Properties

Label 10.28.b.a.9.1
Level $10$
Weight $28$
Character 10.9
Analytic conductor $46.186$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.1855574838\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 18355117238047 x^{12} + \cdots + 11\!\cdots\!41 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{121}\cdot 3^{18}\cdot 5^{39}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.1
Root \(-2.18023e6i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.28.b.a.9.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8192.00i q^{2} -4.36047e6i q^{3} -6.71089e7 q^{4} +(-1.84162e9 + 2.01470e9i) q^{5} -3.57210e10 q^{6} +1.94048e10i q^{7} +5.49756e11i q^{8} -1.13881e13 q^{9} +(1.65044e13 + 1.50865e13i) q^{10} -1.73755e14 q^{11} +2.92626e14i q^{12} -6.75010e14i q^{13} +1.58964e14 q^{14} +(8.78505e15 + 8.03032e15i) q^{15} +4.50360e15 q^{16} +4.72808e16i q^{17} +9.32913e16i q^{18} +2.99649e17 q^{19} +(1.23589e17 - 1.35204e17i) q^{20} +8.46139e16 q^{21} +1.42340e18i q^{22} +1.42626e18i q^{23} +2.39719e18 q^{24} +(-6.67471e17 - 7.42062e18i) q^{25} -5.52968e18 q^{26} +1.64063e19i q^{27} -1.30223e18i q^{28} -4.14340e19 q^{29} +(6.57844e19 - 7.19671e19i) q^{30} +1.01475e20 q^{31} -3.68935e19i q^{32} +7.57655e20i q^{33} +3.87324e20 q^{34} +(-3.90949e19 - 3.57362e19i) q^{35} +7.64242e20 q^{36} -4.31315e20i q^{37} -2.45473e21i q^{38} -2.94336e21 q^{39} +(-1.10759e21 - 1.01244e21i) q^{40} -6.35676e21 q^{41} -6.93157e20i q^{42} -1.92277e22i q^{43} +1.16605e22 q^{44} +(2.09725e22 - 2.29436e22i) q^{45} +1.16839e22 q^{46} +6.41268e22i q^{47} -1.96378e22i q^{48} +6.53358e22 q^{49} +(-6.07897e22 + 5.46792e21i) q^{50} +2.06166e23 q^{51} +4.52991e22i q^{52} -7.01449e22i q^{53} +1.34400e23 q^{54} +(3.19991e23 - 3.50065e23i) q^{55} -1.06679e22 q^{56} -1.30661e24i q^{57} +3.39428e23i q^{58} +7.97207e23 q^{59} +(-5.89555e23 - 5.38905e23i) q^{60} -7.03947e23 q^{61} -8.31280e23i q^{62} -2.20984e23i q^{63} -3.02231e23 q^{64} +(1.35994e24 + 1.24311e24i) q^{65} +6.20671e24 q^{66} +1.48454e24i q^{67} -3.17296e24i q^{68} +6.21915e24 q^{69} +(-2.92751e23 + 3.20265e23i) q^{70} -1.17498e25 q^{71} -6.26067e24i q^{72} +1.70047e25i q^{73} -3.53333e24 q^{74} +(-3.23574e25 + 2.91049e24i) q^{75} -2.01091e25 q^{76} -3.37168e24i q^{77} +2.41120e25i q^{78} +6.04850e25 q^{79} +(-8.29391e24 + 9.07341e24i) q^{80} -1.53020e25 q^{81} +5.20746e25i q^{82} +8.94591e25i q^{83} -5.67835e24 q^{84} +(-9.52567e25 - 8.70731e25i) q^{85} -1.57513e26 q^{86} +1.80672e26i q^{87} -9.55230e25i q^{88} +1.26789e26 q^{89} +(-1.87954e26 - 1.71807e26i) q^{90} +1.30984e25 q^{91} -9.57145e25i q^{92} -4.42477e26i q^{93} +5.25326e26 q^{94} +(-5.51840e26 + 6.03704e26i) q^{95} -1.60873e26 q^{96} +1.36952e26i q^{97} -5.35231e26i q^{98} +1.97874e27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 939524096 q^{4} - 73643590 q^{5} + 16071950336 q^{6} - 40082573114558 q^{9} - 33017385943040 q^{10} - 158204810172872 q^{11} - 21\!\cdots\!48 q^{14} + 20\!\cdots\!40 q^{15} + 63\!\cdots\!44 q^{16}+ \cdots - 39\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8192.00i 0.707107i
\(3\) 4.36047e6i 1.57905i −0.613717 0.789526i \(-0.710327\pi\)
0.613717 0.789526i \(-0.289673\pi\)
\(4\) −6.71089e7 −0.500000
\(5\) −1.84162e9 + 2.01470e9i −0.674690 + 0.738101i
\(6\) −3.57210e10 −1.11656
\(7\) 1.94048e10i 0.0756981i 0.999283 + 0.0378491i \(0.0120506\pi\)
−0.999283 + 0.0378491i \(0.987949\pi\)
\(8\) 5.49756e11i 0.353553i
\(9\) −1.13881e13 −1.49340
\(10\) 1.65044e13 + 1.50865e13i 0.521916 + 0.477078i
\(11\) −1.73755e14 −1.51753 −0.758764 0.651366i \(-0.774196\pi\)
−0.758764 + 0.651366i \(0.774196\pi\)
\(12\) 2.92626e14i 0.789526i
\(13\) 6.75010e14i 0.618123i −0.951042 0.309061i \(-0.899985\pi\)
0.951042 0.309061i \(-0.100015\pi\)
\(14\) 1.58964e14 0.0535267
\(15\) 8.78505e15 + 8.03032e15i 1.16550 + 1.06537i
\(16\) 4.50360e15 0.250000
\(17\) 4.72808e16i 1.15778i 0.815407 + 0.578888i \(0.196513\pi\)
−0.815407 + 0.578888i \(0.803487\pi\)
\(18\) 9.32913e16i 1.05600i
\(19\) 2.99649e17 1.63471 0.817353 0.576137i \(-0.195440\pi\)
0.817353 + 0.576137i \(0.195440\pi\)
\(20\) 1.23589e17 1.35204e17i 0.337345 0.369051i
\(21\) 8.46139e16 0.119531
\(22\) 1.42340e18i 1.07305i
\(23\) 1.42626e18i 0.590027i 0.955493 + 0.295014i \(0.0953242\pi\)
−0.955493 + 0.295014i \(0.904676\pi\)
\(24\) 2.39719e18 0.558279
\(25\) −6.67471e17 7.42062e18i −0.0895865 0.995979i
\(26\) −5.52968e18 −0.437079
\(27\) 1.64063e19i 0.779111i
\(28\) 1.30223e18i 0.0378491i
\(29\) −4.14340e19 −0.749867 −0.374933 0.927052i \(-0.622334\pi\)
−0.374933 + 0.927052i \(0.622334\pi\)
\(30\) 6.57844e19 7.19671e19i 0.753331 0.824133i
\(31\) 1.01475e20 0.746405 0.373202 0.927750i \(-0.378260\pi\)
0.373202 + 0.927750i \(0.378260\pi\)
\(32\) 3.68935e19i 0.176777i
\(33\) 7.57655e20i 2.39626i
\(34\) 3.87324e20 0.818671
\(35\) −3.90949e19 3.57362e19i −0.0558729 0.0510728i
\(36\) 7.64242e20 0.746702
\(37\) 4.31315e20i 0.291119i −0.989349 0.145560i \(-0.953502\pi\)
0.989349 0.145560i \(-0.0464983\pi\)
\(38\) 2.45473e21i 1.15591i
\(39\) −2.94336e21 −0.976048
\(40\) −1.10759e21 1.01244e21i −0.260958 0.238539i
\(41\) −6.35676e21 −1.07313 −0.536567 0.843858i \(-0.680279\pi\)
−0.536567 + 0.843858i \(0.680279\pi\)
\(42\) 6.93157e20i 0.0845214i
\(43\) 1.92277e22i 1.70648i −0.521515 0.853242i \(-0.674633\pi\)
0.521515 0.853242i \(-0.325367\pi\)
\(44\) 1.16605e22 0.758764
\(45\) 2.09725e22 2.29436e22i 1.00759 1.10228i
\(46\) 1.16839e22 0.417212
\(47\) 6.41268e22i 1.71285i 0.516275 + 0.856423i \(0.327318\pi\)
−0.516275 + 0.856423i \(0.672682\pi\)
\(48\) 1.96378e22i 0.394763i
\(49\) 6.53358e22 0.994270
\(50\) −6.07897e22 + 5.46792e21i −0.704264 + 0.0633472i
\(51\) 2.06166e23 1.82819
\(52\) 4.52991e22i 0.309061i
\(53\) 7.01449e22i 0.370060i −0.982733 0.185030i \(-0.940762\pi\)
0.982733 0.185030i \(-0.0592382\pi\)
\(54\) 1.34400e23 0.550914
\(55\) 3.19991e23 3.50065e23i 1.02386 1.12009i
\(56\) −1.06679e22 −0.0267633
\(57\) 1.30661e24i 2.58129i
\(58\) 3.39428e23i 0.530236i
\(59\) 7.97207e23 0.988710 0.494355 0.869260i \(-0.335404\pi\)
0.494355 + 0.869260i \(0.335404\pi\)
\(60\) −5.89555e23 5.38905e23i −0.582750 0.532685i
\(61\) −7.03947e23 −0.556656 −0.278328 0.960486i \(-0.589780\pi\)
−0.278328 + 0.960486i \(0.589780\pi\)
\(62\) 8.31280e23i 0.527788i
\(63\) 2.20984e23i 0.113048i
\(64\) −3.02231e23 −0.125000
\(65\) 1.35994e24 + 1.24311e24i 0.456237 + 0.417041i
\(66\) 6.20671e24 1.69441
\(67\) 1.48454e24i 0.330813i 0.986226 + 0.165406i \(0.0528936\pi\)
−0.986226 + 0.165406i \(0.947106\pi\)
\(68\) 3.17296e24i 0.578888i
\(69\) 6.21915e24 0.931683
\(70\) −2.92751e23 + 3.20265e23i −0.0361139 + 0.0395081i
\(71\) −1.17498e25 −1.19685 −0.598427 0.801177i \(-0.704207\pi\)
−0.598427 + 0.801177i \(0.704207\pi\)
\(72\) 6.26067e24i 0.527998i
\(73\) 1.70047e25i 1.19045i 0.803560 + 0.595224i \(0.202937\pi\)
−0.803560 + 0.595224i \(0.797063\pi\)
\(74\) −3.53333e24 −0.205852
\(75\) −3.23574e25 + 2.91049e24i −1.57270 + 0.141462i
\(76\) −2.01091e25 −0.817353
\(77\) 3.37168e24i 0.114874i
\(78\) 2.41120e25i 0.690170i
\(79\) 6.04850e25 1.45775 0.728874 0.684648i \(-0.240044\pi\)
0.728874 + 0.684648i \(0.240044\pi\)
\(80\) −8.29391e24 + 9.07341e24i −0.168673 + 0.184525i
\(81\) −1.53020e25 −0.263148
\(82\) 5.20746e25i 0.758820i
\(83\) 8.94591e25i 1.10680i 0.832915 + 0.553402i \(0.186671\pi\)
−0.832915 + 0.553402i \(0.813329\pi\)
\(84\) −5.67835e24 −0.0597656
\(85\) −9.52567e25 8.70731e25i −0.854555 0.781140i
\(86\) −1.57513e26 −1.20667
\(87\) 1.80672e26i 1.18408i
\(88\) 9.55230e25i 0.536527i
\(89\) 1.26789e26 0.611388 0.305694 0.952130i \(-0.401111\pi\)
0.305694 + 0.952130i \(0.401111\pi\)
\(90\) −1.87954e26 1.71807e26i −0.779432 0.712470i
\(91\) 1.30984e25 0.0467907
\(92\) 9.57145e25i 0.295014i
\(93\) 4.42477e26i 1.17861i
\(94\) 5.25326e26 1.21116
\(95\) −5.51840e26 + 6.03704e26i −1.10292 + 1.20658i
\(96\) −1.60873e26 −0.279140
\(97\) 1.36952e26i 0.206610i 0.994650 + 0.103305i \(0.0329417\pi\)
−0.994650 + 0.103305i \(0.967058\pi\)
\(98\) 5.35231e26i 0.703055i
\(99\) 1.97874e27 2.26628
\(100\) 4.47932e25 + 4.97990e26i 0.0447932 + 0.497990i
\(101\) 1.34962e27 1.17998 0.589989 0.807411i \(-0.299132\pi\)
0.589989 + 0.807411i \(0.299132\pi\)
\(102\) 1.68892e27i 1.29272i
\(103\) 1.33478e27i 0.895588i 0.894137 + 0.447794i \(0.147790\pi\)
−0.894137 + 0.447794i \(0.852210\pi\)
\(104\) 3.71090e26 0.218539
\(105\) −1.55827e26 + 1.70472e26i −0.0806466 + 0.0882261i
\(106\) −5.74627e26 −0.261672
\(107\) 1.89206e27i 0.759021i −0.925187 0.379511i \(-0.876092\pi\)
0.925187 0.379511i \(-0.123908\pi\)
\(108\) 1.10101e27i 0.389555i
\(109\) 5.06052e27 1.58102 0.790510 0.612449i \(-0.209816\pi\)
0.790510 + 0.612449i \(0.209816\pi\)
\(110\) −2.86773e27 2.62136e27i −0.792023 0.723979i
\(111\) −1.88073e27 −0.459692
\(112\) 8.73913e25i 0.0189245i
\(113\) 1.42472e27i 0.273635i −0.990596 0.136817i \(-0.956313\pi\)
0.990596 0.136817i \(-0.0436873\pi\)
\(114\) −1.07038e28 −1.82524
\(115\) −2.87348e27 2.62662e27i −0.435500 0.398085i
\(116\) 2.78059e27 0.374933
\(117\) 7.68708e27i 0.923107i
\(118\) 6.53072e27i 0.699123i
\(119\) −9.17473e26 −0.0876414
\(120\) −4.41471e27 + 4.82963e27i −0.376665 + 0.412066i
\(121\) 1.70809e28 1.30289
\(122\) 5.76673e27i 0.393616i
\(123\) 2.77185e28i 1.69453i
\(124\) −6.80984e27 −0.373202
\(125\) 1.61796e28 + 1.23212e28i 0.795576 + 0.605853i
\(126\) −1.81030e27 −0.0799369
\(127\) 3.83086e28i 1.52036i 0.649712 + 0.760180i \(0.274889\pi\)
−0.649712 + 0.760180i \(0.725111\pi\)
\(128\) 2.47588e27i 0.0883883i
\(129\) −8.38417e28 −2.69463
\(130\) 1.01836e28 1.11407e28i 0.294893 0.322608i
\(131\) 2.32350e28 0.606708 0.303354 0.952878i \(-0.401894\pi\)
0.303354 + 0.952878i \(0.401894\pi\)
\(132\) 5.08453e28i 1.19813i
\(133\) 5.81463e27i 0.123744i
\(134\) 1.21614e28 0.233920
\(135\) −3.30538e28 3.02141e28i −0.575062 0.525658i
\(136\) −2.59929e28 −0.409335
\(137\) 7.49761e28i 1.06954i −0.844999 0.534768i \(-0.820399\pi\)
0.844999 0.534768i \(-0.179601\pi\)
\(138\) 5.09473e28i 0.658800i
\(139\) −1.33981e29 −1.57160 −0.785801 0.618479i \(-0.787749\pi\)
−0.785801 + 0.618479i \(0.787749\pi\)
\(140\) 2.62361e27 + 2.39821e27i 0.0279364 + 0.0255364i
\(141\) 2.79623e29 2.70467
\(142\) 9.62540e28i 0.846303i
\(143\) 1.17286e29i 0.938018i
\(144\) −5.12874e28 −0.373351
\(145\) 7.63056e28 8.34772e28i 0.505928 0.553478i
\(146\) 1.39302e29 0.841773
\(147\) 2.84895e29i 1.57000i
\(148\) 2.89450e28i 0.145560i
\(149\) 2.64445e29 1.21428 0.607142 0.794593i \(-0.292316\pi\)
0.607142 + 0.794593i \(0.292316\pi\)
\(150\) 2.38427e28 + 2.65072e29i 0.100028 + 1.11207i
\(151\) −5.47706e28 −0.210068 −0.105034 0.994469i \(-0.533495\pi\)
−0.105034 + 0.994469i \(0.533495\pi\)
\(152\) 1.64734e29i 0.577956i
\(153\) 5.38438e29i 1.72903i
\(154\) −2.76208e28 −0.0812282
\(155\) −1.86877e29 + 2.04441e29i −0.503592 + 0.550922i
\(156\) 1.97525e29 0.488024
\(157\) 6.14799e28i 0.139344i −0.997570 0.0696720i \(-0.977805\pi\)
0.997570 0.0696720i \(-0.0221953\pi\)
\(158\) 4.95493e29i 1.03078i
\(159\) −3.05865e29 −0.584344
\(160\) 7.43294e28 + 6.79437e28i 0.130479 + 0.119269i
\(161\) −2.76762e28 −0.0446639
\(162\) 1.25354e29i 0.186074i
\(163\) 9.30839e29i 1.27157i 0.771864 + 0.635787i \(0.219324\pi\)
−0.771864 + 0.635787i \(0.780676\pi\)
\(164\) 4.26595e29 0.536567
\(165\) −1.52645e30 1.39531e30i −1.76868 1.61673i
\(166\) 7.32849e29 0.782628
\(167\) 1.19924e30i 1.18096i 0.807053 + 0.590479i \(0.201061\pi\)
−0.807053 + 0.590479i \(0.798939\pi\)
\(168\) 4.65170e28i 0.0422607i
\(169\) 7.36895e29 0.617924
\(170\) −7.13303e29 + 7.80343e29i −0.552349 + 0.604262i
\(171\) −3.41244e30 −2.44128
\(172\) 1.29035e30i 0.853242i
\(173\) 1.81586e30i 1.11035i 0.831733 + 0.555176i \(0.187349\pi\)
−0.831733 + 0.555176i \(0.812651\pi\)
\(174\) 1.48006e30 0.837270
\(175\) 1.43996e29 1.29521e28i 0.0753937 0.00678153i
\(176\) −7.82524e29 −0.379382
\(177\) 3.47620e30i 1.56122i
\(178\) 1.03866e30i 0.432317i
\(179\) 1.24772e30 0.481504 0.240752 0.970587i \(-0.422606\pi\)
0.240752 + 0.970587i \(0.422606\pi\)
\(180\) −1.40744e30 + 1.53972e30i −0.503793 + 0.551142i
\(181\) 1.77785e30 0.590519 0.295260 0.955417i \(-0.404594\pi\)
0.295260 + 0.955417i \(0.404594\pi\)
\(182\) 1.07302e29i 0.0330860i
\(183\) 3.06954e30i 0.878989i
\(184\) −7.84093e29 −0.208606
\(185\) 8.68971e29 + 7.94317e29i 0.214875 + 0.196415i
\(186\) −3.62477e30 −0.833404
\(187\) 8.21529e30i 1.75696i
\(188\) 4.30347e30i 0.856423i
\(189\) −3.18360e29 −0.0589772
\(190\) 4.94555e30 + 4.52067e30i 0.853180 + 0.779882i
\(191\) 4.40099e30 0.707293 0.353647 0.935379i \(-0.384942\pi\)
0.353647 + 0.935379i \(0.384942\pi\)
\(192\) 1.31787e30i 0.197381i
\(193\) 8.90239e30i 1.24303i 0.783401 + 0.621517i \(0.213483\pi\)
−0.783401 + 0.621517i \(0.786517\pi\)
\(194\) 1.12191e30 0.146095
\(195\) 5.42054e30 5.92999e30i 0.658530 0.720422i
\(196\) −4.38461e30 −0.497135
\(197\) 9.39056e30i 0.994025i 0.867743 + 0.497013i \(0.165570\pi\)
−0.867743 + 0.497013i \(0.834430\pi\)
\(198\) 1.62099e31i 1.60250i
\(199\) 1.30788e31 1.20795 0.603976 0.797002i \(-0.293582\pi\)
0.603976 + 0.797002i \(0.293582\pi\)
\(200\) 4.07953e30 3.66946e29i 0.352132 0.0316736i
\(201\) 6.47329e30 0.522370
\(202\) 1.10561e31i 0.834370i
\(203\) 8.04018e29i 0.0567635i
\(204\) −1.38356e31 −0.914094
\(205\) 1.17067e31 1.28070e31i 0.724032 0.792081i
\(206\) 1.09345e31 0.633276
\(207\) 1.62424e31i 0.881149i
\(208\) 3.03997e30i 0.154531i
\(209\) −5.20657e31 −2.48071
\(210\) 1.39651e30 + 1.27653e30i 0.0623853 + 0.0570257i
\(211\) −4.40738e31 −1.84658 −0.923288 0.384109i \(-0.874509\pi\)
−0.923288 + 0.384109i \(0.874509\pi\)
\(212\) 4.70735e30i 0.185030i
\(213\) 5.12345e31i 1.88989i
\(214\) −1.54998e31 −0.536709
\(215\) 3.87380e31 + 3.54100e31i 1.25956 + 1.15135i
\(216\) −9.01944e30 −0.275457
\(217\) 1.96909e30i 0.0565014i
\(218\) 4.14558e31i 1.11795i
\(219\) 7.41484e31 1.87978
\(220\) −2.14742e31 + 2.34925e31i −0.511931 + 0.560045i
\(221\) 3.19150e31 0.715647
\(222\) 1.54070e31i 0.325052i
\(223\) 4.82839e30i 0.0958709i −0.998850 0.0479354i \(-0.984736\pi\)
0.998850 0.0479354i \(-0.0152642\pi\)
\(224\) 7.15910e29 0.0133817
\(225\) 7.60123e30 + 8.45068e31i 0.133789 + 1.48740i
\(226\) −1.16713e31 −0.193489
\(227\) 1.50227e31i 0.234638i −0.993094 0.117319i \(-0.962570\pi\)
0.993094 0.117319i \(-0.0374301\pi\)
\(228\) 8.76853e31i 1.29064i
\(229\) −1.35922e32 −1.88586 −0.942931 0.332989i \(-0.891943\pi\)
−0.942931 + 0.332989i \(0.891943\pi\)
\(230\) −2.15173e31 + 2.35396e31i −0.281489 + 0.307945i
\(231\) −1.47021e31 −0.181392
\(232\) 2.27786e31i 0.265118i
\(233\) 3.79891e31i 0.417209i −0.978000 0.208604i \(-0.933108\pi\)
0.978000 0.208604i \(-0.0668921\pi\)
\(234\) 6.29725e31 0.652735
\(235\) −1.29196e32 1.18097e32i −1.26425 1.15564i
\(236\) −5.34996e31 −0.494355
\(237\) 2.63743e32i 2.30186i
\(238\) 7.51594e30i 0.0619718i
\(239\) 1.00391e32 0.782213 0.391107 0.920345i \(-0.372092\pi\)
0.391107 + 0.920345i \(0.372092\pi\)
\(240\) 3.95643e31 + 3.61653e31i 0.291375 + 0.266343i
\(241\) −1.53727e31 −0.107033 −0.0535166 0.998567i \(-0.517043\pi\)
−0.0535166 + 0.998567i \(0.517043\pi\)
\(242\) 1.39927e32i 0.921283i
\(243\) 1.91832e32i 1.19464i
\(244\) 4.72411e31 0.278328
\(245\) −1.20324e32 + 1.31632e32i −0.670824 + 0.733872i
\(246\) 2.27070e32 1.19822
\(247\) 2.02266e32i 1.01045i
\(248\) 5.57862e31i 0.263894i
\(249\) 3.90084e32 1.74770
\(250\) 1.00935e32 1.32543e32i 0.428403 0.562557i
\(251\) 3.03502e31 0.122058 0.0610290 0.998136i \(-0.480562\pi\)
0.0610290 + 0.998136i \(0.480562\pi\)
\(252\) 1.48300e31i 0.0565239i
\(253\) 2.47820e32i 0.895383i
\(254\) 3.13824e32 1.07506
\(255\) −3.79680e32 + 4.15364e32i −1.23346 + 1.34939i
\(256\) 2.02824e31 0.0625000
\(257\) 3.12991e31i 0.0915028i −0.998953 0.0457514i \(-0.985432\pi\)
0.998953 0.0457514i \(-0.0145682\pi\)
\(258\) 6.86831e32i 1.90539i
\(259\) 8.36956e30 0.0220372
\(260\) −9.12643e31 8.34237e31i −0.228119 0.208521i
\(261\) 4.71855e32 1.11985
\(262\) 1.90341e32i 0.429007i
\(263\) 7.09398e32i 1.51875i −0.650651 0.759377i \(-0.725504\pi\)
0.650651 0.759377i \(-0.274496\pi\)
\(264\) −4.16525e32 −0.847204
\(265\) 1.41321e32 + 1.29180e32i 0.273142 + 0.249676i
\(266\) 4.76334e31 0.0875004
\(267\) 5.52861e32i 0.965414i
\(268\) 9.96258e31i 0.165406i
\(269\) −8.86054e32 −1.39896 −0.699479 0.714653i \(-0.746584\pi\)
−0.699479 + 0.714653i \(0.746584\pi\)
\(270\) −2.47514e32 + 2.70776e32i −0.371697 + 0.406631i
\(271\) −2.90104e32 −0.414446 −0.207223 0.978294i \(-0.566443\pi\)
−0.207223 + 0.978294i \(0.566443\pi\)
\(272\) 2.12934e32i 0.289444i
\(273\) 5.71152e31i 0.0738850i
\(274\) −6.14204e32 −0.756276
\(275\) 1.15977e32 + 1.28937e33i 0.135950 + 1.51143i
\(276\) −4.17360e32 −0.465842
\(277\) 1.11039e33i 1.18032i −0.807288 0.590158i \(-0.799066\pi\)
0.807288 0.590158i \(-0.200934\pi\)
\(278\) 1.09757e33i 1.11129i
\(279\) −1.15560e33 −1.11468
\(280\) 1.96462e31 2.14926e31i 0.0180570 0.0197540i
\(281\) −2.23578e32 −0.195836 −0.0979181 0.995194i \(-0.531218\pi\)
−0.0979181 + 0.995194i \(0.531218\pi\)
\(282\) 2.29067e33i 1.91249i
\(283\) 2.15606e33i 1.71610i 0.513565 + 0.858051i \(0.328325\pi\)
−0.513565 + 0.858051i \(0.671675\pi\)
\(284\) 7.88513e32 0.598427
\(285\) 2.63243e33 + 2.40628e33i 1.90525 + 1.74157i
\(286\) 9.60811e32 0.663279
\(287\) 1.23351e32i 0.0812342i
\(288\) 4.20147e32i 0.263999i
\(289\) −5.67762e32 −0.340444
\(290\) −6.83846e32 6.25096e32i −0.391368 0.357745i
\(291\) 5.97176e32 0.326247
\(292\) 1.14117e33i 0.595224i
\(293\) 2.16621e33i 1.07892i 0.842012 + 0.539458i \(0.181371\pi\)
−0.842012 + 0.539458i \(0.818629\pi\)
\(294\) −2.33386e33 −1.11016
\(295\) −1.46815e33 + 1.60613e33i −0.667073 + 0.729768i
\(296\) 2.37118e32 0.102926
\(297\) 2.85068e33i 1.18232i
\(298\) 2.16633e33i 0.858629i
\(299\) 9.62737e32 0.364709
\(300\) 2.17147e33 1.95320e32i 0.786351 0.0707308i
\(301\) 3.73109e32 0.129178
\(302\) 4.48681e32i 0.148540i
\(303\) 5.88499e33i 1.86325i
\(304\) 1.34950e33 0.408677
\(305\) 1.29640e33 1.41824e33i 0.375571 0.410869i
\(306\) −4.41089e33 −1.22261
\(307\) 1.46581e33i 0.388786i −0.980924 0.194393i \(-0.937726\pi\)
0.980924 0.194393i \(-0.0622737\pi\)
\(308\) 2.26270e32i 0.0574370i
\(309\) 5.82028e33 1.41418
\(310\) 1.67478e33 + 1.53090e33i 0.389561 + 0.356093i
\(311\) 2.92959e33 0.652442 0.326221 0.945294i \(-0.394225\pi\)
0.326221 + 0.945294i \(0.394225\pi\)
\(312\) 1.61813e33i 0.345085i
\(313\) 3.19877e33i 0.653332i 0.945140 + 0.326666i \(0.105925\pi\)
−0.945140 + 0.326666i \(0.894075\pi\)
\(314\) −5.03643e32 −0.0985310
\(315\) 4.45216e32 + 4.06967e32i 0.0834408 + 0.0762723i
\(316\) −4.05908e33 −0.728874
\(317\) 2.65764e33i 0.457294i −0.973509 0.228647i \(-0.926570\pi\)
0.973509 0.228647i \(-0.0734302\pi\)
\(318\) 2.50564e33i 0.413193i
\(319\) 7.19938e33 1.13794
\(320\) 5.56595e32 6.08906e32i 0.0843363 0.0922626i
\(321\) −8.25027e33 −1.19853
\(322\) 2.26723e32i 0.0315822i
\(323\) 1.41677e34i 1.89262i
\(324\) 1.02690e33 0.131574
\(325\) −5.00899e33 + 4.50549e32i −0.615637 + 0.0553754i
\(326\) 7.62543e33 0.899139
\(327\) 2.20662e34i 2.49651i
\(328\) 3.49466e33i 0.379410i
\(329\) −1.24437e33 −0.129659
\(330\) −1.14304e34 + 1.25047e34i −1.14320 + 1.25064i
\(331\) −1.16167e34 −1.11533 −0.557666 0.830066i \(-0.688303\pi\)
−0.557666 + 0.830066i \(0.688303\pi\)
\(332\) 6.00350e33i 0.553402i
\(333\) 4.91185e33i 0.434759i
\(334\) 9.82419e33 0.835063
\(335\) −2.99091e33 2.73396e33i −0.244173 0.223196i
\(336\) 3.81067e32 0.0298828
\(337\) 1.49223e34i 1.12417i 0.827080 + 0.562084i \(0.190000\pi\)
−0.827080 + 0.562084i \(0.810000\pi\)
\(338\) 6.03665e33i 0.436938i
\(339\) −6.21246e33 −0.432083
\(340\) 6.39257e33 + 5.84338e33i 0.427278 + 0.390570i
\(341\) −1.76317e34 −1.13269
\(342\) 2.79547e34i 1.72624i
\(343\) 2.54296e33i 0.150962i
\(344\) 1.05705e34 0.603333
\(345\) −1.14533e34 + 1.25297e34i −0.628598 + 0.687676i
\(346\) 1.48756e34 0.785138
\(347\) 6.22064e33i 0.315782i −0.987457 0.157891i \(-0.949531\pi\)
0.987457 0.157891i \(-0.0504694\pi\)
\(348\) 1.21247e34i 0.592039i
\(349\) −4.04231e32 −0.0189883 −0.00949415 0.999955i \(-0.503022\pi\)
−0.00949415 + 0.999955i \(0.503022\pi\)
\(350\) −1.06104e32 1.17961e33i −0.00479526 0.0533114i
\(351\) 1.10744e34 0.481586
\(352\) 6.41044e33i 0.268264i
\(353\) 1.06569e34i 0.429212i 0.976701 + 0.214606i \(0.0688468\pi\)
−0.976701 + 0.214606i \(0.931153\pi\)
\(354\) −2.84770e34 −1.10395
\(355\) 2.16386e34 2.36723e34i 0.807505 0.883399i
\(356\) −8.50868e33 −0.305694
\(357\) 4.00061e33i 0.138390i
\(358\) 1.02213e34i 0.340475i
\(359\) −5.00144e34 −1.60443 −0.802213 0.597038i \(-0.796344\pi\)
−0.802213 + 0.597038i \(0.796344\pi\)
\(360\) 1.26134e34 + 1.15298e34i 0.389716 + 0.356235i
\(361\) 5.61891e34 1.67227
\(362\) 1.45641e34i 0.417560i
\(363\) 7.44807e34i 2.05733i
\(364\) −8.79019e32 −0.0233954
\(365\) −3.42594e34 3.13161e34i −0.878670 0.803183i
\(366\) 2.51457e34 0.621539
\(367\) 5.65777e33i 0.134789i −0.997726 0.0673944i \(-0.978531\pi\)
0.997726 0.0673944i \(-0.0214686\pi\)
\(368\) 6.42329e33i 0.147507i
\(369\) 7.23914e34 1.60262
\(370\) 6.50704e33 7.11861e33i 0.138887 0.151940i
\(371\) 1.36115e33 0.0280128
\(372\) 2.96941e34i 0.589306i
\(373\) 4.37195e34i 0.836769i 0.908270 + 0.418385i \(0.137404\pi\)
−0.908270 + 0.418385i \(0.862596\pi\)
\(374\) −6.72996e34 −1.24236
\(375\) 5.37262e34 7.05505e34i 0.956674 1.25626i
\(376\) −3.52541e34 −0.605582
\(377\) 2.79684e34i 0.463510i
\(378\) 2.60801e33i 0.0417032i
\(379\) −9.27986e34 −1.43190 −0.715949 0.698152i \(-0.754006\pi\)
−0.715949 + 0.698152i \(0.754006\pi\)
\(380\) 3.70333e34 4.05139e34i 0.551460 0.603289i
\(381\) 1.67044e35 2.40073
\(382\) 3.60529e34i 0.500132i
\(383\) 6.54839e34i 0.876902i 0.898755 + 0.438451i \(0.144473\pi\)
−0.898755 + 0.438451i \(0.855527\pi\)
\(384\) 1.07960e34 0.139570
\(385\) 6.79294e33 + 6.20935e33i 0.0847886 + 0.0775044i
\(386\) 7.29284e34 0.878958
\(387\) 2.18967e35i 2.54847i
\(388\) 9.19071e33i 0.103305i
\(389\) 1.03818e34 0.112707 0.0563537 0.998411i \(-0.482053\pi\)
0.0563537 + 0.998411i \(0.482053\pi\)
\(390\) −4.85785e34 4.44051e34i −0.509415 0.465651i
\(391\) −6.74346e34 −0.683119
\(392\) 3.59187e34i 0.351527i
\(393\) 1.01315e35i 0.958023i
\(394\) 7.69274e34 0.702882
\(395\) −1.11390e35 + 1.21859e35i −0.983528 + 1.07596i
\(396\) −1.32791e35 −1.13314
\(397\) 1.03095e34i 0.0850285i 0.999096 + 0.0425143i \(0.0135368\pi\)
−0.999096 + 0.0425143i \(0.986463\pi\)
\(398\) 1.07141e35i 0.854152i
\(399\) 2.53545e34 0.195398
\(400\) −3.00602e33 3.34195e34i −0.0223966 0.248995i
\(401\) −1.99642e35 −1.43815 −0.719074 0.694933i \(-0.755434\pi\)
−0.719074 + 0.694933i \(0.755434\pi\)
\(402\) 5.30292e34i 0.369372i
\(403\) 6.84963e34i 0.461370i
\(404\) −9.05717e34 −0.589989
\(405\) 2.81804e34 3.08290e34i 0.177543 0.194230i
\(406\) −6.58652e33 −0.0401379
\(407\) 7.49432e34i 0.441782i
\(408\) 1.13341e35i 0.646362i
\(409\) 1.72738e35 0.953064 0.476532 0.879157i \(-0.341894\pi\)
0.476532 + 0.879157i \(0.341894\pi\)
\(410\) −1.04915e35 9.59014e34i −0.560086 0.511968i
\(411\) −3.26931e35 −1.68885
\(412\) 8.95758e34i 0.447794i
\(413\) 1.54696e34i 0.0748435i
\(414\) −1.33057e35 −0.623066
\(415\) −1.80234e35 1.64749e35i −0.816933 0.746749i
\(416\) −2.49035e34 −0.109270
\(417\) 5.84219e35i 2.48164i
\(418\) 4.26522e35i 1.75413i
\(419\) 3.87612e35 1.54351 0.771753 0.635922i \(-0.219380\pi\)
0.771753 + 0.635922i \(0.219380\pi\)
\(420\) 1.04573e34 1.14402e34i 0.0403233 0.0441131i
\(421\) 3.72898e35 1.39246 0.696229 0.717820i \(-0.254860\pi\)
0.696229 + 0.717820i \(0.254860\pi\)
\(422\) 3.61052e35i 1.30573i
\(423\) 7.30282e35i 2.55797i
\(424\) 3.85626e34 0.130836
\(425\) 3.50853e35 3.15586e34i 1.15312 0.103721i
\(426\) 4.19713e35 1.33636
\(427\) 1.36599e34i 0.0421378i
\(428\) 1.26974e35i 0.379511i
\(429\) 5.11424e35 1.48118
\(430\) 2.90079e35 3.17342e35i 0.814126 0.890642i
\(431\) −4.50905e35 −1.22643 −0.613214 0.789917i \(-0.710124\pi\)
−0.613214 + 0.789917i \(0.710124\pi\)
\(432\) 7.38873e34i 0.194778i
\(433\) 1.12870e35i 0.288399i −0.989549 0.144200i \(-0.953939\pi\)
0.989549 0.144200i \(-0.0460607\pi\)
\(434\) 1.61308e34 0.0399525
\(435\) −3.64000e35 3.32728e35i −0.873970 0.798886i
\(436\) −3.39606e35 −0.790510
\(437\) 4.27377e35i 0.964521i
\(438\) 6.07424e35i 1.32920i
\(439\) 7.99108e34 0.169564 0.0847822 0.996400i \(-0.472981\pi\)
0.0847822 + 0.996400i \(0.472981\pi\)
\(440\) 1.92450e35 + 1.75917e35i 0.396011 + 0.361990i
\(441\) −7.44051e35 −1.48485
\(442\) 2.61448e35i 0.506039i
\(443\) 3.46606e35i 0.650707i −0.945592 0.325354i \(-0.894517\pi\)
0.945592 0.325354i \(-0.105483\pi\)
\(444\) 1.26214e35 0.229846
\(445\) −2.33497e35 + 2.55443e35i −0.412498 + 0.451267i
\(446\) −3.95542e34 −0.0677910
\(447\) 1.15310e36i 1.91742i
\(448\) 5.86473e33i 0.00946227i
\(449\) −9.92797e35 −1.55430 −0.777150 0.629316i \(-0.783335\pi\)
−0.777150 + 0.629316i \(0.783335\pi\)
\(450\) 6.92280e35 6.22692e34i 1.05175 0.0946030i
\(451\) 1.10452e36 1.62851
\(452\) 9.56115e34i 0.136817i
\(453\) 2.38826e35i 0.331707i
\(454\) −1.23066e35 −0.165914
\(455\) −2.41223e34 + 2.63894e34i −0.0315692 + 0.0345363i
\(456\) 7.18318e35 0.912622
\(457\) 2.92520e35i 0.360816i −0.983592 0.180408i \(-0.942258\pi\)
0.983592 0.180408i \(-0.0577419\pi\)
\(458\) 1.11347e36i 1.33351i
\(459\) −7.75702e35 −0.902035
\(460\) 1.92836e35 + 1.76269e35i 0.217750 + 0.199043i
\(461\) 3.02221e35 0.331408 0.165704 0.986176i \(-0.447010\pi\)
0.165704 + 0.986176i \(0.447010\pi\)
\(462\) 1.20440e35i 0.128264i
\(463\) 3.51002e35i 0.363049i 0.983386 + 0.181525i \(0.0581032\pi\)
−0.983386 + 0.181525i \(0.941897\pi\)
\(464\) −1.86602e35 −0.187467
\(465\) 8.91459e35 + 8.14873e35i 0.869934 + 0.795198i
\(466\) −3.11206e35 −0.295011
\(467\) 1.29826e35i 0.119559i −0.998212 0.0597797i \(-0.980960\pi\)
0.998212 0.0597797i \(-0.0190398\pi\)
\(468\) 5.15871e35i 0.461554i
\(469\) −2.88072e34 −0.0250419
\(470\) −9.67450e35 + 1.05838e36i −0.817161 + 0.893962i
\(471\) −2.68081e35 −0.220031
\(472\) 4.38269e35i 0.349562i
\(473\) 3.34091e36i 2.58964i
\(474\) −2.16058e36 −1.62766
\(475\) −2.00007e35 2.22358e36i −0.146448 1.62813i
\(476\) 6.15706e34 0.0438207
\(477\) 7.98817e35i 0.552649i
\(478\) 8.22407e35i 0.553108i
\(479\) −8.02386e35 −0.524631 −0.262316 0.964982i \(-0.584486\pi\)
−0.262316 + 0.964982i \(0.584486\pi\)
\(480\) 2.96266e35 3.24111e35i 0.188333 0.206033i
\(481\) −2.91142e35 −0.179947
\(482\) 1.25933e35i 0.0756840i
\(483\) 1.20681e35i 0.0705267i
\(484\) −1.14628e36 −0.651446
\(485\) −2.75918e35 2.52214e35i −0.152499 0.139397i
\(486\) 1.57148e36 0.844735
\(487\) 1.61367e36i 0.843672i −0.906672 0.421836i \(-0.861386\pi\)
0.906672 0.421836i \(-0.138614\pi\)
\(488\) 3.86999e35i 0.196808i
\(489\) 4.05889e36 2.00788
\(490\) 1.07833e36 + 9.85691e35i 0.518926 + 0.474344i
\(491\) −2.14990e36 −1.00651 −0.503255 0.864138i \(-0.667864\pi\)
−0.503255 + 0.864138i \(0.667864\pi\)
\(492\) 1.86015e36i 0.847266i
\(493\) 1.95903e36i 0.868178i
\(494\) −1.65696e36 −0.714495
\(495\) −3.64409e36 + 3.98658e36i −1.52904 + 1.67275i
\(496\) 4.57001e35 0.186601
\(497\) 2.28001e35i 0.0905996i
\(498\) 3.19557e36i 1.23581i
\(499\) 3.21120e36 1.20868 0.604339 0.796728i \(-0.293437\pi\)
0.604339 + 0.796728i \(0.293437\pi\)
\(500\) −1.08579e36 8.26861e35i −0.397788 0.302927i
\(501\) 5.22926e36 1.86479
\(502\) 2.48629e35i 0.0863080i
\(503\) 2.50486e36i 0.846478i 0.906018 + 0.423239i \(0.139107\pi\)
−0.906018 + 0.423239i \(0.860893\pi\)
\(504\) 1.21487e35 0.0399685
\(505\) −2.48549e36 + 2.71909e36i −0.796119 + 0.870943i
\(506\) −2.03014e36 −0.633131
\(507\) 3.21321e36i 0.975734i
\(508\) 2.57085e36i 0.760180i
\(509\) 3.14700e36 0.906164 0.453082 0.891469i \(-0.350324\pi\)
0.453082 + 0.891469i \(0.350324\pi\)
\(510\) 3.40266e36 + 3.11034e36i 0.954161 + 0.872188i
\(511\) −3.29972e35 −0.0901146
\(512\) 1.66153e35i 0.0441942i
\(513\) 4.91613e36i 1.27362i
\(514\) −2.56402e35 −0.0647023
\(515\) −2.68919e36 2.45816e36i −0.661034 0.604244i
\(516\) 5.62652e36 1.34731
\(517\) 1.11424e37i 2.59929i
\(518\) 6.85635e34i 0.0155826i
\(519\) 7.91802e36 1.75330
\(520\) −6.83407e35 + 7.47637e35i −0.147446 + 0.161304i
\(521\) −2.61163e36 −0.549039 −0.274519 0.961582i \(-0.588519\pi\)
−0.274519 + 0.961582i \(0.588519\pi\)
\(522\) 3.86544e36i 0.791857i
\(523\) 1.29754e35i 0.0259030i −0.999916 0.0129515i \(-0.995877\pi\)
0.999916 0.0129515i \(-0.00412270\pi\)
\(524\) −1.55927e36 −0.303354
\(525\) −5.64774e34 6.27888e35i −0.0107084 0.119051i
\(526\) −5.81139e36 −1.07392
\(527\) 4.79780e36i 0.864169i
\(528\) 3.41217e36i 0.599064i
\(529\) 3.80900e36 0.651868
\(530\) 1.05824e36 1.15770e36i 0.176547 0.193140i
\(531\) −9.07867e36 −1.47654
\(532\) 3.90213e35i 0.0618721i
\(533\) 4.29087e36i 0.663328i
\(534\) −4.52903e36 −0.682651
\(535\) 3.81194e36 + 3.48445e36i 0.560235 + 0.512104i
\(536\) −8.16135e35 −0.116960
\(537\) 5.44063e36i 0.760319i
\(538\) 7.25856e36i 0.989212i
\(539\) −1.13524e37 −1.50883
\(540\) 2.21820e36 + 2.02763e36i 0.287531 + 0.262829i
\(541\) 1.26803e37 1.60312 0.801561 0.597913i \(-0.204003\pi\)
0.801561 + 0.597913i \(0.204003\pi\)
\(542\) 2.37653e36i 0.293058i
\(543\) 7.75225e36i 0.932460i
\(544\) 1.74435e36 0.204668
\(545\) −9.31954e36 + 1.01954e37i −1.06670 + 1.16695i
\(546\) −4.67888e35 −0.0522446
\(547\) 1.92461e36i 0.209659i −0.994490 0.104830i \(-0.966570\pi\)
0.994490 0.104830i \(-0.0334297\pi\)
\(548\) 5.03156e36i 0.534768i
\(549\) 8.01662e36 0.831313
\(550\) 1.05625e37 9.50080e35i 1.06874 0.0961311i
\(551\) −1.24157e37 −1.22581
\(552\) 3.41901e36i 0.329400i
\(553\) 1.17370e36i 0.110349i
\(554\) −9.09630e36 −0.834609
\(555\) 3.46359e36 3.78912e36i 0.310150 0.339299i
\(556\) 8.99130e36 0.785801
\(557\) 2.79644e36i 0.238539i 0.992862 + 0.119270i \(0.0380553\pi\)
−0.992862 + 0.119270i \(0.961945\pi\)
\(558\) 9.46669e36i 0.788200i
\(559\) −1.29789e37 −1.05482
\(560\) −1.76068e35 1.60941e35i −0.0139682 0.0127682i
\(561\) −3.58225e37 −2.77433
\(562\) 1.83155e36i 0.138477i
\(563\) 1.25906e37i 0.929355i −0.885480 0.464677i \(-0.846170\pi\)
0.885480 0.464677i \(-0.153830\pi\)
\(564\) −1.87652e37 −1.35234
\(565\) 2.87039e36 + 2.62379e36i 0.201970 + 0.184619i
\(566\) 1.76624e37 1.21347
\(567\) 2.96932e35i 0.0199198i
\(568\) 6.45950e36i 0.423152i
\(569\) −3.17815e36 −0.203310 −0.101655 0.994820i \(-0.532414\pi\)
−0.101655 + 0.994820i \(0.532414\pi\)
\(570\) 1.97122e37 2.15649e37i 1.23147 1.34722i
\(571\) 7.58646e36 0.462862 0.231431 0.972851i \(-0.425659\pi\)
0.231431 + 0.972851i \(0.425659\pi\)
\(572\) 7.87096e36i 0.469009i
\(573\) 1.91904e37i 1.11685i
\(574\) −1.01050e36 −0.0574412
\(575\) 1.05837e37 9.51985e35i 0.587655 0.0528584i
\(576\) 3.44184e36 0.186676
\(577\) 2.14649e37i 1.13725i 0.822597 + 0.568625i \(0.192525\pi\)
−0.822597 + 0.568625i \(0.807475\pi\)
\(578\) 4.65111e36i 0.240730i
\(579\) 3.88186e37 1.96282
\(580\) −5.12078e36 + 5.60206e36i −0.252964 + 0.276739i
\(581\) −1.73593e36 −0.0837829
\(582\) 4.89207e36i 0.230692i
\(583\) 1.21880e37i 0.561576i
\(584\) −9.34843e36 −0.420887
\(585\) −1.54872e37 1.41567e37i −0.681346 0.622811i
\(586\) 1.77456e37 0.762909
\(587\) 3.16979e37i 1.33173i 0.746073 + 0.665864i \(0.231937\pi\)
−0.746073 + 0.665864i \(0.768063\pi\)
\(588\) 1.91190e37i 0.785002i
\(589\) 3.04068e37 1.22015
\(590\) 1.31575e37 + 1.20271e37i 0.516024 + 0.471692i
\(591\) 4.09472e37 1.56962
\(592\) 1.94247e36i 0.0727798i
\(593\) 1.93797e37i 0.709755i −0.934913 0.354877i \(-0.884523\pi\)
0.934913 0.354877i \(-0.115477\pi\)
\(594\) −2.33527e37 −0.836028
\(595\) 1.68963e36 1.84844e36i 0.0591308 0.0646882i
\(596\) −1.77466e37 −0.607142
\(597\) 5.70295e37i 1.90742i
\(598\) 7.88674e36i 0.257888i
\(599\) 1.37034e37 0.438093 0.219047 0.975714i \(-0.429705\pi\)
0.219047 + 0.975714i \(0.429705\pi\)
\(600\) −1.60006e36 1.77887e37i −0.0500142 0.556034i
\(601\) −1.68546e37 −0.515124 −0.257562 0.966262i \(-0.582919\pi\)
−0.257562 + 0.966262i \(0.582919\pi\)
\(602\) 3.05651e36i 0.0913424i
\(603\) 1.69061e37i 0.494037i
\(604\) 3.67559e36 0.105034
\(605\) −3.14565e37 + 3.44129e37i −0.879048 + 0.961665i
\(606\) −4.82098e37 −1.31751
\(607\) 7.97302e36i 0.213096i 0.994308 + 0.106548i \(0.0339798\pi\)
−0.994308 + 0.106548i \(0.966020\pi\)
\(608\) 1.10551e37i 0.288978i
\(609\) −3.50590e36 −0.0896325
\(610\) −1.16183e37 1.06201e37i −0.290528 0.265569i
\(611\) 4.32862e37 1.05875
\(612\) 3.61340e37i 0.864513i
\(613\) 4.15420e37i 0.972235i −0.873893 0.486118i \(-0.838413\pi\)
0.873893 0.486118i \(-0.161587\pi\)
\(614\) −1.20079e37 −0.274913
\(615\) −5.58444e37 5.10468e37i −1.25074 1.14328i
\(616\) 1.85360e36 0.0406141
\(617\) 7.07582e37i 1.51680i 0.651792 + 0.758398i \(0.274018\pi\)
−0.651792 + 0.758398i \(0.725982\pi\)
\(618\) 4.76797e37i 0.999976i
\(619\) 4.56703e37 0.937152 0.468576 0.883423i \(-0.344767\pi\)
0.468576 + 0.883423i \(0.344767\pi\)
\(620\) 1.25411e37 1.37198e37i 0.251796 0.275461i
\(621\) −2.33996e37 −0.459696
\(622\) 2.39992e37i 0.461346i
\(623\) 2.46032e36i 0.0462810i
\(624\) −1.32557e37 −0.244012
\(625\) −5.46201e37 + 9.90610e36i −0.983949 + 0.178452i
\(626\) 2.62043e37 0.461976
\(627\) 2.27031e38i 3.91717i
\(628\) 4.12585e36i 0.0696720i
\(629\) 2.03929e37 0.337051
\(630\) 3.33387e36 3.64721e36i 0.0539327 0.0590015i
\(631\) −5.55203e37 −0.879134 −0.439567 0.898210i \(-0.644868\pi\)
−0.439567 + 0.898210i \(0.644868\pi\)
\(632\) 3.32520e37i 0.515391i
\(633\) 1.92182e38i 2.91584i
\(634\) −2.17714e37 −0.323356
\(635\) −7.71805e37 7.05499e37i −1.12218 1.02577i
\(636\) 2.05262e37 0.292172
\(637\) 4.41023e37i 0.614581i
\(638\) 5.89773e37i 0.804648i
\(639\) 1.33807e38 1.78739
\(640\) −4.98816e36 4.55962e36i −0.0652395 0.0596347i
\(641\) −1.67814e37 −0.214905 −0.107452 0.994210i \(-0.534269\pi\)
−0.107452 + 0.994210i \(0.534269\pi\)
\(642\) 6.75862e37i 0.847492i
\(643\) 7.08690e37i 0.870178i 0.900387 + 0.435089i \(0.143283\pi\)
−0.900387 + 0.435089i \(0.856717\pi\)
\(644\) 1.85732e36 0.0223320
\(645\) 1.54404e38 1.68916e38i 1.81804 1.98891i
\(646\) 1.16061e38 1.33829
\(647\) 3.12596e36i 0.0353001i 0.999844 + 0.0176500i \(0.00561847\pi\)
−0.999844 + 0.0176500i \(0.994382\pi\)
\(648\) 8.41236e36i 0.0930369i
\(649\) −1.38519e38 −1.50039
\(650\) 3.69090e36 + 4.10337e37i 0.0391563 + 0.435321i
\(651\) 8.58616e36 0.0892187
\(652\) 6.24675e37i 0.635787i
\(653\) 1.01275e38i 1.00966i −0.863219 0.504829i \(-0.831555\pi\)
0.863219 0.504829i \(-0.168445\pi\)
\(654\) −1.80767e38 −1.76530
\(655\) −4.27899e37 + 4.68115e37i −0.409340 + 0.447812i
\(656\) −2.86283e37 −0.268283
\(657\) 1.93651e38i 1.77782i
\(658\) 1.01938e37i 0.0916829i
\(659\) −3.03753e37 −0.267650 −0.133825 0.991005i \(-0.542726\pi\)
−0.133825 + 0.991005i \(0.542726\pi\)
\(660\) 1.02438e38 + 9.36377e37i 0.884339 + 0.808365i
\(661\) 4.07211e36 0.0344429 0.0172215 0.999852i \(-0.494518\pi\)
0.0172215 + 0.999852i \(0.494518\pi\)
\(662\) 9.51638e37i 0.788658i
\(663\) 1.39164e38i 1.13004i
\(664\) −4.91807e37 −0.391314
\(665\) −1.17147e37 1.07083e37i −0.0913357 0.0834890i
\(666\) 4.02379e37 0.307421
\(667\) 5.90956e37i 0.442442i
\(668\) 8.04798e37i 0.590479i
\(669\) −2.10541e37 −0.151385
\(670\) −2.23966e37 + 2.45015e37i −0.157823 + 0.172657i
\(671\) 1.22315e38 0.844742
\(672\) 3.12170e36i 0.0211303i
\(673\) 1.51200e38i 1.00311i −0.865125 0.501556i \(-0.832761\pi\)
0.865125 0.501556i \(-0.167239\pi\)
\(674\) 1.22243e38 0.794907
\(675\) 1.21745e38 1.09507e37i 0.775978 0.0697978i
\(676\) −4.94522e37 −0.308962
\(677\) 2.92994e38i 1.79437i −0.441656 0.897185i \(-0.645609\pi\)
0.441656 0.897185i \(-0.354391\pi\)
\(678\) 5.08924e37i 0.305529i
\(679\) −2.65753e36 −0.0156400
\(680\) 4.78690e37 5.23679e37i 0.276175 0.302131i
\(681\) −6.55061e37 −0.370506
\(682\) 1.44439e38i 0.800933i
\(683\) 2.53936e38i 1.38053i 0.723558 + 0.690263i \(0.242505\pi\)
−0.723558 + 0.690263i \(0.757495\pi\)
\(684\) 2.29005e38 1.22064
\(685\) 1.51055e38 + 1.38077e38i 0.789425 + 0.721605i
\(686\) 2.08319e37 0.106747
\(687\) 5.92683e38i 2.97787i
\(688\) 8.65937e37i 0.426621i
\(689\) −4.73485e37 −0.228742
\(690\) 1.02644e38 + 9.38254e37i 0.486261 + 0.444486i
\(691\) −1.97722e38 −0.918548 −0.459274 0.888295i \(-0.651890\pi\)
−0.459274 + 0.888295i \(0.651890\pi\)
\(692\) 1.21861e38i 0.555176i
\(693\) 3.83970e37i 0.171553i
\(694\) −5.09595e37 −0.223291
\(695\) 2.46741e38 2.69931e38i 1.06035 1.16000i
\(696\) −9.93254e37 −0.418635
\(697\) 3.00553e38i 1.24245i
\(698\) 3.31146e36i 0.0134267i
\(699\) −1.65650e38 −0.658794
\(700\) −9.66338e36 + 8.69203e35i −0.0376969 + 0.00339076i
\(701\) 2.19385e38 0.839486 0.419743 0.907643i \(-0.362120\pi\)
0.419743 + 0.907643i \(0.362120\pi\)
\(702\) 9.07214e37i 0.340533i
\(703\) 1.29243e38i 0.475894i
\(704\) 5.25143e37 0.189691
\(705\) −5.14958e38 + 5.63357e38i −1.82482 + 1.99632i
\(706\) 8.73013e37 0.303499
\(707\) 2.61891e37i 0.0893221i
\(708\) 2.33284e38i 0.780612i
\(709\) −2.79060e38 −0.916166 −0.458083 0.888910i \(-0.651464\pi\)
−0.458083 + 0.888910i \(0.651464\pi\)
\(710\) −1.93923e38 1.77263e38i −0.624657 0.570993i
\(711\) −6.88809e38 −2.17701
\(712\) 6.97031e37i 0.216158i
\(713\) 1.44729e38i 0.440399i
\(714\) 3.27730e37 0.0978568
\(715\) −2.36297e38 2.15997e38i −0.692352 0.632872i
\(716\) −8.37328e37 −0.240752
\(717\) 4.37754e38i 1.23515i
\(718\) 4.09718e38i 1.13450i
\(719\) 3.99399e38 1.08534 0.542671 0.839945i \(-0.317413\pi\)
0.542671 + 0.839945i \(0.317413\pi\)
\(720\) 9.44518e37 1.03329e38i 0.251896 0.275571i
\(721\) −2.59012e37 −0.0677943
\(722\) 4.60301e38i 1.18247i
\(723\) 6.70320e37i 0.169011i
\(724\) −1.19309e38 −0.295260
\(725\) 2.76560e37 + 3.07466e38i 0.0671779 + 0.746852i
\(726\) −6.10146e38 −1.45475
\(727\) 3.88482e38i 0.909194i 0.890697 + 0.454597i \(0.150217\pi\)
−0.890697 + 0.454597i \(0.849783\pi\)
\(728\) 7.20093e36i 0.0165430i
\(729\) 7.19789e38 1.62324
\(730\) −2.56542e38 + 2.80653e38i −0.567936 + 0.621314i
\(731\) 9.09099e38 1.97573
\(732\) 2.05993e38i 0.439495i
\(733\) 5.85492e38i 1.22636i 0.789944 + 0.613179i \(0.210109\pi\)
−0.789944 + 0.613179i \(0.789891\pi\)
\(734\) −4.63485e37 −0.0953100
\(735\) 5.73978e38 + 5.24667e38i 1.15882 + 1.05927i
\(736\) 5.26196e37 0.104303
\(737\) 2.57947e38i 0.502017i
\(738\) 5.93030e38i 1.13322i
\(739\) 4.22327e38 0.792407 0.396204 0.918163i \(-0.370327\pi\)
0.396204 + 0.918163i \(0.370327\pi\)
\(740\) −5.83156e37 5.33057e37i −0.107438 0.0982076i
\(741\) −8.81976e38 −1.59555
\(742\) 1.11505e37i 0.0198081i
\(743\) 8.90331e38i 1.55311i −0.630048 0.776556i \(-0.716965\pi\)
0.630048 0.776556i \(-0.283035\pi\)
\(744\) 2.43254e38 0.416702
\(745\) −4.87006e38 + 5.32778e38i −0.819266 + 0.896265i
\(746\) 3.58150e38 0.591685
\(747\) 1.01877e39i 1.65290i
\(748\) 5.51319e38i 0.878478i
\(749\) 3.67150e37 0.0574565
\(750\) −5.77950e38 4.40125e38i −0.888307 0.676471i
\(751\) 8.05646e38 1.21620 0.608100 0.793860i \(-0.291932\pi\)
0.608100 + 0.793860i \(0.291932\pi\)
\(752\) 2.88801e38i 0.428211i
\(753\) 1.32341e38i 0.192736i
\(754\) 2.29117e38 0.327751
\(755\) 1.00867e38 1.10347e38i 0.141730 0.155051i
\(756\) 2.13648e37 0.0294886
\(757\) 2.23991e38i 0.303693i −0.988404 0.151847i \(-0.951478\pi\)
0.988404 0.151847i \(-0.0485220\pi\)
\(758\) 7.60206e38i 1.01251i
\(759\) −1.08061e39 −1.41386
\(760\) −3.31890e38 3.03377e38i −0.426590 0.389941i
\(761\) 8.58805e38 1.08443 0.542215 0.840240i \(-0.317586\pi\)
0.542215 + 0.840240i \(0.317586\pi\)
\(762\) 1.36842e39i 1.69757i
\(763\) 9.81982e37i 0.119680i
\(764\) −2.95345e38 −0.353647
\(765\) 1.08479e39 + 9.91598e38i 1.27620 + 1.16656i
\(766\) 5.36444e38 0.620064
\(767\) 5.38122e38i 0.611144i
\(768\) 8.84408e37i 0.0986907i
\(769\) −1.37790e38 −0.151082 −0.0755409 0.997143i \(-0.524068\pi\)
−0.0755409 + 0.997143i \(0.524068\pi\)
\(770\) 5.08670e37 5.56477e37i 0.0548039 0.0599546i
\(771\) −1.36479e38 −0.144488
\(772\) 5.97429e38i 0.621517i
\(773\) 7.94523e38i 0.812238i 0.913820 + 0.406119i \(0.133118\pi\)
−0.913820 + 0.406119i \(0.866882\pi\)
\(774\) 1.79377e39 1.80204
\(775\) −6.77313e37 7.53004e38i −0.0668677 0.743403i
\(776\) −7.52903e37 −0.0730475
\(777\) 3.64952e37i 0.0347978i
\(778\) 8.50476e37i 0.0796961i
\(779\) −1.90480e39 −1.75426
\(780\) −3.63766e38 + 3.97955e38i −0.329265 + 0.360211i
\(781\) 2.04158e39 1.81626
\(782\) 5.52424e38i 0.483038i
\(783\) 6.79778e38i 0.584229i
\(784\) 2.94246e38 0.248567
\(785\) 1.23864e38 + 1.13222e38i 0.102850 + 0.0940140i
\(786\) −8.29975e38 −0.677424
\(787\) 1.76811e39i 1.41857i 0.704924 + 0.709283i \(0.250981\pi\)
−0.704924 + 0.709283i \(0.749019\pi\)
\(788\) 6.30190e38i 0.497013i
\(789\) −3.09331e39 −2.39819
\(790\) 9.98272e38 + 9.12509e38i 0.760822 + 0.695459i
\(791\) 2.76464e37 0.0207136
\(792\) 1.08782e39i 0.801252i
\(793\) 4.75171e38i 0.344082i
\(794\) 8.44552e37 0.0601242
\(795\) 5.63286e38 6.16227e38i 0.394251 0.431305i
\(796\) −8.77701e38 −0.603976
\(797\) 6.95381e38i 0.470474i −0.971938 0.235237i \(-0.924413\pi\)
0.971938 0.235237i \(-0.0755866\pi\)
\(798\) 2.07704e38i 0.138168i
\(799\) −3.03196e39 −1.98309
\(800\) −2.73773e38 + 2.46253e37i −0.176066 + 0.0158368i
\(801\) −1.44389e39 −0.913050
\(802\) 1.63547e39i 1.01692i
\(803\) 2.95465e39i 1.80654i
\(804\) −4.34415e38 −0.261185
\(805\) 5.09690e37 5.57593e37i 0.0301343 0.0329665i
\(806\) −5.61122e38 −0.326238
\(807\) 3.86361e39i 2.20903i
\(808\) 7.41963e38i 0.417185i
\(809\) 2.97781e39 1.64661 0.823307 0.567597i \(-0.192127\pi\)
0.823307 + 0.567597i \(0.192127\pi\)
\(810\) −2.52551e38 2.30854e38i −0.137341 0.125542i
\(811\) 5.40399e38 0.289024 0.144512 0.989503i \(-0.453839\pi\)
0.144512 + 0.989503i \(0.453839\pi\)
\(812\) 5.39567e37i 0.0283818i
\(813\) 1.26499e39i 0.654432i
\(814\) 6.13935e38 0.312387
\(815\) −1.87536e39 1.71425e39i −0.938551 0.857919i
\(816\) 9.28491e38 0.457047
\(817\) 5.76156e39i 2.78960i
\(818\) 1.41507e39i 0.673918i
\(819\) −1.49166e38 −0.0698775
\(820\) −7.85624e38 + 8.59462e38i −0.362016 + 0.396040i
\(821\) 1.07054e39 0.485255 0.242627 0.970120i \(-0.421991\pi\)
0.242627 + 0.970120i \(0.421991\pi\)
\(822\) 2.67822e39i 1.19420i
\(823\) 2.68082e39i 1.17590i 0.808899 + 0.587948i \(0.200064\pi\)
−0.808899 + 0.587948i \(0.799936\pi\)
\(824\) −7.33805e38 −0.316638
\(825\) 5.62227e39 5.05713e38i 2.38662 0.214672i
\(826\) 1.26727e38 0.0529223
\(827\) 3.25409e38i 0.133692i 0.997763 + 0.0668460i \(0.0212936\pi\)
−0.997763 + 0.0668460i \(0.978706\pi\)
\(828\) 1.09001e39i 0.440574i
\(829\) −1.02457e39 −0.407432 −0.203716 0.979030i \(-0.565302\pi\)
−0.203716 + 0.979030i \(0.565302\pi\)
\(830\) −1.34963e39 + 1.47647e39i −0.528031 + 0.577659i
\(831\) −4.84181e39 −1.86378
\(832\) 2.04009e38i 0.0772653i
\(833\) 3.08913e39i 1.15114i
\(834\) 4.78592e39 1.75479
\(835\) −2.41612e39 2.20854e39i −0.871666 0.796781i
\(836\) 3.49407e39 1.24036
\(837\) 1.66482e39i 0.581532i
\(838\) 3.17532e39i 1.09142i
\(839\) 1.39142e39 0.470623 0.235311 0.971920i \(-0.424389\pi\)
0.235311 + 0.971920i \(0.424389\pi\)
\(840\) −9.37179e37 8.56665e37i −0.0311927 0.0285129i
\(841\) −1.33636e39 −0.437699
\(842\) 3.05478e39i 0.984617i
\(843\) 9.74903e38i 0.309235i
\(844\) 2.95774e39 0.923288
\(845\) −1.35708e39 + 1.48462e39i −0.416907 + 0.456091i
\(846\) −5.98247e39 −1.80876
\(847\) 3.31451e38i 0.0986264i
\(848\) 3.15905e38i 0.0925150i
\(849\) 9.40141e39 2.70981
\(850\) −2.58528e38 2.87419e39i −0.0733418 0.815379i
\(851\) 6.15165e38 0.171768
\(852\) 3.43829e39i 0.944947i
\(853\) 3.58348e39i 0.969379i −0.874686 0.484690i \(-0.838933\pi\)
0.874686 0.484690i \(-0.161067\pi\)
\(854\) −1.11902e38 −0.0297960
\(855\) 6.28440e39 6.87504e39i 1.64711 1.80191i
\(856\) 1.04017e39 0.268355
\(857\) 5.11180e39i 1.29817i 0.760714 + 0.649087i \(0.224849\pi\)
−0.760714 + 0.649087i \(0.775151\pi\)
\(858\) 4.18959e39i 1.04735i
\(859\) −3.35610e39 −0.825900 −0.412950 0.910754i \(-0.635502\pi\)
−0.412950 + 0.910754i \(0.635502\pi\)
\(860\) −2.59966e39 2.37633e39i −0.629779 0.575674i
\(861\) −5.37870e38 −0.128273
\(862\) 3.69381e39i 0.867215i
\(863\) 2.67309e39i 0.617829i −0.951090 0.308914i \(-0.900034\pi\)
0.951090 0.308914i \(-0.0999656\pi\)
\(864\) 6.05285e38 0.137729
\(865\) −3.65842e39 3.34413e39i −0.819552 0.749144i
\(866\) −9.24635e38 −0.203929
\(867\) 2.47571e39i 0.537579i
\(868\) 1.32143e38i 0.0282507i
\(869\) −1.05096e40 −2.21217
\(870\) −2.72571e39 + 2.98189e39i −0.564898 + 0.617990i
\(871\) 1.00208e39 0.204483
\(872\) 2.78205e39i 0.558975i
\(873\) 1.55963e39i 0.308552i
\(874\) 3.50107e39 0.682019
\(875\) −2.39090e38 + 3.13961e38i −0.0458620 + 0.0602236i
\(876\) −4.97602e39 −0.939889
\(877\) 8.13055e39i 1.51226i 0.654424 + 0.756128i \(0.272911\pi\)
−0.654424 + 0.756128i \(0.727089\pi\)
\(878\) 6.54629e38i 0.119900i
\(879\) 9.44570e39 1.70367
\(880\) 1.44111e39 1.57655e39i 0.255965 0.280022i
\(881\) 8.64905e39 1.51284 0.756421 0.654085i \(-0.226946\pi\)
0.756421 + 0.654085i \(0.226946\pi\)
\(882\) 6.09526e39i 1.04995i
\(883\) 1.02943e40i 1.74634i −0.487415 0.873171i \(-0.662060\pi\)
0.487415 0.873171i \(-0.337940\pi\)
\(884\) −2.14178e39 −0.357824
\(885\) 7.00350e39 + 6.40182e39i 1.15234 + 1.05334i
\(886\) −2.83940e39 −0.460120
\(887\) 6.43727e39i 1.02738i 0.857975 + 0.513692i \(0.171723\pi\)
−0.857975 + 0.513692i \(0.828277\pi\)
\(888\) 1.03394e39i 0.162526i
\(889\) −7.43371e38 −0.115088
\(890\) 2.09259e39 + 1.91281e39i 0.319094 + 0.291680i
\(891\) 2.65880e39 0.399335
\(892\) 3.24028e38i 0.0479354i
\(893\) 1.92155e40i 2.80000i
\(894\) −9.44623e39 −1.35582
\(895\) −2.29782e39 + 2.51378e39i −0.324866 + 0.355399i
\(896\) −4.80439e37 −0.00669083
\(897\) 4.19799e39i 0.575895i
\(898\) 8.13299e39i 1.09906i
\(899\) −4.20450e39 −0.559704
\(900\) −5.10110e38 5.67115e39i −0.0668944 0.743700i
\(901\) 3.31651e39 0.428446
\(902\) 9.04823e39i 1.15153i
\(903\) 1.62693e39i 0.203978i
\(904\) 7.83249e38 0.0967445
\(905\) −3.27412e39 + 3.58184e39i −0.398417 + 0.435863i
\(906\) 1.95646e39 0.234553
\(907\) 6.37921e38i 0.0753474i 0.999290 + 0.0376737i \(0.0119948\pi\)
−0.999290 + 0.0376737i \(0.988005\pi\)
\(908\) 1.00816e39i 0.117319i
\(909\) −1.53696e40 −1.76218
\(910\) 2.16182e38 + 1.97610e38i 0.0244208 + 0.0223228i
\(911\) −1.11286e40 −1.23864 −0.619319 0.785140i \(-0.712591\pi\)
−0.619319 + 0.785140i \(0.712591\pi\)
\(912\) 5.88446e39i 0.645321i
\(913\) 1.55440e40i 1.67960i
\(914\) −2.39632e39 −0.255136
\(915\) −6.18421e39 5.65292e39i −0.648783 0.593045i
\(916\) 9.12155e39 0.942931
\(917\) 4.50869e38i 0.0459266i
\(918\) 6.35455e39i 0.637835i
\(919\) 1.97672e38 0.0195517 0.00977587 0.999952i \(-0.496888\pi\)
0.00977587 + 0.999952i \(0.496888\pi\)
\(920\) 1.44400e39 1.57971e39i 0.140744 0.153972i
\(921\) −6.39164e39 −0.613913
\(922\) 2.47580e39i 0.234341i
\(923\) 7.93120e39i 0.739802i
\(924\) 9.86642e38 0.0906960
\(925\) −3.20062e39 + 2.87890e38i −0.289949 + 0.0260803i
\(926\) 2.87540e39 0.256715
\(927\) 1.52006e40i 1.33747i
\(928\) 1.52865e39i 0.132559i
\(929\) −2.03410e40 −1.73844 −0.869222 0.494422i \(-0.835380\pi\)
−0.869222 + 0.494422i \(0.835380\pi\)
\(930\) 6.67544e39 7.30283e39i 0.562290 0.615137i
\(931\) 1.95778e40 1.62534
\(932\) 2.54940e39i 0.208604i
\(933\) 1.27744e40i 1.03024i
\(934\) −1.06353e39 −0.0845413
\(935\) 1.65514e40 + 1.51294e40i 1.29681 + 1.18540i
\(936\) −4.22601e39 −0.326368
\(937\) 1.54398e39i 0.117532i −0.998272 0.0587661i \(-0.981283\pi\)
0.998272 0.0587661i \(-0.0187166\pi\)
\(938\) 2.35988e38i 0.0177073i
\(939\) 1.39481e40 1.03165
\(940\) 8.67022e39 + 7.92535e39i 0.632127 + 0.577820i
\(941\) 1.44267e40 1.03683 0.518415 0.855129i \(-0.326522\pi\)
0.518415 + 0.855129i \(0.326522\pi\)
\(942\) 2.19612e39i 0.155586i
\(943\) 9.06637e39i 0.633178i
\(944\) 3.59030e39 0.247177
\(945\) 5.86297e38 6.41401e38i 0.0397913 0.0435311i
\(946\) 2.73687e40 1.83115
\(947\) 1.57938e40i 1.04174i 0.853635 + 0.520872i \(0.174393\pi\)
−0.853635 + 0.520872i \(0.825607\pi\)
\(948\) 1.76995e40i 1.15093i
\(949\) 1.14783e40 0.735842
\(950\) −1.82156e40 + 1.63846e39i −1.15126 + 0.103554i
\(951\) −1.15885e40 −0.722091
\(952\) 5.04386e38i 0.0309859i
\(953\) 1.36142e40i 0.824592i −0.911050 0.412296i \(-0.864727\pi\)
0.911050 0.412296i \(-0.135273\pi\)
\(954\) 6.54391e39 0.390782
\(955\) −8.10493e39 + 8.86668e39i −0.477204 + 0.522054i
\(956\) −6.73716e39 −0.391107
\(957\) 3.13927e40i 1.79687i
\(958\) 6.57315e39i 0.370970i
\(959\) 1.45489e39 0.0809618
\(960\) −2.65512e39 2.42701e39i −0.145687 0.133171i
\(961\) −8.18563e39 −0.442880
\(962\) 2.38503e39i 0.127242i
\(963\) 2.15470e40i 1.13353i
\(964\) 1.03164e39 0.0535166
\(965\) −1.79357e40 1.63948e40i −0.917485 0.838663i
\(966\) 9.88621e38 0.0498699
\(967\) 3.45840e40i 1.72035i −0.509995 0.860177i \(-0.670353\pi\)
0.509995 0.860177i \(-0.329647\pi\)
\(968\) 9.39032e39i 0.460642i
\(969\) 6.17777e40 2.98855
\(970\) −2.06613e39 + 2.26032e39i −0.0985689 + 0.107833i
\(971\) 6.44257e39 0.303110 0.151555 0.988449i \(-0.451572\pi\)
0.151555 + 0.988449i \(0.451572\pi\)
\(972\) 1.28736e40i 0.597318i
\(973\) 2.59987e39i 0.118967i
\(974\) −1.32192e40 −0.596566
\(975\) 1.96461e39 + 2.18416e40i 0.0874406 + 0.972123i
\(976\) −3.17030e39 −0.139164
\(977\) 1.23545e40i 0.534870i −0.963576 0.267435i \(-0.913824\pi\)
0.963576 0.267435i \(-0.0861760\pi\)
\(978\) 3.32505e40i 1.41979i
\(979\) −2.20303e40 −0.927799
\(980\) 8.07478e39 8.83369e39i 0.335412 0.366936i
\(981\) −5.76297e40 −2.36110
\(982\) 1.76120e40i 0.711710i
\(983\) 1.03659e40i 0.413175i 0.978428 + 0.206587i \(0.0662358\pi\)
−0.978428 + 0.206587i \(0.933764\pi\)
\(984\) −1.52384e40 −0.599108
\(985\) −1.89192e40 1.72938e40i −0.733691 0.670659i
\(986\) −1.60484e40 −0.613894
\(987\) 5.42602e39i 0.204739i
\(988\) 1.35739e40i 0.505225i
\(989\) 2.74236e40 1.00687
\(990\) 3.26580e40 + 2.98524e40i 1.18281 + 1.08119i
\(991\) −2.33398e40 −0.833880 −0.416940 0.908934i \(-0.636897\pi\)
−0.416940 + 0.908934i \(0.636897\pi\)
\(992\) 3.74375e39i 0.131947i
\(993\) 5.06541e40i 1.76117i
\(994\) −1.86779e39 −0.0640636
\(995\) −2.40861e40 + 2.63498e40i −0.814994 + 0.891591i
\(996\) −2.61781e40 −0.873850
\(997\) 2.44018e40i 0.803596i 0.915728 + 0.401798i \(0.131615\pi\)
−0.915728 + 0.401798i \(0.868385\pi\)
\(998\) 2.63062e40i 0.854664i
\(999\) 7.07627e39 0.226814
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.b.a.9.1 14
5.2 odd 4 50.28.a.l.1.1 7
5.3 odd 4 50.28.a.k.1.7 7
5.4 even 2 inner 10.28.b.a.9.14 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.b.a.9.1 14 1.1 even 1 trivial
10.28.b.a.9.14 yes 14 5.4 even 2 inner
50.28.a.k.1.7 7 5.3 odd 4
50.28.a.l.1.1 7 5.2 odd 4