26000
280280 1.48897e32 0.136852
281281 −8.29253e32 −0.726360 −0.363180 0.931719i 0.618309π-0.618309\pi
−0.363180 + 0.931719i 0.618309π0.618309\pi
282282 −1.27300e32 −0.106283
283283 −8.40984e32 −0.669377 −0.334689 0.942329i 0.608631π-0.608631\pi
−0.334689 + 0.942329i 0.608631π0.608631\pi
284284 −6.76688e32 −0.513560
285285 −1.39438e33 −1.00919
286286 −8.98434e30 −0.00620218
287287 1.36579e33 0.899454
288288 −2.24193e32 −0.140871
289289 −8.67753e32 −0.520326
290290 −1.98720e32 −0.113728
291291 1.90093e33 1.03851
292292 5.92882e32 0.309243
293293 1.91703e33 0.954806 0.477403 0.878684i 0.341578π-0.341578\pi
0.477403 + 0.878684i 0.341578π0.341578\pi
294294 −4.99876e32 −0.237779
295295 −1.20097e33 −0.545675
296296 8.30818e32 0.360635
297297 −2.84568e31 −0.0118025
298298 2.12427e33 0.841959
299299 2.24754e32 0.0851424
300300 −3.70167e32 −0.134048
301301 3.67200e33 1.27132
302302 −3.11916e33 −1.03263
303303 2.61448e33 0.827769
304304 −1.38974e33 −0.420861
305305 3.79521e32 0.109948
306306 1.40798e33 0.390262
307307 1.55063e32 0.0411284 0.0205642 0.999789i 0.493454π-0.493454\pi
0.0205642 + 0.999789i 0.493454π0.493454\pi
308308 −7.39037e31 −0.0187600
309309 −1.88026e33 −0.456855
310310 −2.14960e33 −0.500004
311311 3.36700e33 0.749856 0.374928 0.927054i 0.377667π-0.377667\pi
0.374928 + 0.927054i 0.377667π0.377667\pi
312312 −4.49658e32 −0.0958949
313313 9.72130e33 1.98553 0.992763 0.120088i 0.0383175π-0.0383175\pi
0.992763 + 0.120088i 0.0383175π0.0383175\pi
314314 1.35747e33 0.265572
315315 −1.64584e33 −0.308457
316316 −3.77247e33 −0.677408
317317 4.33019e33 0.745087 0.372543 0.928015i 0.378486π-0.378486\pi
0.372543 + 0.928015i 0.378486π0.378486\pi
318318 7.56884e33 1.24814
319319 9.86332e31 0.0155901
320320 −3.68935e32 −0.0559017
321321 −1.08846e34 −1.58122
322322 1.84879e33 0.257533
323323 8.72782e33 1.16593
324324 −4.53399e33 −0.580929
325325 −3.29257e32 −0.0404678
326326 −5.17833e33 −0.610593
327327 −2.12367e34 −2.40266
328328 −3.38414e33 −0.367411
329329 −9.31419e32 −0.0970511
330330 1.83729e32 0.0183755
331331 4.05518e33 0.389343 0.194672 0.980868i 0.437636π-0.437636\pi
0.194672 + 0.980868i 0.437636π0.437636\pi
332332 6.88243e33 0.634421
333333 −9.18349e33 −0.812850
334334 9.58830e33 0.815013
335335 6.93953e33 0.566533
336336 −3.69882e33 −0.290057
337337 −1.02439e34 −0.771726 −0.385863 0.922556i 0.626096π-0.626096\pi
−0.385863 + 0.922556i 0.626096π0.626096\pi
338338 9.36927e33 0.678157
339339 −2.14293e34 −1.49043
340340 2.31699e33 0.154867
341341 1.06693e33 0.0685415
342342 1.53615e34 0.948597
343343 −1.82373e34 −1.08265
344344 −9.09844e33 −0.519312
345345 −4.59620e33 −0.252256
346346 2.44644e33 0.129124
347347 −1.38931e34 −0.705262 −0.352631 0.935763i 0.614713π-0.614713\pi
−0.352631 + 0.935763i 0.614713π0.614713\pi
348348 4.93650e33 0.241046
349349 −1.31006e34 −0.615386 −0.307693 0.951486i 0.599557π-0.599557\pi
−0.307693 + 0.951486i 0.599557π0.599557\pi
350350 −2.70842e33 −0.122404
351351 −1.26684e33 −0.0550902
352352 1.83118e32 0.00766310
353353 −1.98132e34 −0.797986 −0.398993 0.916954i 0.630640π-0.630640\pi
−0.398993 + 0.916954i 0.630640π0.630640\pi
354354 2.98338e34 1.15655
355355 1.23089e34 0.459342
356356 −1.00616e34 −0.361486
357357 2.32293e34 0.803555
358358 −2.05057e34 −0.683053
359359 −4.57990e32 −0.0146920 −0.00734600 0.999973i 0.502338π-0.502338\pi
−0.00734600 + 0.999973i 0.502338π0.502338\pi
360360 4.07804e33 0.125999
361361 6.16230e34 1.83399
362362 −1.16576e34 −0.334229
363363 4.84377e34 1.33796
364364 −3.29004e33 −0.0875653
365365 −1.07845e34 −0.276595
366366 −9.42786e33 −0.233034
367367 5.67067e34 1.35096 0.675480 0.737379i 0.263937π-0.263937\pi
0.675480 + 0.737379i 0.263937π0.263937\pi
368368 −4.58090e33 −0.105198
369369 3.74068e34 0.828122
370370 −1.51125e34 −0.322562
371371 5.53793e34 1.13972
372372 5.33991e34 1.05975
373373 −8.62803e34 −1.65136 −0.825681 0.564137i 0.809209π-0.809209\pi
−0.825681 + 0.564137i 0.809209π0.809209\pi
374374 −1.15002e33 −0.0212294
375375 6.73330e33 0.119896
376376 2.30786e33 0.0396436
377377 4.39094e33 0.0727695
378378 −1.04208e34 −0.166633
379379 6.41552e34 0.989925 0.494963 0.868914i 0.335182π-0.335182\pi
0.494963 + 0.868914i 0.335182π0.335182\pi
380380 2.52791e34 0.376430
381381 −1.39750e35 −2.00846
382382 −6.55081e34 −0.908741
383383 −8.39805e34 −1.12459 −0.562296 0.826936i 0.690082π-0.690082\pi
−0.562296 + 0.826936i 0.690082π0.690082\pi
384384 9.16489e33 0.118483
385385 1.34430e33 0.0167794
386386 −3.31826e34 −0.399928
387387 1.00570e35 1.17050
388388 −3.44626e34 −0.387364
389389 7.41980e33 0.0805514 0.0402757 0.999189i 0.487176π-0.487176\pi
0.0402757 + 0.999189i 0.487176π0.487176\pi
390390 8.17924e33 0.0857710
391391 2.87690e34 0.291433
392392 9.06244e33 0.0886917
393393 −2.11025e35 −1.99542
394394 −3.02160e34 −0.276082
395395 6.86208e34 0.605892
396396 −2.02410e33 −0.0172722
397397 −2.92884e34 −0.241559 −0.120780 0.992679i 0.538539π-0.538539\pi
−0.120780 + 0.992679i 0.538539π0.538539\pi
398398 4.29337e34 0.342276
399399 2.53440e35 1.95318
400400 6.71089e33 0.0500000
401401 −9.68409e34 −0.697605 −0.348803 0.937196i 0.613412π-0.613412\pi
−0.348803 + 0.937196i 0.613412π0.613412\pi
402402 −1.72388e35 −1.20076
403403 4.74976e34 0.319929
404404 −4.73988e34 −0.308758
405405 8.24728e34 0.519598
406406 3.61192e34 0.220108
407407 7.50096e33 0.0442173
408408 −5.75574e34 −0.328238
409409 6.56278e34 0.362096 0.181048 0.983474i 0.442051π-0.442051\pi
0.181048 + 0.983474i 0.442051π0.442051\pi
410410 6.15572e34 0.328622
411411 −2.74730e35 −1.41919
412412 3.40879e34 0.170407
413413 2.18286e35 1.05609
414414 5.06353e34 0.237109
415415 −1.25191e35 −0.567444
416416 8.15202e33 0.0357689
417417 −4.19374e35 −1.78141
418418 −1.25471e34 −0.0516016
419419 4.33969e35 1.72810 0.864050 0.503405i 0.167920π-0.167920\pi
0.864050 + 0.503405i 0.167920π0.167920\pi
420420 6.72811e34 0.259434
421421 −2.32277e35 −0.867356 −0.433678 0.901068i 0.642784π-0.642784\pi
−0.433678 + 0.901068i 0.642784π0.642784\pi
422422 −3.37779e35 −1.22156
423423 −2.55100e34 −0.0893545
424424 −1.37218e35 −0.465556
425425 −4.21457e34 −0.138517
426426 −3.05771e35 −0.973569
427427 −6.89813e34 −0.212792
428428 1.97330e35 0.589797
429429 −4.05970e33 −0.0117576
430430 1.65500e35 0.464486
431431 4.59488e35 1.24977 0.624887 0.780715i 0.285145π-0.285145\pi
0.624887 + 0.780715i 0.285145π0.285145\pi
432432 2.58205e34 0.0680667
433433 −2.35374e35 −0.601413 −0.300706 0.953717i 0.597222π-0.597222\pi
−0.300706 + 0.953717i 0.597222π0.597222\pi
434434 3.90708e35 0.967701
435435 −8.97945e34 −0.215598
436436 3.85008e35 0.896194
437437 3.13880e35 0.708377
438438 2.67902e35 0.586240
439439 −6.18421e34 −0.131224 −0.0656120 0.997845i 0.520900π-0.520900\pi
−0.0656120 + 0.997845i 0.520900π0.520900\pi
440440 −3.33089e33 −0.00685409
441441 −1.00172e35 −0.199906
442442 −5.11963e34 −0.0990919
443443 4.85749e34 0.0911930 0.0455965 0.998960i 0.485481π-0.485481\pi
0.0455965 + 0.998960i 0.485481π0.485481\pi
444444 3.75417e35 0.683665
445445 1.83019e35 0.323323
446446 5.98631e35 1.02598
447447 9.59882e35 1.59612
448448 6.70572e34 0.108191
449449 3.57024e35 0.558949 0.279474 0.960153i 0.409840π-0.409840\pi
0.279474 + 0.960153i 0.409840π0.409840\pi
450450 −7.41791e34 −0.112697
451451 −3.05534e34 −0.0450481
452452 3.88499e35 0.555931
453453 −1.40944e36 −1.95758
454454 3.89468e35 0.525071
455455 5.98454e34 0.0783208
456456 −6.27971e35 −0.797837
457457 −1.26417e36 −1.55932 −0.779660 0.626203i 0.784608π-0.784608\pi
−0.779660 + 0.626203i 0.784608π0.784608\pi
458458 1.43744e35 0.172150
459459 −1.62158e35 −0.188568
460460 8.33262e34 0.0940916
461461 8.29211e35 0.909290 0.454645 0.890673i 0.349766π-0.349766\pi
0.454645 + 0.890673i 0.349766π0.349766\pi
462462 −3.33944e34 −0.0355637
463463 −1.37072e36 −1.41777 −0.708884 0.705325i 0.750801π-0.750801\pi
−0.708884 + 0.705325i 0.750801π0.750801\pi
464464 −8.94956e34 −0.0899102
465465 −9.71325e35 −0.947872
466466 −1.14533e36 −1.08572
467467 2.06002e35 0.189712 0.0948559 0.995491i 0.469761π-0.469761\pi
0.0948559 + 0.995491i 0.469761π0.469761\pi
468468 −9.01087e34 −0.0806209
469469 −1.26132e36 −1.09646
470470 −4.19797e34 −0.0354583
471471 6.13394e35 0.503451
472472 −5.40867e35 −0.431394
473473 −8.21444e34 −0.0636726
474474 −1.70464e36 −1.28418
475475 −4.59825e35 −0.336689
476476 −4.21133e35 −0.299727
477477 1.51675e36 1.04934
478478 9.15790e35 0.615913
479479 9.78763e35 0.639953 0.319977 0.947425i 0.396325π-0.396325\pi
0.319977 + 0.947425i 0.396325π0.396325\pi
480480 −1.66708e35 −0.105974
481481 3.33927e35 0.206392
482482 2.00850e36 1.20708
483483 8.35400e35 0.488212
484484 −8.78144e35 −0.499060
485485 6.26871e35 0.346469
486486 −1.69059e36 −0.908760
487487 1.92059e35 0.100414 0.0502068 0.998739i 0.484012π-0.484012\pi
0.0502068 + 0.998739i 0.484012π0.484012\pi
488488 1.70921e35 0.0869217
489489 −2.33990e36 −1.15752
490490 −1.64845e35 −0.0793283
491491 3.36034e36 1.57319 0.786597 0.617466i 0.211841π-0.211841\pi
0.786597 + 0.617466i 0.211841π0.211841\pi
492492 −1.52917e36 −0.696510
493493 5.62051e35 0.249082
494494 −5.58570e35 −0.240860
495495 3.68182e34 0.0154487
496496 −9.68092e35 −0.395288
497497 −2.23725e36 −0.889003
498498 3.10992e36 1.20269
499499 −4.56833e36 −1.71949 −0.859746 0.510722i 0.829378π-0.829378\pi
−0.859746 + 0.510722i 0.829378π0.829378\pi
500500 −1.22070e35 −0.0447214
501501 4.33261e36 1.54504
502502 6.48500e35 0.225118
503503 3.45540e36 1.16770 0.583850 0.811862i 0.301546π-0.301546\pi
0.583850 + 0.811862i 0.301546π0.301546\pi
504504 −7.41220e35 −0.243857
505505 8.62179e35 0.276162
506506 −4.13583e34 −0.0128982
507507 4.23363e36 1.28560
508508 2.53357e36 0.749158
509509 −1.49420e36 −0.430247 −0.215124 0.976587i 0.569015π-0.569015\pi
−0.215124 + 0.976587i 0.569015π0.569015\pi
510510 1.04696e36 0.293585
511511 1.96017e36 0.535318
512512 −1.66153e35 −0.0441942
513513 −1.76920e36 −0.458346
514514 −8.97939e35 −0.226592
515515 −6.20055e35 −0.152417
516516 −4.11126e36 −0.984473
517517 2.08363e34 0.00486069
518518 2.74683e36 0.624281
519519 1.10546e36 0.244784
520520 −1.48284e35 −0.0319926
521521 −3.77861e36 −0.794371 −0.397185 0.917738i 0.630013π-0.630013\pi
−0.397185 + 0.917738i 0.630013π0.630013\pi
522522 9.89245e35 0.202652
523523 6.89623e36 1.37670 0.688350 0.725379i 0.258335π-0.258335\pi
0.688350 + 0.725379i 0.258335π0.258335\pi
524524 3.82575e36 0.744293
525525 −1.22384e36 −0.232045
526526 −6.24352e36 −1.15378
527527 6.07982e36 1.09508
528528 8.27443e34 0.0145271
529529 −4.80859e36 −0.822936
530530 2.49598e36 0.416406
531531 5.97850e36 0.972336
532532 −4.59471e36 −0.728536
533533 −1.36017e36 −0.210270
534534 −4.54647e36 −0.685279
535535 −3.58941e36 −0.527530
536536 3.12529e36 0.447884
537537 −9.26580e36 −1.29488
538538 4.44943e36 0.606378
539539 8.18193e34 0.0108745
540540 −4.69673e35 −0.0608807
541541 −1.35606e36 −0.171442 −0.0857208 0.996319i 0.527319π-0.527319\pi
−0.0857208 + 0.996319i 0.527319π0.527319\pi
542542 −7.66361e36 −0.945025
543543 −5.26766e36 −0.633607
544544 1.04348e36 0.122433
545545 −7.00325e36 −0.801580
546546 −1.48665e36 −0.166000
547547 −7.28023e36 −0.793079 −0.396539 0.918018i 0.629789π-0.629789\pi
−0.396539 + 0.918018i 0.629789π0.629789\pi
548548 4.98067e36 0.529359
549549 −1.88928e36 −0.195916
550550 6.05886e34 0.00613048
551551 6.13217e36 0.605436
552552 −2.06995e36 −0.199426
553553 −1.24724e37 −1.17263
554554 5.94997e35 0.0545925
555555 −6.82879e36 −0.611489
556556 7.60297e36 0.664467
557557 2.29248e37 1.95551 0.977757 0.209740i 0.0672618π-0.0672618\pi
0.977757 + 0.209740i 0.0672618π0.0672618\pi
558558 1.07009e37 0.890957
559559 −3.65689e36 −0.297203
560560 −1.21976e36 −0.0967692
561561 −5.19651e35 −0.0402451
562562 6.79324e36 0.513614
563563 −9.81459e36 −0.724450 −0.362225 0.932091i 0.617983π-0.617983\pi
−0.362225 + 0.932091i 0.617983π0.617983\pi
564564 1.04284e36 0.0751535
565565 −7.06676e36 −0.497240
566566 6.88934e36 0.473321
567567 −1.49902e37 −1.00562
568568 5.54343e36 0.363142
569569 2.24316e37 1.43497 0.717487 0.696572i 0.245292π-0.245292\pi
0.717487 + 0.696572i 0.245292π0.245292\pi
570570 1.14227e37 0.713607
571571 −7.07828e34 −0.00431857 −0.00215929 0.999998i 0.500687π-0.500687\pi
−0.00215929 + 0.999998i 0.500687π0.500687\pi
572572 7.35997e34 0.00438561
573573 −2.96008e37 −1.72272
574574 −1.11886e37 −0.636010
575575 −1.51569e36 −0.0841580
576576 1.83659e36 0.0996111
577577 1.36809e37 0.724837 0.362418 0.932016i 0.381951π-0.381951\pi
0.362418 + 0.932016i 0.381951π0.381951\pi
578578 7.10863e36 0.367926
579579 −1.49940e37 −0.758153
580580 1.62792e36 0.0804182
581581 2.27545e37 1.09822
582582 −1.55724e37 −0.734336
583583 −1.23886e36 −0.0570817
584584 −4.85689e36 −0.218668
585585 1.63907e36 0.0721095
586586 −1.57043e37 −0.675150
587587 1.21248e37 0.509402 0.254701 0.967020i 0.418023π-0.418023\pi
0.254701 + 0.967020i 0.418023π0.418023\pi
588588 4.09499e36 0.168135
589589 6.63329e37 2.66178
590590 9.83832e36 0.385850
591591 −1.36535e37 −0.523376
592592 −6.80606e36 −0.255007
593593 −6.58205e36 −0.241059 −0.120529 0.992710i 0.538459π-0.538459\pi
−0.120529 + 0.992710i 0.538459π0.538459\pi
594594 2.33118e35 0.00834563
595595 7.66036e36 0.268084
596596 −1.74020e37 −0.595355
597597 1.94002e37 0.648862
598598 −1.84118e36 −0.0602047
599599 1.55149e37 0.496005 0.248003 0.968759i 0.420226π-0.420226\pi
0.248003 + 0.968759i 0.420226π0.420226\pi
600600 3.03241e36 0.0947863
601601 5.61441e36 0.171593 0.0857964 0.996313i 0.472657π-0.472657\pi
0.0857964 + 0.996313i 0.472657π0.472657\pi
602602 −3.00810e37 −0.898959
603603 −3.45455e37 −1.00950
604604 2.55522e37 0.730179
605605 1.59733e37 0.446373
606606 −2.14178e37 −0.585321
607607 −2.30412e36 −0.0615825 −0.0307913 0.999526i 0.509803π-0.509803\pi
−0.0307913 + 0.999526i 0.509803π0.509803\pi
608608 1.13847e37 0.297594
609609 1.63209e37 0.417265
610610 −3.10904e36 −0.0777451
611611 9.27587e35 0.0226881
612612 −1.15341e37 −0.275957
613613 4.94431e37 1.15715 0.578575 0.815629i 0.303609π-0.303609\pi
0.578575 + 0.815629i 0.303609π0.303609\pi
614614 −1.27028e36 −0.0290821
615615 2.78155e37 0.622977
616616 6.05419e35 0.0132653
617617 1.46372e37 0.313768 0.156884 0.987617i 0.449855π-0.449855\pi
0.156884 + 0.987617i 0.449855π0.449855\pi
618618 1.54031e37 0.323045
619619 −5.85835e37 −1.20213 −0.601065 0.799200i 0.705257π-0.705257\pi
−0.601065 + 0.799200i 0.705257π0.705257\pi
620620 1.76095e37 0.353557
621621 −5.83172e36 −0.114567
622622 −2.75825e37 −0.530228
623623 −3.32654e37 −0.625754
624624 3.68360e36 0.0678079
625625 2.22045e36 0.0400000
626626 −7.96369e37 −1.40398
627627 −5.66958e36 −0.0978226
628628 −1.11204e37 −0.187787
629629 4.27435e37 0.706458
630630 1.34827e37 0.218112
631631 4.50840e36 0.0713881 0.0356941 0.999363i 0.488636π-0.488636\pi
0.0356941 + 0.999363i 0.488636π0.488636\pi
632632 3.09041e37 0.479000
633633 −1.52630e38 −2.31574
634634 −3.54729e37 −0.526856
635635 −4.60854e37 −0.670067
636636 −6.20039e37 −0.882567
637637 3.64242e36 0.0507584
638638 −8.08003e35 −0.0110239
639639 −6.12746e37 −0.818500
640640 3.02231e36 0.0395285
641641 −1.41328e38 −1.80986 −0.904929 0.425563i 0.860076π-0.860076\pi
−0.904929 + 0.425563i 0.860076π0.860076\pi
642642 8.91663e37 1.11809
643643 −4.71217e37 −0.578592 −0.289296 0.957240i 0.593421π-0.593421\pi
−0.289296 + 0.957240i 0.593421π0.593421\pi
644644 −1.51453e37 −0.182103
645645 7.47833e37 0.880539
646646 −7.14983e37 −0.824436
647647 −3.72863e37 −0.421057 −0.210529 0.977588i 0.567519π-0.567519\pi
−0.210529 + 0.977588i 0.567519π0.567519\pi
648648 3.71424e37 0.410778
649649 −4.88317e36 −0.0528930
650650 2.69728e36 0.0286151
651651 1.76547e38 1.83450
652652 4.24208e37 0.431754
653653 5.32316e37 0.530691 0.265345 0.964153i 0.414514π-0.414514\pi
0.265345 + 0.964153i 0.414514π0.414514\pi
654654 1.73971e38 1.69894
655655 −6.95899e37 −0.665716
656656 2.77229e37 0.259799
657657 5.36859e37 0.492865
658658 7.63019e36 0.0686255
659659 1.58587e38 1.39738 0.698692 0.715423i 0.253766π-0.253766\pi
0.698692 + 0.715423i 0.253766π0.253766\pi
660660 −1.50511e36 −0.0129935
661661 1.90328e38 1.60984 0.804922 0.593380i 0.202207π-0.202207\pi
0.804922 + 0.593380i 0.202207π0.202207\pi
662662 −3.32201e37 −0.275307
663663 −2.31338e37 −0.187851
664664 −5.63809e37 −0.448604
665665 8.35772e37 0.651622
666666 7.52312e37 0.574772
667667 2.02131e37 0.151333
668668 −7.85474e37 −0.576301
669669 2.70500e38 1.94498
670670 −5.68487e37 −0.400599
671671 1.54314e36 0.0106574
672672 3.03007e37 0.205101
673673 −2.51031e38 −1.66542 −0.832709 0.553711i 0.813211π-0.813211\pi
−0.832709 + 0.553711i 0.813211π0.813211\pi
674674 8.39183e37 0.545693
675675 8.54329e36 0.0544533
676676 −7.67531e37 −0.479529
677677 −2.63747e38 −1.61525 −0.807627 0.589694i 0.799248π-0.799248\pi
−0.807627 + 0.589694i 0.799248π0.799248\pi
678678 1.75549e38 1.05389
679679 −1.13939e38 −0.670550
680680 −1.89808e37 −0.109507
681681 1.75987e38 0.995390
682682 −8.74033e36 −0.0484662
683683 −1.50962e38 −0.820707 −0.410353 0.911927i 0.634595π-0.634595\pi
−0.410353 + 0.911927i 0.634595π0.634595\pi
684684 −1.25842e38 −0.670759
685685 −9.05979e37 −0.473473
686686 1.49400e38 0.765553
687687 6.49529e37 0.326349
688688 7.45344e37 0.367209
689689 −5.51514e37 −0.266439
690690 3.76521e37 0.178372
691691 5.64059e36 0.0262042 0.0131021 0.999914i 0.495829π-0.495829\pi
0.0131021 + 0.999914i 0.495829π0.495829\pi
692692 −2.00412e37 −0.0913045
693693 −6.69203e36 −0.0298992
694694 1.13812e38 0.498695
695695 −1.38297e38 −0.594318
696696 −4.04398e37 −0.170445
697697 −1.74105e38 −0.719730
698698 1.07320e38 0.435144
699699 −5.17531e38 −2.05823
700700 2.21874e37 0.0865530
701701 −1.95153e38 −0.746761 −0.373381 0.927678i 0.621801π-0.621801\pi
−0.373381 + 0.927678i 0.621801π0.621801\pi
702702 1.03779e37 0.0389547
703703 4.66346e38 1.71716
704704 −1.50010e36 −0.00541863
705705 −1.89691e37 −0.0672193
706706 1.62309e38 0.564261
707707 −1.56709e38 −0.534479
708708 −2.44398e38 −0.817804
709709 3.20482e38 1.05215 0.526077 0.850437i 0.323662π-0.323662\pi
0.526077 + 0.850437i 0.323662π0.323662\pi
710710 −1.00834e38 −0.324804
711711 −3.41600e38 −1.07964
712712 8.24245e37 0.255609
713713 2.18649e38 0.665334
714714 −1.90295e38 −0.568200
715715 −1.33877e36 −0.00392261
716716 1.67983e38 0.482992
717717 4.13812e38 1.16760
718718 3.75185e36 0.0103888
719719 −6.47800e38 −1.76036 −0.880179 0.474642i 0.842578π-0.842578\pi
−0.880179 + 0.474642i 0.842578π0.842578\pi
720720 −3.34073e37 −0.0890949
721721 1.12700e38 0.294985
722722 −5.04816e38 −1.29682
723723 9.07570e38 2.28830
724724 9.54992e37 0.236336
725725 −2.96116e37 −0.0719282
726726 −3.96801e38 −0.946082
727727 2.86591e37 0.0670729 0.0335365 0.999437i 0.489323π-0.489323\pi
0.0335365 + 0.999437i 0.489323π0.489323\pi
728728 2.69520e37 0.0619180
729729 −2.48719e38 −0.560903
730730 8.83463e37 0.195582
731731 −4.68092e38 −1.01729
732732 7.72331e37 0.164780
733733 3.01689e38 0.631910 0.315955 0.948774i 0.397675π-0.397675\pi
0.315955 + 0.948774i 0.397675π0.397675\pi
734734 −4.64541e38 −0.955272
735735 −7.44874e37 −0.150385
736736 3.75268e37 0.0743859
737737 2.82164e37 0.0549149
738738 −3.06436e38 −0.585571
739739 −7.89496e37 −0.148132 −0.0740662 0.997253i 0.523598π-0.523598\pi
−0.0740662 + 0.997253i 0.523598π0.523598\pi
740740 1.23802e38 0.228086
741741 −2.52398e38 −0.456604
742742 −4.53667e38 −0.805906
743743 5.54426e38 0.967152 0.483576 0.875302i 0.339338π-0.339338\pi
0.483576 + 0.875302i 0.339338π0.339338\pi
744744 −4.37446e38 −0.749358
745745 3.16541e38 0.532501
746746 7.06808e38 1.16769
747747 6.23209e38 1.01113
748748 9.42094e36 0.0150115
749749 6.52407e38 1.02097
750750 −5.51592e37 −0.0847795
751751 7.27919e38 1.09886 0.549432 0.835538i 0.314844π-0.314844\pi
0.549432 + 0.835538i 0.314844π0.314844\pi
752752 −1.89060e37 −0.0280323
753753 2.93033e38 0.426761
754754 −3.59706e37 −0.0514558
755755 −4.64792e38 −0.653092
756756 8.53671e37 0.117827
757757 6.83088e37 0.0926151 0.0463076 0.998927i 0.485255π-0.485255\pi
0.0463076 + 0.998927i 0.485255π0.485255\pi
758758 −5.25559e38 −0.699983
759759 −1.86883e37 −0.0244515
760760 −2.07087e38 −0.266176
761761 −6.08504e38 −0.768371 −0.384185 0.923256i 0.625518π-0.625518\pi
−0.384185 + 0.923256i 0.625518π0.625518\pi
762762 1.14483e39 1.42020
763763 1.27290e39 1.55137
764764 5.36643e38 0.642577
765765 2.09805e38 0.246823
766766 6.87969e38 0.795207
767767 −2.17388e38 −0.246887
768768 −7.50788e37 −0.0837801
769769 2.25503e38 0.247256 0.123628 0.992329i 0.460547π-0.460547\pi
0.123628 + 0.992329i 0.460547π0.460547\pi
770770 −1.10125e37 −0.0118648
771771 −4.05746e38 −0.429557
772772 2.71832e38 0.282792
773773 −1.63456e39 −1.67101 −0.835504 0.549484i 0.814824π-0.814824\pi
−0.835504 + 0.549484i 0.814824π0.814824\pi
774774 −8.23870e38 −0.827667
775775 −3.20315e38 −0.316231
776776 2.82317e38 0.273908
777777 1.24119e39 1.18347
778778 −6.07830e37 −0.0569584
779779 −1.89955e39 −1.74943
780780 −6.70043e37 −0.0606493
781781 5.00483e37 0.0445247
782782 −2.35676e38 −0.206074
783783 −1.13932e38 −0.0979182
784784 −7.42395e37 −0.0627145
785785 2.02279e38 0.167962
786786 1.72872e39 1.41098
787787 2.62879e38 0.210910 0.105455 0.994424i 0.466370π-0.466370\pi
0.105455 + 0.994424i 0.466370π0.466370\pi
788788 2.47529e38 0.195219
789789 −2.82122e39 −2.18724
790790 −5.62142e38 −0.428430
791791 1.28445e39 0.962350
792792 1.65814e37 0.0122133
793793 6.86975e37 0.0497454
794794 2.39931e38 0.170808
795795 1.12784e39 0.789392
796796 −3.51713e38 −0.242026
797797 −2.10383e39 −1.42339 −0.711693 0.702490i 0.752071π-0.752071\pi
−0.711693 + 0.702490i 0.752071π0.752071\pi
798798 −2.07618e39 −1.38110
799799 1.18733e38 0.0776590
800800 −5.49756e37 −0.0353553
801801 −9.11084e38 −0.576129
802802 7.93321e38 0.493281
803803 −4.38500e37 −0.0268108
804804 1.41220e39 0.849065
805805 2.75491e38 0.162878
806806 −3.89101e38 −0.226224
807807 2.01053e39 1.14953
808808 3.88291e38 0.218325
809809 3.20140e39 1.77025 0.885125 0.465354i 0.154073π-0.154073\pi
0.885125 + 0.465354i 0.154073π0.154073\pi
810810 −6.75617e38 −0.367411
811811 6.63176e38 0.354689 0.177344 0.984149i 0.443249π-0.443249\pi
0.177344 + 0.984149i 0.443249π0.443249\pi
812812 −2.95888e38 −0.155640
813813 −3.46291e39 −1.79151
814814 −6.14479e37 −0.0312664
815815 −7.71631e38 −0.386173
816816 4.71510e38 0.232099
817817 −5.10704e39 −2.47270
818818 −5.37623e38 −0.256040
819819 −2.97915e38 −0.139560
820820 −5.04276e38 −0.232371
821821 −3.63383e39 −1.64715 −0.823573 0.567211i 0.808022π-0.808022\pi
−0.823573 + 0.567211i 0.808022π0.808022\pi
822822 2.25059e39 1.00352
823823 3.19652e39 1.40210 0.701051 0.713111i 0.252714π-0.252714\pi
0.701051 + 0.713111i 0.252714π0.252714\pi
824824 −2.79248e38 −0.120496
825825 2.73778e37 0.0116217
826826 −1.78820e39 −0.746768
827827 −2.85534e39 −1.17310 −0.586549 0.809914i 0.699514π-0.699514\pi
−0.586549 + 0.809914i 0.699514π0.699514\pi
828828 −4.14804e38 −0.167662
829829 2.36694e39 0.941240 0.470620 0.882336i 0.344030π-0.344030\pi
0.470620 + 0.882336i 0.344030π0.344030\pi
830830 1.02556e39 0.401243
831831 2.68858e38 0.103492
832832 −6.67813e37 −0.0252924
833833 4.66239e38 0.173741
834834 3.43551e39 1.25965
835835 1.42877e39 0.515459
836836 1.02786e38 0.0364879
837837 −1.23243e39 −0.430495
838838 −3.55507e39 −1.22195
839839 2.29389e39 0.775866 0.387933 0.921688i 0.373189π-0.373189\pi
0.387933 + 0.921688i 0.373189π0.373189\pi
840840 −5.51167e38 −0.183448
841841 −2.65824e39 −0.870658
842842 1.90281e39 0.613313
843843 3.06962e39 0.973672
844844 2.76708e39 0.863772
845845 1.39613e39 0.428904
846846 2.08978e38 0.0631831
847847 −2.90330e39 −0.863903
848848 1.12409e39 0.329198
849849 3.11304e39 0.897287
850850 3.45258e38 0.0979463
851851 1.53719e39 0.429219
852852 2.50488e39 0.688417
853853 1.11980e39 0.302919 0.151460 0.988463i 0.451603π-0.451603\pi
0.151460 + 0.988463i 0.451603π0.451603\pi
854854 5.65095e38 0.150467
855855 2.28904e39 0.599945
856856 −1.61653e39 −0.417049
857857 4.56953e39 1.16046 0.580231 0.814452i 0.302962π-0.302962\pi
0.580231 + 0.814452i 0.302962π0.302962\pi
858858 3.32570e37 0.00831391
859859 3.49246e39 0.859455 0.429728 0.902959i 0.358610π-0.358610\pi
0.429728 + 0.902959i 0.358610π0.358610\pi
860860 −1.35577e39 −0.328441
861861 −5.05571e39 −1.20570
862862 −3.76413e39 −0.883723
863863 7.89699e39 1.82522 0.912612 0.408827i 0.134062π-0.134062\pi
0.912612 + 0.408827i 0.134062π0.134062\pi
864864 −2.11522e38 −0.0481304
865865 3.64548e38 0.0816652
866866 1.92819e39 0.425263
867867 3.21213e39 0.697487
868868 −3.20068e39 −0.684268
869869 2.79015e38 0.0587300
870870 7.35596e38 0.152451
871871 1.25613e39 0.256325
872872 −3.15398e39 −0.633705
873873 −3.12061e39 −0.617372
874874 −2.57131e39 −0.500898
875875 −4.03586e38 −0.0774153
876876 −2.19465e39 −0.414534
877877 −2.35733e39 −0.438456 −0.219228 0.975674i 0.570354π-0.570354\pi
−0.219228 + 0.975674i 0.570354π0.570354\pi
878878 5.06610e38 0.0927894
879879 −7.09620e39 −1.27990
880880 2.72867e37 0.00484657
881881 4.52972e39 0.792312 0.396156 0.918183i 0.370344π-0.370344\pi
0.396156 + 0.918183i 0.370344π0.370344\pi
882882 8.20610e38 0.141355
883883 −9.79510e39 −1.66165 −0.830824 0.556535i 0.812131π-0.812131\pi
−0.830824 + 0.556535i 0.812131π0.812131\pi
884884 4.19400e38 0.0700686
885885 4.44558e39 0.731466
886886 −3.97926e38 −0.0644832
887887 −9.29591e39 −1.48362 −0.741811 0.670609i 0.766033π-0.766033\pi
−0.741811 + 0.670609i 0.766033π0.766033\pi
888888 −3.07541e39 −0.483424
889889 8.37643e39 1.29684
890890 −1.49929e39 −0.228624
891891 3.35337e38 0.0503654
892892 −4.90399e39 −0.725477
893893 1.29542e39 0.188763
894894 −7.86336e39 −1.12863
895895 −3.05559e39 −0.432001
896896 −5.49332e38 −0.0765028
897897 −8.31963e38 −0.114132
898898 −2.92474e39 −0.395236
899899 4.27168e39 0.568647
900900 6.07675e38 0.0796889
901901 −7.05952e39 −0.911991
902902 2.50294e38 0.0318538
903903 −1.35925e40 −1.70418
904904 −3.18258e39 −0.393103
905905 −1.73712e39 −0.211385
906906 1.15461e40 1.38422
907907 1.36999e40 1.61815 0.809077 0.587703i 0.199967π-0.199967\pi
0.809077 + 0.587703i 0.199967π0.199967\pi
908908 −3.19052e39 −0.371281
909909 −4.29199e39 −0.492092
910910 −4.90254e38 −0.0553812
911911 −3.75210e39 −0.417615 −0.208807 0.977957i 0.566958π-0.566958\pi
−0.208807 + 0.977957i 0.566958π0.566958\pi
912912 5.14434e39 0.564156
913913 −5.09029e38 −0.0550031
914914 1.03560e40 1.10261
915915 −1.40486e39 −0.147383
916916 −1.17755e39 −0.121728
917917 1.26486e40 1.28842
918918 1.32840e39 0.133338
919919 9.82750e39 0.972039 0.486019 0.873948i 0.338448π-0.338448\pi
0.486019 + 0.873948i 0.338448π0.338448\pi
920920 −6.82608e38 −0.0665328
921921 −5.73993e38 −0.0551318
922922 −6.79290e39 −0.642965
923923 2.22805e39 0.207827
924924 2.73567e38 0.0251474
925925 −2.25194e39 −0.204006
926926 1.12289e40 1.00251
927927 3.08668e39 0.271591
928928 7.33148e38 0.0635761
929929 −3.06657e39 −0.262084 −0.131042 0.991377i 0.541832π-0.541832\pi
−0.131042 + 0.991377i 0.541832π0.541832\pi
930930 7.95709e39 0.670246
931931 5.08683e39 0.422306
932932 9.38251e39 0.767722
933933 −1.24635e40 −1.00517
934934 −1.68757e39 −0.134146
935935 −1.71366e38 −0.0134267
936936 7.38171e38 0.0570076
937937 5.24978e39 0.399629 0.199814 0.979834i 0.435966π-0.435966\pi
0.199814 + 0.979834i 0.435966π0.435966\pi
938938 1.03327e40 0.775314
939939 −3.59850e40 −2.66156
940940 3.43898e38 0.0250728
941941 4.32653e39 0.310942 0.155471 0.987840i 0.450310π-0.450310\pi
0.155471 + 0.987840i 0.450310π0.450310\pi
942942 −5.02492e39 −0.355994
943943 −6.26138e39 −0.437283
944944 4.43078e39 0.305041
945945 −1.55282e39 −0.105388
946946 6.72927e38 0.0450233
947947 1.94230e39 0.128113 0.0640564 0.997946i 0.479596π-0.479596\pi
0.0640564 + 0.997946i 0.479596π0.479596\pi
948948 1.39644e40 0.908052
949949 −1.95211e39 −0.125144
950950 3.76689e39 0.238075
951951 −1.60289e40 −0.998775
952952 3.44992e39 0.211939
953953 3.12687e40 1.89389 0.946946 0.321393i 0.104151π-0.104151\pi
0.946946 + 0.321393i 0.104151π0.104151\pi
954954 −1.24252e40 −0.741993
955955 −9.76147e39 −0.574738
956956 −7.50215e39 −0.435516
957957 −3.65107e38 −0.0208982
958958 −8.01803e39 −0.452515
959959 1.64670e40 0.916353
960960 1.36567e39 0.0749352
961961 2.77249e40 1.50004
962962 −2.73553e39 −0.145941
963963 1.78684e40 0.940005
964964 −1.64537e40 −0.853538
965965 −4.94459e39 −0.252937
966966 −6.84360e39 −0.345218
967967 8.16162e39 0.405994 0.202997 0.979179i 0.434932π-0.434932\pi
0.202997 + 0.979179i 0.434932π0.434932\pi
968968 7.19375e39 0.352889
969969 −3.23075e40 −1.56290
970970 −5.13532e39 −0.244991
971971 −2.55969e40 −1.20428 −0.602140 0.798391i 0.705685π-0.705685\pi
−0.602140 + 0.798391i 0.705685π0.705685\pi
972972 1.38493e40 0.642590
973973 2.51367e40 1.15023
974974 −1.57334e39 −0.0710032
975975 1.21880e39 0.0542464
976976 −1.40019e39 −0.0614629
977977 −1.33514e40 −0.578028 −0.289014 0.957325i 0.593327π-0.593327\pi
−0.289014 + 0.957325i 0.593327π0.593327\pi
978978 1.91684e40 0.818488
979979 7.44162e38 0.0313402
980980 1.35041e39 0.0560936
981981 3.48627e40 1.42833
982982 −2.75279e40 −1.11242
983983 1.76204e40 0.702333 0.351167 0.936313i 0.385785π-0.385785\pi
0.351167 + 0.936313i 0.385785π0.385785\pi
984984 1.25270e40 0.492507
985985 −4.50253e39 −0.174610
986986 −4.60432e39 −0.176128
987987 3.44780e39 0.130095
988988 4.57581e39 0.170313
989989 −1.68340e40 −0.618071
990990 −3.01615e38 −0.0109239
991991 −7.00587e39 −0.250304 −0.125152 0.992138i 0.539942π-0.539942\pi
−0.125152 + 0.992138i 0.539942π0.539942\pi
992992 7.93061e39 0.279511
993993 −1.50109e40 −0.521907
994994 1.83275e40 0.628620
995995 6.39762e39 0.216475
996996 −2.54765e40 −0.850430
997997 −1.98983e40 −0.655287 −0.327644 0.944801i 0.606255π-0.606255\pi
−0.327644 + 0.944801i 0.606255π0.606255\pi
998998 3.74238e40 1.21586
999999 −8.66446e39 −0.277720
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.a.b.1.1 2
5.2 odd 4 50.28.b.d.49.2 4
5.3 odd 4 50.28.b.d.49.3 4
5.4 even 2 50.28.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.a.b.1.1 2 1.1 even 1 trivial
50.28.a.d.1.2 2 5.4 even 2
50.28.b.d.49.2 4 5.2 odd 4
50.28.b.d.49.3 4 5.3 odd 4