Properties

Label 10.28.b.a.9.11
Level $10$
Weight $28$
Character 10.9
Analytic conductor $46.186$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,28,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.1855574838\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 18355117238047 x^{12} + \cdots + 11\!\cdots\!41 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{121}\cdot 3^{18}\cdot 5^{39}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 9.11
Root \(-331027. i\) of defining polynomial
Character \(\chi\) \(=\) 10.9
Dual form 10.28.b.a.9.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8192.00i q^{2} -662054. i q^{3} -6.71089e7 q^{4} +(1.91210e9 + 1.94793e9i) q^{5} +5.42355e9 q^{6} -4.26692e11i q^{7} -5.49756e11i q^{8} +7.18728e12 q^{9} +(-1.59575e13 + 1.56640e13i) q^{10} -1.91294e14 q^{11} +4.44297e13i q^{12} +4.60623e14i q^{13} +3.49546e15 q^{14} +(1.28964e15 - 1.26592e15i) q^{15} +4.50360e15 q^{16} -1.54158e16i q^{17} +5.88782e16i q^{18} -2.35947e16 q^{19} +(-1.28319e17 - 1.30723e17i) q^{20} -2.82493e17 q^{21} -1.56708e18i q^{22} +3.52325e18i q^{23} -3.63968e17 q^{24} +(-1.38296e17 + 7.44930e18i) q^{25} -3.77343e18 q^{26} -9.80693e18i q^{27} +2.86348e19i q^{28} -4.39110e19 q^{29} +(1.03704e19 + 1.05647e19i) q^{30} -1.69201e20 q^{31} +3.68935e19i q^{32} +1.26647e20i q^{33} +1.26286e20 q^{34} +(8.31167e20 - 8.15879e20i) q^{35} -4.82330e20 q^{36} +4.30417e20i q^{37} -1.93288e20i q^{38} +3.04958e20 q^{39} +(1.07089e21 - 1.05119e21i) q^{40} -8.39419e21 q^{41} -2.31418e21i q^{42} -1.86223e22i q^{43} +1.28375e22 q^{44} +(1.37428e22 + 1.40003e22i) q^{45} -2.88625e22 q^{46} -2.62713e22i q^{47} -2.98163e21i q^{48} -1.16354e23 q^{49} +(-6.10246e22 - 1.13292e21i) q^{50} -1.02061e22 q^{51} -3.09119e22i q^{52} -8.54982e22i q^{53} +8.03383e22 q^{54} +(-3.65774e23 - 3.72628e23i) q^{55} -2.34576e23 q^{56} +1.56210e22i q^{57} -3.59719e23i q^{58} -1.36807e24 q^{59} +(-8.65460e22 + 8.49542e22i) q^{60} +1.36692e24 q^{61} -1.38609e24i q^{62} -3.06676e24i q^{63} -3.02231e23 q^{64} +(-8.97263e23 + 8.80760e23i) q^{65} -1.03749e24 q^{66} -1.05453e24i q^{67} +1.03454e24i q^{68} +2.33258e24 q^{69} +(6.68368e24 + 6.80892e24i) q^{70} -1.23132e25 q^{71} -3.95125e24i q^{72} -1.04841e24i q^{73} -3.52598e24 q^{74} +(4.93184e24 + 9.15597e22i) q^{75} +1.58341e24 q^{76} +8.16236e25i q^{77} +2.49821e24i q^{78} +4.63172e25 q^{79} +(8.61135e24 + 8.77271e24i) q^{80} +4.83146e25 q^{81} -6.87652e25i q^{82} +1.64989e25i q^{83} +1.89578e25 q^{84} +(3.00290e25 - 2.94766e25i) q^{85} +1.52554e26 q^{86} +2.90715e25i q^{87} +1.05165e26i q^{88} -2.60810e26 q^{89} +(-1.14691e26 + 1.12581e26i) q^{90} +1.96544e26 q^{91} -2.36442e26i q^{92} +1.12020e26i q^{93} +2.15215e26 q^{94} +(-4.51156e25 - 4.59609e25i) q^{95} +2.44255e25 q^{96} +4.72707e26i q^{97} -9.53169e26i q^{98} -1.37488e27 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 939524096 q^{4} - 73643590 q^{5} + 16071950336 q^{6} - 40082573114558 q^{9} - 33017385943040 q^{10} - 158204810172872 q^{11} - 21\!\cdots\!48 q^{14} + 20\!\cdots\!40 q^{15} + 63\!\cdots\!44 q^{16}+ \cdots - 39\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8192.00i 0.707107i
\(3\) 662054.i 0.239749i −0.992789 0.119874i \(-0.961751\pi\)
0.992789 0.119874i \(-0.0382492\pi\)
\(4\) −6.71089e7 −0.500000
\(5\) 1.91210e9 + 1.94793e9i 0.700513 + 0.713639i
\(6\) 5.42355e9 0.169528
\(7\) 4.26692e11i 1.66453i −0.554380 0.832264i \(-0.687045\pi\)
0.554380 0.832264i \(-0.312955\pi\)
\(8\) 5.49756e11i 0.353553i
\(9\) 7.18728e12 0.942521
\(10\) −1.59575e13 + 1.56640e13i −0.504619 + 0.495338i
\(11\) −1.91294e14 −1.67071 −0.835354 0.549713i \(-0.814737\pi\)
−0.835354 + 0.549713i \(0.814737\pi\)
\(12\) 4.44297e13i 0.119874i
\(13\) 4.60623e14i 0.421804i 0.977507 + 0.210902i \(0.0676401\pi\)
−0.977507 + 0.210902i \(0.932360\pi\)
\(14\) 3.49546e15 1.17700
\(15\) 1.28964e15 1.26592e15i 0.171094 0.167947i
\(16\) 4.50360e15 0.250000
\(17\) 1.54158e16i 0.377491i −0.982026 0.188745i \(-0.939558\pi\)
0.982026 0.188745i \(-0.0604421\pi\)
\(18\) 5.88782e16i 0.666463i
\(19\) −2.35947e16 −0.128719 −0.0643593 0.997927i \(-0.520500\pi\)
−0.0643593 + 0.997927i \(0.520500\pi\)
\(20\) −1.28319e17 1.30723e17i −0.350257 0.356820i
\(21\) −2.82493e17 −0.399068
\(22\) 1.56708e18i 1.18137i
\(23\) 3.52325e18i 1.45753i 0.684763 + 0.728766i \(0.259906\pi\)
−0.684763 + 0.728766i \(0.740094\pi\)
\(24\) −3.63968e17 −0.0847640
\(25\) −1.38296e17 + 7.44930e18i −0.0185618 + 0.999828i
\(26\) −3.77343e18 −0.298261
\(27\) 9.80693e18i 0.465717i
\(28\) 2.86348e19i 0.832264i
\(29\) −4.39110e19 −0.794696 −0.397348 0.917668i \(-0.630069\pi\)
−0.397348 + 0.917668i \(0.630069\pi\)
\(30\) 1.03704e19 + 1.05647e19i 0.118757 + 0.120982i
\(31\) −1.69201e20 −1.24457 −0.622285 0.782791i \(-0.713795\pi\)
−0.622285 + 0.782791i \(0.713795\pi\)
\(32\) 3.68935e19i 0.176777i
\(33\) 1.26647e20i 0.400550i
\(34\) 1.26286e20 0.266926
\(35\) 8.31167e20 8.15879e20i 1.18787 1.16602i
\(36\) −4.82330e20 −0.471260
\(37\) 4.30417e20i 0.290514i 0.989394 + 0.145257i \(0.0464008\pi\)
−0.989394 + 0.145257i \(0.953599\pi\)
\(38\) 1.93288e20i 0.0910178i
\(39\) 3.04958e20 0.101127
\(40\) 1.07089e21 1.05119e21i 0.252310 0.247669i
\(41\) −8.39419e21 −1.41709 −0.708544 0.705667i \(-0.750648\pi\)
−0.708544 + 0.705667i \(0.750648\pi\)
\(42\) 2.31418e21i 0.282184i
\(43\) 1.86223e22i 1.65276i −0.563111 0.826381i \(-0.690396\pi\)
0.563111 0.826381i \(-0.309604\pi\)
\(44\) 1.28375e22 0.835354
\(45\) 1.37428e22 + 1.40003e22i 0.660248 + 0.672620i
\(46\) −2.88625e22 −1.03063
\(47\) 2.62713e22i 0.701715i −0.936429 0.350858i \(-0.885890\pi\)
0.936429 0.350858i \(-0.114110\pi\)
\(48\) 2.98163e21i 0.0599372i
\(49\) −1.16354e23 −1.77065
\(50\) −6.10246e22 1.13292e21i −0.706985 0.0131252i
\(51\) −1.02061e22 −0.0905029
\(52\) 3.09119e22i 0.210902i
\(53\) 8.54982e22i 0.451058i −0.974236 0.225529i \(-0.927589\pi\)
0.974236 0.225529i \(-0.0724111\pi\)
\(54\) 8.03383e22 0.329312
\(55\) −3.65774e23 3.72628e23i −1.17035 1.19228i
\(56\) −2.34576e23 −0.588499
\(57\) 1.56210e22i 0.0308601i
\(58\) 3.59719e23i 0.561935i
\(59\) −1.36807e24 −1.69670 −0.848351 0.529434i \(-0.822404\pi\)
−0.848351 + 0.529434i \(0.822404\pi\)
\(60\) −8.65460e22 + 8.49542e22i −0.0855471 + 0.0839736i
\(61\) 1.36692e24 1.08091 0.540456 0.841372i \(-0.318252\pi\)
0.540456 + 0.841372i \(0.318252\pi\)
\(62\) 1.38609e24i 0.880044i
\(63\) 3.06676e24i 1.56885i
\(64\) −3.02231e23 −0.125000
\(65\) −8.97263e23 + 8.80760e23i −0.301016 + 0.295479i
\(66\) −1.03749e24 −0.283232
\(67\) 1.05453e24i 0.234989i −0.993074 0.117495i \(-0.962514\pi\)
0.993074 0.117495i \(-0.0374863\pi\)
\(68\) 1.03454e24i 0.188745i
\(69\) 2.33258e24 0.349442
\(70\) 6.68368e24 + 6.80892e24i 0.824503 + 0.839952i
\(71\) −1.23132e25 −1.25424 −0.627122 0.778921i \(-0.715767\pi\)
−0.627122 + 0.778921i \(0.715767\pi\)
\(72\) 3.95125e24i 0.333231i
\(73\) 1.04841e24i 0.0733964i −0.999326 0.0366982i \(-0.988316\pi\)
0.999326 0.0366982i \(-0.0116840\pi\)
\(74\) −3.52598e24 −0.205424
\(75\) 4.93184e24 + 9.15597e22i 0.239708 + 0.00445018i
\(76\) 1.58341e24 0.0643593
\(77\) 8.16236e25i 2.78094i
\(78\) 2.49821e24i 0.0715076i
\(79\) 4.63172e25 1.11629 0.558145 0.829743i \(-0.311513\pi\)
0.558145 + 0.829743i \(0.311513\pi\)
\(80\) 8.61135e24 + 8.77271e24i 0.175128 + 0.178410i
\(81\) 4.83146e25 0.830865
\(82\) 6.87652e25i 1.00203i
\(83\) 1.64989e25i 0.204127i 0.994778 + 0.102064i \(0.0325446\pi\)
−0.994778 + 0.102064i \(0.967455\pi\)
\(84\) 1.89578e25 0.199534
\(85\) 3.00290e25 2.94766e25i 0.269392 0.264437i
\(86\) 1.52554e26 1.16868
\(87\) 2.90715e25i 0.190527i
\(88\) 1.05165e26i 0.590684i
\(89\) −2.60810e26 −1.25765 −0.628823 0.777548i \(-0.716463\pi\)
−0.628823 + 0.777548i \(0.716463\pi\)
\(90\) −1.14691e26 + 1.12581e26i −0.475614 + 0.466866i
\(91\) 1.96544e26 0.702104
\(92\) 2.36442e26i 0.728766i
\(93\) 1.12020e26i 0.298384i
\(94\) 2.15215e26 0.496187
\(95\) −4.51156e25 4.59609e25i −0.0901691 0.0918586i
\(96\) 2.44255e25 0.0423820
\(97\) 4.72707e26i 0.713138i 0.934269 + 0.356569i \(0.116054\pi\)
−0.934269 + 0.356569i \(0.883946\pi\)
\(98\) 9.53169e26i 1.25204i
\(99\) −1.37488e27 −1.57468
\(100\) 9.28092e24 4.99914e26i 0.00928092 0.499914i
\(101\) −1.99889e27 −1.74763 −0.873815 0.486258i \(-0.838361\pi\)
−0.873815 + 0.486258i \(0.838361\pi\)
\(102\) 8.36084e25i 0.0639952i
\(103\) 4.56445e26i 0.306257i 0.988206 + 0.153129i \(0.0489349\pi\)
−0.988206 + 0.153129i \(0.951065\pi\)
\(104\) 2.53230e26 0.149130
\(105\) −5.40156e26 5.50277e26i −0.279553 0.284791i
\(106\) 7.00401e26 0.318946
\(107\) 3.34765e27i 1.34295i −0.741029 0.671473i \(-0.765662\pi\)
0.741029 0.671473i \(-0.234338\pi\)
\(108\) 6.58132e26i 0.232858i
\(109\) 6.61020e26 0.206517 0.103259 0.994655i \(-0.467073\pi\)
0.103259 + 0.994655i \(0.467073\pi\)
\(110\) 3.05257e27 2.99642e27i 0.843071 0.827564i
\(111\) 2.84960e26 0.0696503
\(112\) 1.92165e27i 0.416132i
\(113\) 4.88462e27i 0.938150i 0.883158 + 0.469075i \(0.155413\pi\)
−0.883158 + 0.469075i \(0.844587\pi\)
\(114\) −1.27967e26 −0.0218214
\(115\) −6.86306e27 + 6.73683e27i −1.04015 + 1.02102i
\(116\) 2.94682e27 0.397348
\(117\) 3.31063e27i 0.397559i
\(118\) 1.12072e28i 1.19975i
\(119\) −6.57780e27 −0.628343
\(120\) −6.95945e26 7.08985e26i −0.0593783 0.0604909i
\(121\) 2.34834e28 1.79126
\(122\) 1.11978e28i 0.764320i
\(123\) 5.55741e27i 0.339745i
\(124\) 1.13549e28 0.622285
\(125\) −1.47752e28 + 1.39744e28i −0.726519 + 0.687146i
\(126\) 2.51229e28 1.10935
\(127\) 4.01385e28i 1.59298i 0.604652 + 0.796490i \(0.293312\pi\)
−0.604652 + 0.796490i \(0.706688\pi\)
\(128\) 2.47588e27i 0.0883883i
\(129\) −1.23290e28 −0.396248
\(130\) −7.21519e27 7.35038e27i −0.208936 0.212850i
\(131\) 6.96817e27 0.181952 0.0909758 0.995853i \(-0.471001\pi\)
0.0909758 + 0.995853i \(0.471001\pi\)
\(132\) 8.49914e27i 0.200275i
\(133\) 1.00677e28i 0.214256i
\(134\) 8.63870e27 0.166163
\(135\) 1.91032e28 1.87519e28i 0.332354 0.326241i
\(136\) −8.47494e27 −0.133463
\(137\) 7.83239e28i 1.11729i −0.829406 0.558646i \(-0.811321\pi\)
0.829406 0.558646i \(-0.188679\pi\)
\(138\) 1.91085e28i 0.247093i
\(139\) 1.83598e28 0.215361 0.107681 0.994186i \(-0.465658\pi\)
0.107681 + 0.994186i \(0.465658\pi\)
\(140\) −5.57787e28 + 5.47527e28i −0.593936 + 0.583012i
\(141\) −1.73930e28 −0.168235
\(142\) 1.00869e29i 0.886884i
\(143\) 8.81145e28i 0.704711i
\(144\) 3.23686e28 0.235630
\(145\) −8.39625e28 8.55357e28i −0.556695 0.567126i
\(146\) 8.58861e27 0.0518991
\(147\) 7.70324e28i 0.424511i
\(148\) 2.88848e28i 0.145257i
\(149\) −1.02655e29 −0.471373 −0.235687 0.971829i \(-0.575734\pi\)
−0.235687 + 0.971829i \(0.575734\pi\)
\(150\) −7.50057e26 + 4.04016e28i −0.00314675 + 0.169499i
\(151\) 8.05542e28 0.308958 0.154479 0.987996i \(-0.450630\pi\)
0.154479 + 0.987996i \(0.450630\pi\)
\(152\) 1.29713e28i 0.0455089i
\(153\) 1.10798e29i 0.355793i
\(154\) −6.68661e29 −1.96642
\(155\) −3.23529e29 3.29591e29i −0.871838 0.888174i
\(156\) −2.04654e28 −0.0505635
\(157\) 1.35908e29i 0.308036i 0.988068 + 0.154018i \(0.0492214\pi\)
−0.988068 + 0.154018i \(0.950779\pi\)
\(158\) 3.79431e29i 0.789336i
\(159\) −5.66044e28 −0.108141
\(160\) −7.18660e28 + 7.05442e28i −0.126155 + 0.123834i
\(161\) 1.50334e30 2.42610
\(162\) 3.95793e29i 0.587511i
\(163\) 9.47527e28i 0.129437i −0.997904 0.0647186i \(-0.979385\pi\)
0.997904 0.0647186i \(-0.0206150\pi\)
\(164\) 5.63325e29 0.708544
\(165\) −2.46700e29 + 2.42162e29i −0.285848 + 0.280591i
\(166\) −1.35159e29 −0.144340
\(167\) 1.31565e30i 1.29560i −0.761812 0.647798i \(-0.775690\pi\)
0.761812 0.647798i \(-0.224310\pi\)
\(168\) 1.55302e29i 0.141092i
\(169\) 9.80359e29 0.822081
\(170\) 2.41473e29 + 2.45997e29i 0.186985 + 0.190489i
\(171\) −1.69582e29 −0.121320
\(172\) 1.24972e30i 0.826381i
\(173\) 1.79114e30i 1.09523i 0.836730 + 0.547616i \(0.184465\pi\)
−0.836730 + 0.547616i \(0.815535\pi\)
\(174\) −2.38154e29 −0.134723
\(175\) 3.17855e30 + 5.90100e28i 1.66424 + 0.0308967i
\(176\) −8.61512e29 −0.417677
\(177\) 9.05735e29i 0.406782i
\(178\) 2.13655e30i 0.889290i
\(179\) 3.49328e28 0.0134808 0.00674042 0.999977i \(-0.497854\pi\)
0.00674042 + 0.999977i \(0.497854\pi\)
\(180\) −9.22266e29 9.39547e29i −0.330124 0.336310i
\(181\) −1.05143e30 −0.349238 −0.174619 0.984636i \(-0.555869\pi\)
−0.174619 + 0.984636i \(0.555869\pi\)
\(182\) 1.61009e30i 0.496463i
\(183\) 9.04975e29i 0.259147i
\(184\) 1.93693e30 0.515315
\(185\) −8.38424e29 + 8.23003e29i −0.207322 + 0.203509i
\(186\) −9.17668e29 −0.210989
\(187\) 2.94896e30i 0.630676i
\(188\) 1.76304e30i 0.350858i
\(189\) −4.18454e30 −0.775199
\(190\) 3.76512e29 3.69587e29i 0.0649538 0.0637592i
\(191\) −9.80549e30 −1.57586 −0.787932 0.615762i \(-0.788848\pi\)
−0.787932 + 0.615762i \(0.788848\pi\)
\(192\) 2.00094e29i 0.0299686i
\(193\) 1.00156e31i 1.39847i −0.714892 0.699235i \(-0.753524\pi\)
0.714892 0.699235i \(-0.246476\pi\)
\(194\) −3.87242e30 −0.504265
\(195\) 5.83111e29 + 5.94037e29i 0.0708408 + 0.0721682i
\(196\) 7.80836e30 0.885325
\(197\) 8.01664e30i 0.848591i −0.905524 0.424296i \(-0.860522\pi\)
0.905524 0.424296i \(-0.139478\pi\)
\(198\) 1.12631e31i 1.11346i
\(199\) 4.69136e30 0.433294 0.216647 0.976250i \(-0.430488\pi\)
0.216647 + 0.976250i \(0.430488\pi\)
\(200\) 4.09529e30 + 7.60293e28i 0.353492 + 0.00656260i
\(201\) −6.98155e29 −0.0563384
\(202\) 1.63749e31i 1.23576i
\(203\) 1.87365e31i 1.32279i
\(204\) 6.84920e29 0.0452515
\(205\) −1.60506e31 1.63513e31i −0.992689 1.01129i
\(206\) −3.73920e30 −0.216557
\(207\) 2.53226e31i 1.37375i
\(208\) 2.07446e30i 0.105451i
\(209\) 4.51353e30 0.215051
\(210\) 4.50787e30 4.42496e30i 0.201378 0.197674i
\(211\) −3.15257e31 −1.32084 −0.660421 0.750895i \(-0.729622\pi\)
−0.660421 + 0.750895i \(0.729622\pi\)
\(212\) 5.73769e30i 0.225529i
\(213\) 8.15198e30i 0.300703i
\(214\) 2.74239e31 0.949607
\(215\) 3.62751e31 3.56079e31i 1.17948 1.15778i
\(216\) −5.39141e30 −0.164656
\(217\) 7.21966e31i 2.07162i
\(218\) 5.41507e30i 0.146030i
\(219\) −6.94107e29 −0.0175967
\(220\) 2.45467e31 + 2.50066e31i 0.585176 + 0.596141i
\(221\) 7.10089e30 0.159227
\(222\) 2.33439e30i 0.0492502i
\(223\) 2.70597e31i 0.537289i −0.963239 0.268644i \(-0.913424\pi\)
0.963239 0.268644i \(-0.0865756\pi\)
\(224\) 1.57422e31 0.294250
\(225\) −9.93976e29 + 5.35402e31i −0.0174949 + 0.942358i
\(226\) −4.00148e31 −0.663372
\(227\) 1.65230e31i 0.258071i 0.991640 + 0.129036i \(0.0411882\pi\)
−0.991640 + 0.129036i \(0.958812\pi\)
\(228\) 1.04831e30i 0.0154301i
\(229\) 4.03443e31 0.559762 0.279881 0.960035i \(-0.409705\pi\)
0.279881 + 0.960035i \(0.409705\pi\)
\(230\) −5.51881e31 5.62222e31i −0.721971 0.735499i
\(231\) 5.40393e31 0.666726
\(232\) 2.41404e31i 0.280967i
\(233\) 1.50624e31i 0.165420i 0.996574 + 0.0827100i \(0.0263575\pi\)
−0.996574 + 0.0827100i \(0.973642\pi\)
\(234\) −2.71207e31 −0.281117
\(235\) 5.11747e31 5.02335e31i 0.500771 0.491561i
\(236\) 9.18095e31 0.848351
\(237\) 3.06645e31i 0.267629i
\(238\) 5.38854e31i 0.444306i
\(239\) −1.32816e32 −1.03485 −0.517427 0.855727i \(-0.673110\pi\)
−0.517427 + 0.855727i \(0.673110\pi\)
\(240\) 5.80800e30 5.70118e30i 0.0427735 0.0419868i
\(241\) 1.56243e32 1.08786 0.543928 0.839132i \(-0.316937\pi\)
0.543928 + 0.839132i \(0.316937\pi\)
\(242\) 1.92376e32i 1.26661i
\(243\) 1.06771e32i 0.664916i
\(244\) −9.17324e31 −0.540456
\(245\) −2.22480e32 2.26649e32i −1.24036 1.26361i
\(246\) −4.55263e31 −0.240236
\(247\) 1.08683e31i 0.0542940i
\(248\) 9.30191e31i 0.440022i
\(249\) 1.09232e31 0.0489393
\(250\) −1.14479e32 1.21038e32i −0.485886 0.513727i
\(251\) −3.39238e31 −0.136430 −0.0682149 0.997671i \(-0.521730\pi\)
−0.0682149 + 0.997671i \(0.521730\pi\)
\(252\) 2.05806e32i 0.784425i
\(253\) 6.73978e32i 2.43511i
\(254\) −3.28814e32 −1.12641
\(255\) −1.95151e31 1.98808e31i −0.0633985 0.0645864i
\(256\) 2.02824e31 0.0625000
\(257\) 6.11323e32i 1.78720i 0.448864 + 0.893600i \(0.351829\pi\)
−0.448864 + 0.893600i \(0.648171\pi\)
\(258\) 1.00999e32i 0.280189i
\(259\) 1.83656e32 0.483568
\(260\) 6.02143e31 5.91068e31i 0.150508 0.147740i
\(261\) −3.15601e32 −0.749017
\(262\) 5.70832e31i 0.128659i
\(263\) 3.30264e32i 0.707064i 0.935422 + 0.353532i \(0.115019\pi\)
−0.935422 + 0.353532i \(0.884981\pi\)
\(264\) 6.96249e31 0.141616
\(265\) 1.66545e32 1.63481e32i 0.321893 0.315972i
\(266\) −8.24744e31 −0.151502
\(267\) 1.72670e32i 0.301519i
\(268\) 7.07682e31i 0.117495i
\(269\) 2.17030e32 0.342660 0.171330 0.985214i \(-0.445194\pi\)
0.171330 + 0.985214i \(0.445194\pi\)
\(270\) 1.53615e32 + 1.56494e32i 0.230687 + 0.235010i
\(271\) 1.16022e33 1.65751 0.828756 0.559610i \(-0.189049\pi\)
0.828756 + 0.559610i \(0.189049\pi\)
\(272\) 6.94267e31i 0.0943727i
\(273\) 1.30123e32i 0.168329i
\(274\) 6.41630e32 0.790045
\(275\) 2.64553e31 1.42501e33i 0.0310114 1.67042i
\(276\) −1.56537e32 −0.174721
\(277\) 1.84954e33i 1.96601i 0.183575 + 0.983006i \(0.441233\pi\)
−0.183575 + 0.983006i \(0.558767\pi\)
\(278\) 1.50403e32i 0.152283i
\(279\) −1.21609e33 −1.17303
\(280\) −4.48534e32 4.56939e32i −0.412252 0.419976i
\(281\) 4.98154e32 0.436343 0.218172 0.975910i \(-0.429991\pi\)
0.218172 + 0.975910i \(0.429991\pi\)
\(282\) 1.42484e32i 0.118960i
\(283\) 2.19736e32i 0.174898i 0.996169 + 0.0874491i \(0.0278715\pi\)
−0.996169 + 0.0874491i \(0.972129\pi\)
\(284\) 8.26322e32 0.627122
\(285\) −3.04286e31 + 2.98689e31i −0.0220230 + 0.0216179i
\(286\) 7.21834e32 0.498306
\(287\) 3.58173e33i 2.35878i
\(288\) 2.65164e32i 0.166616i
\(289\) 1.43006e33 0.857501
\(290\) 7.00709e32 6.87821e32i 0.401019 0.393643i
\(291\) 3.12958e32 0.170974
\(292\) 7.03579e31i 0.0366982i
\(293\) 2.17581e33i 1.08370i −0.840475 0.541850i \(-0.817724\pi\)
0.840475 0.541850i \(-0.182276\pi\)
\(294\) −6.31049e32 −0.300175
\(295\) −2.61589e33 2.66490e33i −1.18856 1.21083i
\(296\) 2.36624e32 0.102712
\(297\) 1.87601e33i 0.778077i
\(298\) 8.40949e32i 0.333311i
\(299\) −1.62289e33 −0.614793
\(300\) −3.30970e32 6.14447e30i −0.119854 0.00222509i
\(301\) −7.94601e33 −2.75107
\(302\) 6.59900e32i 0.218466i
\(303\) 1.32337e33i 0.418992i
\(304\) −1.06261e32 −0.0321796
\(305\) 2.61369e33 + 2.66267e33i 0.757193 + 0.771381i
\(306\) 9.07656e32 0.251583
\(307\) 1.96986e33i 0.522477i −0.965274 0.261239i \(-0.915869\pi\)
0.965274 0.261239i \(-0.0841310\pi\)
\(308\) 5.47767e33i 1.39047i
\(309\) 3.02191e32 0.0734248
\(310\) 2.70001e33 2.65035e33i 0.628034 0.616482i
\(311\) −2.40018e33 −0.534537 −0.267269 0.963622i \(-0.586121\pi\)
−0.267269 + 0.963622i \(0.586121\pi\)
\(312\) 1.67652e32i 0.0357538i
\(313\) 6.37316e33i 1.30169i −0.759212 0.650843i \(-0.774416\pi\)
0.759212 0.650843i \(-0.225584\pi\)
\(314\) −1.11336e33 −0.217814
\(315\) 5.97383e33 5.86395e33i 1.11959 1.09900i
\(316\) −3.10830e33 −0.558145
\(317\) 5.24658e33i 0.902769i 0.892330 + 0.451384i \(0.149070\pi\)
−0.892330 + 0.451384i \(0.850930\pi\)
\(318\) 4.63703e32i 0.0764670i
\(319\) 8.39992e33 1.32770
\(320\) −5.77898e32 5.88726e32i −0.0875642 0.0892049i
\(321\) −2.21632e33 −0.321970
\(322\) 1.23154e34i 1.71551i
\(323\) 3.63732e32i 0.0485900i
\(324\) −3.24234e33 −0.415433
\(325\) −3.43132e33 6.37026e31i −0.421731 0.00782946i
\(326\) 7.76214e32 0.0915259
\(327\) 4.37631e32i 0.0495123i
\(328\) 4.61475e33i 0.501016i
\(329\) −1.12098e34 −1.16802
\(330\) −1.98379e33 2.02096e33i −0.198408 0.202125i
\(331\) 6.23306e33 0.598444 0.299222 0.954184i \(-0.403273\pi\)
0.299222 + 0.954184i \(0.403273\pi\)
\(332\) 1.10722e33i 0.102064i
\(333\) 3.09353e33i 0.273815i
\(334\) 1.07778e34 0.916124
\(335\) 2.05415e33 2.01637e33i 0.167698 0.164613i
\(336\) −1.27224e33 −0.0997671
\(337\) 8.87322e33i 0.668463i 0.942491 + 0.334232i \(0.108477\pi\)
−0.942491 + 0.334232i \(0.891523\pi\)
\(338\) 8.03110e33i 0.581299i
\(339\) 3.23389e33 0.224920
\(340\) −2.01521e33 + 1.97814e33i −0.134696 + 0.132219i
\(341\) 3.23671e34 2.07931
\(342\) 1.38921e33i 0.0857861i
\(343\) 2.16082e34i 1.28277i
\(344\) −1.02377e34 −0.584340
\(345\) 4.46014e33 + 4.54372e33i 0.244789 + 0.249375i
\(346\) −1.46730e34 −0.774446
\(347\) 1.26226e34i 0.640767i −0.947288 0.320383i \(-0.896188\pi\)
0.947288 0.320383i \(-0.103812\pi\)
\(348\) 1.95095e33i 0.0952637i
\(349\) 9.31129e33 0.437388 0.218694 0.975794i \(-0.429820\pi\)
0.218694 + 0.975794i \(0.429820\pi\)
\(350\) −4.83410e32 + 2.60387e34i −0.0218473 + 1.17680i
\(351\) 4.51730e33 0.196441
\(352\) 7.05751e33i 0.295342i
\(353\) 3.68557e34i 1.48438i −0.670188 0.742191i \(-0.733787\pi\)
0.670188 0.742191i \(-0.266213\pi\)
\(354\) −7.41978e33 −0.287639
\(355\) −2.35440e34 2.39852e34i −0.878614 0.895077i
\(356\) 1.75026e34 0.628823
\(357\) 4.35486e33i 0.150645i
\(358\) 2.86169e32i 0.00953239i
\(359\) 3.22285e34 1.03387 0.516933 0.856026i \(-0.327074\pi\)
0.516933 + 0.856026i \(0.327074\pi\)
\(360\) 7.69677e33 7.55520e33i 0.237807 0.233433i
\(361\) −3.30439e34 −0.983432
\(362\) 8.61334e33i 0.246948i
\(363\) 1.55473e34i 0.429453i
\(364\) −1.31899e34 −0.351052
\(365\) 2.04224e33 2.00468e33i 0.0523785 0.0514151i
\(366\) 7.41355e33 0.183245
\(367\) 2.83402e34i 0.675166i −0.941296 0.337583i \(-0.890391\pi\)
0.941296 0.337583i \(-0.109609\pi\)
\(368\) 1.58673e34i 0.364383i
\(369\) −6.03314e34 −1.33563
\(370\) −6.74204e33 6.86837e33i −0.143902 0.146599i
\(371\) −3.64814e34 −0.750799
\(372\) 7.51753e33i 0.149192i
\(373\) 5.10362e34i 0.976807i 0.872618 + 0.488404i \(0.162421\pi\)
−0.872618 + 0.488404i \(0.837579\pi\)
\(374\) −2.41578e34 −0.445955
\(375\) 9.25183e33 + 9.78195e33i 0.164743 + 0.174182i
\(376\) −1.44428e34 −0.248094
\(377\) 2.02265e34i 0.335206i
\(378\) 3.42797e34i 0.548148i
\(379\) 4.70109e34 0.725385 0.362693 0.931909i \(-0.381857\pi\)
0.362693 + 0.931909i \(0.381857\pi\)
\(380\) 3.02765e33 + 3.08438e33i 0.0450845 + 0.0459293i
\(381\) 2.65738e34 0.381915
\(382\) 8.03266e34i 1.11430i
\(383\) 5.53570e34i 0.741292i 0.928774 + 0.370646i \(0.120864\pi\)
−0.928774 + 0.370646i \(0.879136\pi\)
\(384\) −1.63917e33 −0.0211910
\(385\) −1.58997e35 + 1.56073e35i −1.98459 + 1.94808i
\(386\) 8.20478e34 0.988868
\(387\) 1.33844e35i 1.55776i
\(388\) 3.17228e34i 0.356569i
\(389\) −7.61420e34 −0.826617 −0.413309 0.910591i \(-0.635627\pi\)
−0.413309 + 0.910591i \(0.635627\pi\)
\(390\) −4.86635e33 + 4.77684e33i −0.0510306 + 0.0500920i
\(391\) 5.43138e34 0.550205
\(392\) 6.39661e34i 0.626019i
\(393\) 4.61330e33i 0.0436227i
\(394\) 6.56723e34 0.600045
\(395\) 8.85634e34 + 9.02228e34i 0.781976 + 0.796628i
\(396\) 9.22669e34 0.787338
\(397\) 2.96941e34i 0.244905i −0.992474 0.122453i \(-0.960924\pi\)
0.992474 0.122453i \(-0.0390759\pi\)
\(398\) 3.84316e34i 0.306385i
\(399\) 6.66534e33 0.0513675
\(400\) −6.22832e32 + 3.35487e34i −0.00464046 + 0.249957i
\(401\) 7.62057e34 0.548957 0.274479 0.961593i \(-0.411495\pi\)
0.274479 + 0.961593i \(0.411495\pi\)
\(402\) 5.71928e33i 0.0398373i
\(403\) 7.79378e34i 0.524965i
\(404\) 1.34143e35 0.873815
\(405\) 9.23826e34 + 9.41136e34i 0.582032 + 0.592938i
\(406\) −1.53489e35 −0.935355
\(407\) 8.23363e34i 0.485363i
\(408\) 5.61087e33i 0.0319976i
\(409\) 7.19744e34 0.397113 0.198556 0.980089i \(-0.436375\pi\)
0.198556 + 0.980089i \(0.436375\pi\)
\(410\) 1.33950e35 1.31486e35i 0.715089 0.701937i
\(411\) −5.18547e34 −0.267870
\(412\) 3.06315e34i 0.153129i
\(413\) 5.83744e35i 2.82421i
\(414\) −2.07443e35 −0.971391
\(415\) −3.21388e34 + 3.15477e34i −0.145673 + 0.142994i
\(416\) −1.69940e34 −0.0745651
\(417\) 1.21551e34i 0.0516325i
\(418\) 3.69748e34i 0.152064i
\(419\) 2.37543e35 0.945915 0.472958 0.881085i \(-0.343186\pi\)
0.472958 + 0.881085i \(0.343186\pi\)
\(420\) 3.62493e34 + 3.69285e34i 0.139776 + 0.142395i
\(421\) −4.42357e35 −1.65183 −0.825913 0.563797i \(-0.809340\pi\)
−0.825913 + 0.563797i \(0.809340\pi\)
\(422\) 2.58258e35i 0.933976i
\(423\) 1.88819e35i 0.661381i
\(424\) −4.70031e34 −0.159473
\(425\) 1.14837e35 + 2.13195e33i 0.377426 + 0.00700692i
\(426\) −6.67810e34 −0.212629
\(427\) 5.83254e35i 1.79921i
\(428\) 2.24657e35i 0.671473i
\(429\) −5.83366e34 −0.168954
\(430\) 2.91700e35 + 2.97165e35i 0.818676 + 0.834015i
\(431\) −7.54161e33 −0.0205126 −0.0102563 0.999947i \(-0.503265\pi\)
−0.0102563 + 0.999947i \(0.503265\pi\)
\(432\) 4.41665e34i 0.116429i
\(433\) 1.55356e35i 0.396955i −0.980105 0.198478i \(-0.936400\pi\)
0.980105 0.198478i \(-0.0635997\pi\)
\(434\) −5.91434e35 −1.46486
\(435\) −5.66293e34 + 5.55877e34i −0.135968 + 0.133467i
\(436\) −4.43603e34 −0.103259
\(437\) 8.31302e34i 0.187611i
\(438\) 5.68613e33i 0.0124427i
\(439\) 2.02198e35 0.429048 0.214524 0.976719i \(-0.431180\pi\)
0.214524 + 0.976719i \(0.431180\pi\)
\(440\) −2.04854e35 + 2.01087e35i −0.421535 + 0.413782i
\(441\) −8.36266e35 −1.66887
\(442\) 5.81705e34i 0.112591i
\(443\) 6.45681e35i 1.21218i −0.795396 0.606090i \(-0.792737\pi\)
0.795396 0.606090i \(-0.207263\pi\)
\(444\) −1.91233e34 −0.0348251
\(445\) −4.98695e35 5.08039e35i −0.880998 0.897506i
\(446\) 2.21673e35 0.379920
\(447\) 6.79631e34i 0.113011i
\(448\) 1.28960e35i 0.208066i
\(449\) 8.16996e35 1.27907 0.639535 0.768762i \(-0.279127\pi\)
0.639535 + 0.768762i \(0.279127\pi\)
\(450\) −4.38601e35 8.14265e33i −0.666348 0.0123708i
\(451\) 1.60576e36 2.36754
\(452\) 3.27802e35i 0.469075i
\(453\) 5.33312e34i 0.0740723i
\(454\) −1.35356e35 −0.182484
\(455\) 3.75813e35 + 3.82855e35i 0.491834 + 0.501049i
\(456\) 8.58772e33 0.0109107
\(457\) 1.81378e34i 0.0223726i −0.999937 0.0111863i \(-0.996439\pi\)
0.999937 0.0111863i \(-0.00356078\pi\)
\(458\) 3.30501e35i 0.395811i
\(459\) −1.51182e35 −0.175804
\(460\) 4.60572e35 4.52101e35i 0.520076 0.510510i
\(461\) −6.71578e35 −0.736435 −0.368217 0.929740i \(-0.620032\pi\)
−0.368217 + 0.929740i \(0.620032\pi\)
\(462\) 4.42690e35i 0.471447i
\(463\) 1.04910e36i 1.08510i −0.840022 0.542552i \(-0.817458\pi\)
0.840022 0.542552i \(-0.182542\pi\)
\(464\) −1.97758e35 −0.198674
\(465\) −2.18207e35 + 2.14194e35i −0.212939 + 0.209022i
\(466\) −1.23391e35 −0.116970
\(467\) 1.29627e36i 1.19377i 0.802329 + 0.596883i \(0.203594\pi\)
−0.802329 + 0.596883i \(0.796406\pi\)
\(468\) 2.22173e35i 0.198780i
\(469\) −4.49959e35 −0.391146
\(470\) 4.11513e35 + 4.19223e35i 0.347586 + 0.354099i
\(471\) 8.99788e34 0.0738512
\(472\) 7.52103e35i 0.599875i
\(473\) 3.56235e36i 2.76128i
\(474\) 2.51204e35 0.189242
\(475\) 3.26307e33 1.75764e35i 0.00238925 0.128696i
\(476\) 4.41429e35 0.314172
\(477\) 6.14500e35i 0.425132i
\(478\) 1.08803e36i 0.731752i
\(479\) 2.73126e36 1.78580 0.892901 0.450253i \(-0.148666\pi\)
0.892901 + 0.450253i \(0.148666\pi\)
\(480\) 4.67041e34 + 4.75792e34i 0.0296892 + 0.0302455i
\(481\) −1.98260e35 −0.122540
\(482\) 1.27994e36i 0.769230i
\(483\) 9.95295e35i 0.581655i
\(484\) −1.57595e36 −0.895631
\(485\) −9.20801e35 + 9.03865e35i −0.508923 + 0.499563i
\(486\) 8.74664e35 0.470167
\(487\) 1.61452e35i 0.0844119i −0.999109 0.0422059i \(-0.986561\pi\)
0.999109 0.0422059i \(-0.0134386\pi\)
\(488\) 7.51472e35i 0.382160i
\(489\) −6.27314e34 −0.0310324
\(490\) 1.85671e36 1.82256e36i 0.893504 0.877070i
\(491\) 9.92034e35 0.464436 0.232218 0.972664i \(-0.425402\pi\)
0.232218 + 0.972664i \(0.425402\pi\)
\(492\) 3.72951e35i 0.169873i
\(493\) 6.76925e35i 0.299990i
\(494\) 8.90330e34 0.0383917
\(495\) −2.62892e36 2.67818e36i −1.10308 1.12375i
\(496\) −7.62012e35 −0.311142
\(497\) 5.25392e36i 2.08772i
\(498\) 8.94827e34i 0.0346053i
\(499\) −1.94279e36 −0.731255 −0.365627 0.930761i \(-0.619146\pi\)
−0.365627 + 0.930761i \(0.619146\pi\)
\(500\) 9.91544e35 9.37809e35i 0.363260 0.343573i
\(501\) −8.71034e35 −0.310617
\(502\) 2.77904e35i 0.0964705i
\(503\) 4.87342e36i 1.64690i −0.567391 0.823448i \(-0.692047\pi\)
0.567391 0.823448i \(-0.307953\pi\)
\(504\) −1.68597e36 −0.554673
\(505\) −3.82208e36 3.89369e36i −1.22424 1.24718i
\(506\) 5.52123e36 1.72188
\(507\) 6.49051e35i 0.197093i
\(508\) 2.69365e36i 0.796490i
\(509\) 1.72204e36 0.495854 0.247927 0.968779i \(-0.420251\pi\)
0.247927 + 0.968779i \(0.420251\pi\)
\(510\) 1.62863e35 1.59868e35i 0.0456695 0.0448295i
\(511\) −4.47350e35 −0.122170
\(512\) 1.66153e35i 0.0441942i
\(513\) 2.31392e35i 0.0599464i
\(514\) −5.00795e36 −1.26374
\(515\) −8.89124e35 + 8.72771e35i −0.218557 + 0.214537i
\(516\) 8.27385e35 0.198124
\(517\) 5.02555e36i 1.17236i
\(518\) 1.50451e36i 0.341934i
\(519\) 1.18583e36 0.262581
\(520\) 4.84203e35 + 4.93276e35i 0.104468 + 0.106425i
\(521\) 1.08521e35 0.0228142 0.0114071 0.999935i \(-0.496369\pi\)
0.0114071 + 0.999935i \(0.496369\pi\)
\(522\) 2.58540e36i 0.529635i
\(523\) 3.25539e36i 0.649876i 0.945735 + 0.324938i \(0.105343\pi\)
−0.945735 + 0.324938i \(0.894657\pi\)
\(524\) −4.67626e35 −0.0909758
\(525\) 3.90678e34 2.10437e36i 0.00740744 0.399000i
\(526\) −2.70552e36 −0.499970
\(527\) 2.60837e36i 0.469813i
\(528\) 5.70367e35i 0.100138i
\(529\) −6.57011e36 −1.12440
\(530\) 1.33924e36 + 1.36433e36i 0.223426 + 0.227613i
\(531\) −9.83269e36 −1.59918
\(532\) 6.75630e35i 0.107128i
\(533\) 3.86656e36i 0.597733i
\(534\) −1.41451e36 −0.213206
\(535\) 6.52099e36 6.40105e36i 0.958380 0.940752i
\(536\) −5.79733e35 −0.0830813
\(537\) 2.31274e34i 0.00323201i
\(538\) 1.77791e36i 0.242297i
\(539\) 2.22578e37 2.95824
\(540\) −1.28200e36 + 1.25842e36i −0.166177 + 0.163121i
\(541\) 1.21809e36 0.153999 0.0769993 0.997031i \(-0.475466\pi\)
0.0769993 + 0.997031i \(0.475466\pi\)
\(542\) 9.50456e36i 1.17204i
\(543\) 6.96106e35i 0.0837293i
\(544\) 5.68743e35 0.0667315
\(545\) 1.26394e36 + 1.28762e36i 0.144668 + 0.147379i
\(546\) 1.06597e36 0.119026
\(547\) 1.25584e37i 1.36807i 0.729451 + 0.684033i \(0.239775\pi\)
−0.729451 + 0.684033i \(0.760225\pi\)
\(548\) 5.25623e36i 0.558646i
\(549\) 9.82444e36 1.01878
\(550\) 1.16737e37 + 2.16722e35i 1.18116 + 0.0219284i
\(551\) 1.03607e36 0.102292
\(552\) 1.28235e36i 0.123546i
\(553\) 1.97632e37i 1.85809i
\(554\) −1.51514e37 −1.39018
\(555\) 5.44872e35 + 5.55082e35i 0.0487910 + 0.0497052i
\(556\) −1.23210e36 −0.107681
\(557\) 1.14672e37i 0.978167i 0.872237 + 0.489084i \(0.162669\pi\)
−0.872237 + 0.489084i \(0.837331\pi\)
\(558\) 9.96223e36i 0.829459i
\(559\) 8.57789e36 0.697142
\(560\) 3.74324e36 3.67439e36i 0.296968 0.291506i
\(561\) 1.95237e36 0.151204
\(562\) 4.08088e36i 0.308541i
\(563\) 6.17709e36i 0.455953i 0.973667 + 0.227977i \(0.0732110\pi\)
−0.973667 + 0.227977i \(0.926789\pi\)
\(564\) 1.16723e36 0.0841177
\(565\) −9.51492e36 + 9.33991e36i −0.669500 + 0.657187i
\(566\) −1.80008e36 −0.123672
\(567\) 2.06155e37i 1.38300i
\(568\) 6.76923e36i 0.443442i
\(569\) 1.75768e37 1.12441 0.562203 0.826999i \(-0.309954\pi\)
0.562203 + 0.826999i \(0.309954\pi\)
\(570\) −2.44686e35 2.49271e35i −0.0152862 0.0155726i
\(571\) −1.54072e37 −0.940018 −0.470009 0.882661i \(-0.655749\pi\)
−0.470009 + 0.882661i \(0.655749\pi\)
\(572\) 5.91327e36i 0.352356i
\(573\) 6.49177e36i 0.377812i
\(574\) −2.93416e37 −1.66791
\(575\) −2.62458e37 4.87254e35i −1.45728 0.0270545i
\(576\) −2.17222e36 −0.117815
\(577\) 3.45415e37i 1.83007i −0.403373 0.915036i \(-0.632162\pi\)
0.403373 0.915036i \(-0.367838\pi\)
\(578\) 1.17151e37i 0.606345i
\(579\) −6.63087e36 −0.335282
\(580\) 5.63463e36 + 5.74020e36i 0.278347 + 0.283563i
\(581\) 7.03996e36 0.339776
\(582\) 2.56375e36i 0.120897i
\(583\) 1.63553e37i 0.753586i
\(584\) −5.76372e35 −0.0259495
\(585\) −6.44888e36 + 6.33027e36i −0.283714 + 0.278495i
\(586\) 1.78243e37 0.766292
\(587\) 2.82262e37i 1.18587i −0.805249 0.592936i \(-0.797969\pi\)
0.805249 0.592936i \(-0.202031\pi\)
\(588\) 5.16956e36i 0.212256i
\(589\) 3.99224e36 0.160199
\(590\) 2.18309e37 2.14294e37i 0.856188 0.840441i
\(591\) −5.30745e36 −0.203449
\(592\) 1.93843e36i 0.0726284i
\(593\) 8.68891e36i 0.318220i 0.987261 + 0.159110i \(0.0508624\pi\)
−0.987261 + 0.159110i \(0.949138\pi\)
\(594\) −1.53683e37 −0.550183
\(595\) −1.25774e37 1.28131e37i −0.440163 0.448410i
\(596\) 6.88905e36 0.235687
\(597\) 3.10594e36i 0.103882i
\(598\) 1.32947e37i 0.434724i
\(599\) −8.94892e36 −0.286094 −0.143047 0.989716i \(-0.545690\pi\)
−0.143047 + 0.989716i \(0.545690\pi\)
\(600\) 5.03355e34 2.71131e36i 0.00157338 0.0847494i
\(601\) −5.28715e37 −1.61591 −0.807953 0.589247i \(-0.799425\pi\)
−0.807953 + 0.589247i \(0.799425\pi\)
\(602\) 6.50937e37i 1.94530i
\(603\) 7.57919e36i 0.221482i
\(604\) −5.40590e36 −0.154479
\(605\) 4.49028e37 + 4.57441e37i 1.25480 + 1.27832i
\(606\) −1.08411e37 −0.296272
\(607\) 5.10982e37i 1.36571i 0.730554 + 0.682855i \(0.239262\pi\)
−0.730554 + 0.682855i \(0.760738\pi\)
\(608\) 8.70491e35i 0.0227544i
\(609\) 1.24046e37 0.317138
\(610\) −2.18126e37 + 2.14114e37i −0.545449 + 0.535416i
\(611\) 1.21012e37 0.295986
\(612\) 7.43552e36i 0.177896i
\(613\) 3.53419e37i 0.827130i −0.910475 0.413565i \(-0.864284\pi\)
0.910475 0.413565i \(-0.135716\pi\)
\(614\) 1.61371e37 0.369447
\(615\) −1.08254e37 + 1.06263e37i −0.242455 + 0.237996i
\(616\) 4.48731e37 0.983210
\(617\) 4.41129e37i 0.945619i −0.881165 0.472810i \(-0.843240\pi\)
0.881165 0.472810i \(-0.156760\pi\)
\(618\) 2.47555e36i 0.0519192i
\(619\) 3.44688e37 0.707298 0.353649 0.935378i \(-0.384941\pi\)
0.353649 + 0.935378i \(0.384941\pi\)
\(620\) 2.17117e37 + 2.21185e37i 0.435919 + 0.444087i
\(621\) 3.45523e37 0.678797
\(622\) 1.96622e37i 0.377975i
\(623\) 1.11285e38i 2.09339i
\(624\) 1.37341e36 0.0252818
\(625\) −5.54729e37 2.06042e36i −0.999311 0.0371173i
\(626\) 5.22089e37 0.920431
\(627\) 2.98820e36i 0.0515582i
\(628\) 9.12066e36i 0.154018i
\(629\) 6.63524e36 0.109666
\(630\) 4.80375e37 + 4.89376e37i 0.777111 + 0.791672i
\(631\) 3.02550e37 0.479072 0.239536 0.970887i \(-0.423005\pi\)
0.239536 + 0.970887i \(0.423005\pi\)
\(632\) 2.54632e37i 0.394668i
\(633\) 2.08717e37i 0.316670i
\(634\) −4.29800e37 −0.638354
\(635\) −7.81870e37 + 7.67489e37i −1.13681 + 1.11590i
\(636\) 3.79866e36 0.0540703
\(637\) 5.35952e37i 0.746868i
\(638\) 6.88122e37i 0.938828i
\(639\) −8.84981e37 −1.18215
\(640\) 4.82285e36 4.73414e36i 0.0630774 0.0619172i
\(641\) 2.89374e37 0.370576 0.185288 0.982684i \(-0.440678\pi\)
0.185288 + 0.982684i \(0.440678\pi\)
\(642\) 1.81561e37i 0.227667i
\(643\) 7.07599e37i 0.868839i 0.900711 + 0.434420i \(0.143046\pi\)
−0.900711 + 0.434420i \(0.856954\pi\)
\(644\) −1.00888e38 −1.21305
\(645\) −2.35743e37 2.40161e37i −0.277577 0.282778i
\(646\) −2.97969e36 −0.0343584
\(647\) 7.99228e36i 0.0902533i 0.998981 + 0.0451267i \(0.0143691\pi\)
−0.998981 + 0.0451267i \(0.985631\pi\)
\(648\) 2.65612e37i 0.293755i
\(649\) 2.61703e38 2.83469
\(650\) 5.21852e35 2.81094e37i 0.00553626 0.298209i
\(651\) 4.77980e37 0.496668
\(652\) 6.35874e36i 0.0647186i
\(653\) 1.83027e38i 1.82468i −0.409433 0.912340i \(-0.634273\pi\)
0.409433 0.912340i \(-0.365727\pi\)
\(654\) 3.58507e36 0.0350105
\(655\) 1.33239e37 + 1.35735e37i 0.127460 + 0.129848i
\(656\) −3.78041e37 −0.354272
\(657\) 7.53525e36i 0.0691776i
\(658\) 9.18303e37i 0.825917i
\(659\) −1.43428e38 −1.26380 −0.631902 0.775048i \(-0.717726\pi\)
−0.631902 + 0.775048i \(0.717726\pi\)
\(660\) 1.65557e37 1.62512e37i 0.142924 0.140295i
\(661\) −3.88857e36 −0.0328905 −0.0164452 0.999865i \(-0.505235\pi\)
−0.0164452 + 0.999865i \(0.505235\pi\)
\(662\) 5.10612e37i 0.423164i
\(663\) 4.70117e36i 0.0381745i
\(664\) 9.07038e36 0.0721700
\(665\) −1.96111e37 + 1.92504e37i −0.152901 + 0.150089i
\(666\) −2.53422e37 −0.193616
\(667\) 1.54710e38i 1.15829i
\(668\) 8.82921e37i 0.647798i
\(669\) −1.79150e37 −0.128814
\(670\) 1.65181e37 + 1.68276e37i 0.116399 + 0.118580i
\(671\) −2.61484e38 −1.80589
\(672\) 1.04222e37i 0.0705460i
\(673\) 9.16322e37i 0.607917i 0.952685 + 0.303959i \(0.0983085\pi\)
−0.952685 + 0.303959i \(0.901692\pi\)
\(674\) −7.26894e37 −0.472675
\(675\) 7.30547e37 + 1.35626e36i 0.465637 + 0.00864456i
\(676\) −6.57908e37 −0.411041
\(677\) 2.82935e38i 1.73277i −0.499379 0.866384i \(-0.666439\pi\)
0.499379 0.866384i \(-0.333561\pi\)
\(678\) 2.64920e37i 0.159043i
\(679\) 2.01700e38 1.18704
\(680\) −1.62050e37 1.65086e37i −0.0934927 0.0952445i
\(681\) 1.09391e37 0.0618723
\(682\) 2.65151e38i 1.47030i
\(683\) 3.12775e38i 1.70041i −0.526455 0.850203i \(-0.676479\pi\)
0.526455 0.850203i \(-0.323521\pi\)
\(684\) 1.13804e37 0.0606599
\(685\) 1.52570e38 1.49764e38i 0.797344 0.782678i
\(686\) −1.77015e38 −0.907054
\(687\) 2.67101e37i 0.134202i
\(688\) 8.38676e37i 0.413191i
\(689\) 3.93825e37 0.190258
\(690\) −3.72221e37 + 3.65375e37i −0.176335 + 0.173092i
\(691\) −2.39079e38 −1.11068 −0.555338 0.831625i \(-0.687411\pi\)
−0.555338 + 0.831625i \(0.687411\pi\)
\(692\) 1.20201e38i 0.547616i
\(693\) 5.86652e38i 2.62109i
\(694\) 1.03404e38 0.453090
\(695\) 3.51058e37 + 3.57636e37i 0.150863 + 0.153690i
\(696\) 1.59822e37 0.0673616
\(697\) 1.29403e38i 0.534937i
\(698\) 7.62781e37i 0.309280i
\(699\) 9.97209e36 0.0396592
\(700\) −2.13309e38 3.96009e36i −0.832120 0.0154483i
\(701\) 1.19950e38 0.458996 0.229498 0.973309i \(-0.426292\pi\)
0.229498 + 0.973309i \(0.426292\pi\)
\(702\) 3.70057e37i 0.138905i
\(703\) 1.01556e37i 0.0373945i
\(704\) 5.78151e37 0.208838
\(705\) −3.32573e37 3.38804e37i −0.117851 0.120059i
\(706\) 3.01922e38 1.04962
\(707\) 8.52909e38i 2.90898i
\(708\) 6.07828e37i 0.203391i
\(709\) −2.18695e38 −0.717982 −0.358991 0.933341i \(-0.616879\pi\)
−0.358991 + 0.933341i \(0.616879\pi\)
\(710\) 1.96487e38 1.92873e38i 0.632915 0.621274i
\(711\) 3.32895e38 1.05213
\(712\) 1.43382e38i 0.444645i
\(713\) 5.96137e38i 1.81400i
\(714\) −3.56750e37 −0.106522
\(715\) 1.71641e38 1.68484e38i 0.502909 0.493660i
\(716\) −2.34430e36 −0.00674042
\(717\) 8.79314e37i 0.248105i
\(718\) 2.64016e38i 0.731054i
\(719\) −1.04263e38 −0.283329 −0.141665 0.989915i \(-0.545245\pi\)
−0.141665 + 0.989915i \(0.545245\pi\)
\(720\) 6.18922e37 + 6.30519e37i 0.165062 + 0.168155i
\(721\) 1.94762e38 0.509773
\(722\) 2.70696e38i 0.695391i
\(723\) 1.03441e38i 0.260812i
\(724\) 7.05605e37 0.174619
\(725\) 6.07274e36 3.27106e38i 0.0147510 0.794559i
\(726\) 1.27364e38 0.303669
\(727\) 6.05646e38i 1.41744i 0.705490 + 0.708720i \(0.250727\pi\)
−0.705490 + 0.708720i \(0.749273\pi\)
\(728\) 1.08051e38i 0.248231i
\(729\) 2.97740e38 0.671453
\(730\) 1.64223e37 + 1.67300e37i 0.0363560 + 0.0370372i
\(731\) −2.87079e38 −0.623902
\(732\) 6.07318e37i 0.129574i
\(733\) 2.81638e38i 0.589913i 0.955511 + 0.294956i \(0.0953051\pi\)
−0.955511 + 0.294956i \(0.904695\pi\)
\(734\) 2.32163e38 0.477414
\(735\) −1.50054e38 + 1.47294e38i −0.302948 + 0.297376i
\(736\) −1.29985e38 −0.257658
\(737\) 2.01725e38i 0.392599i
\(738\) 4.94235e38i 0.944436i
\(739\) 7.75639e37 0.145532 0.0727662 0.997349i \(-0.476817\pi\)
0.0727662 + 0.997349i \(0.476817\pi\)
\(740\) 5.62657e37 5.52308e37i 0.103661 0.101754i
\(741\) −7.19539e36 −0.0130169
\(742\) 2.98855e38i 0.530895i
\(743\) 6.68728e38i 1.16654i −0.812277 0.583271i \(-0.801772\pi\)
0.812277 0.583271i \(-0.198228\pi\)
\(744\) 6.15836e37 0.105495
\(745\) −1.96287e38 1.99965e38i −0.330203 0.336391i
\(746\) −4.18088e38 −0.690707
\(747\) 1.18582e38i 0.192394i
\(748\) 1.97901e38i 0.315338i
\(749\) −1.42841e39 −2.23537
\(750\) −8.01338e37 + 7.57910e37i −0.123165 + 0.116491i
\(751\) −1.45586e38 −0.219776 −0.109888 0.993944i \(-0.535049\pi\)
−0.109888 + 0.993944i \(0.535049\pi\)
\(752\) 1.18315e38i 0.175429i
\(753\) 2.24594e37i 0.0327089i
\(754\) 1.65695e38 0.237026
\(755\) 1.54028e38 + 1.56914e38i 0.216429 + 0.220485i
\(756\) 2.80819e38 0.387599
\(757\) 8.78000e38i 1.19042i 0.803570 + 0.595210i \(0.202931\pi\)
−0.803570 + 0.595210i \(0.797069\pi\)
\(758\) 3.85113e38i 0.512925i
\(759\) −4.46210e38 −0.583815
\(760\) −2.52673e37 + 2.48025e37i −0.0324769 + 0.0318796i
\(761\) −5.31239e38 −0.670807 −0.335403 0.942075i \(-0.608873\pi\)
−0.335403 + 0.942075i \(0.608873\pi\)
\(762\) 2.17693e38i 0.270055i
\(763\) 2.82052e38i 0.343754i
\(764\) 6.58035e38 0.787932
\(765\) 2.15827e38 2.11857e38i 0.253908 0.249238i
\(766\) −4.53484e38 −0.524172
\(767\) 6.30164e38i 0.715676i
\(768\) 1.34281e37i 0.0149843i
\(769\) −9.89710e38 −1.08518 −0.542591 0.839997i \(-0.682556\pi\)
−0.542591 + 0.839997i \(0.682556\pi\)
\(770\) −1.27855e39 1.30251e39i −1.37750 1.40331i
\(771\) 4.04729e38 0.428479
\(772\) 6.72135e38i 0.699235i
\(773\) 1.64539e38i 0.168208i 0.996457 + 0.0841039i \(0.0268028\pi\)
−0.996457 + 0.0841039i \(0.973197\pi\)
\(774\) 1.09645e39 1.10150
\(775\) 2.33999e37 1.26043e39i 0.0231015 1.24436i
\(776\) 2.59873e38 0.252132
\(777\) 1.21590e38i 0.115935i
\(778\) 6.23755e38i 0.584507i
\(779\) 1.98059e38 0.182405
\(780\) −3.91319e37 3.98651e37i −0.0354204 0.0360841i
\(781\) 2.35543e39 2.09547
\(782\) 4.44939e38i 0.389053i
\(783\) 4.30632e38i 0.370103i
\(784\) −5.24010e38 −0.442663
\(785\) −2.64740e38 + 2.59871e38i −0.219826 + 0.215783i
\(786\) 3.77922e37 0.0308459
\(787\) 3.39327e38i 0.272245i −0.990692 0.136122i \(-0.956536\pi\)
0.990692 0.136122i \(-0.0434640\pi\)
\(788\) 5.37988e38i 0.424296i
\(789\) 2.18653e38 0.169518
\(790\) −7.39105e38 + 7.25511e38i −0.563301 + 0.552941i
\(791\) 2.08423e39 1.56158
\(792\) 7.55851e38i 0.556732i
\(793\) 6.29635e38i 0.455933i
\(794\) 2.43254e38 0.173174
\(795\) −1.08234e38 1.10262e38i −0.0757540 0.0771734i
\(796\) −3.14832e38 −0.216647
\(797\) 1.32619e39i 0.897259i −0.893718 0.448629i \(-0.851912\pi\)
0.893718 0.448629i \(-0.148088\pi\)
\(798\) 5.46025e37i 0.0363223i
\(799\) −4.04994e38 −0.264891
\(800\) −2.74831e38 5.10224e36i −0.176746 0.00328130i
\(801\) −1.87451e39 −1.18536
\(802\) 6.24277e38i 0.388172i
\(803\) 2.00556e38i 0.122624i
\(804\) 4.68524e37 0.0281692
\(805\) 2.87455e39 + 2.92841e39i 1.69952 + 1.73136i
\(806\) 6.38466e38 0.371206
\(807\) 1.43685e38i 0.0821523i
\(808\) 1.09890e39i 0.617881i
\(809\) 9.81767e38 0.542880 0.271440 0.962455i \(-0.412500\pi\)
0.271440 + 0.962455i \(0.412500\pi\)
\(810\) −7.70978e38 + 7.56798e38i −0.419271 + 0.411559i
\(811\) 1.86354e39 0.996684 0.498342 0.866981i \(-0.333942\pi\)
0.498342 + 0.866981i \(0.333942\pi\)
\(812\) 1.25738e39i 0.661396i
\(813\) 7.68132e38i 0.397387i
\(814\) 6.74499e38 0.343204
\(815\) 1.84572e38 1.81177e38i 0.0923714 0.0906724i
\(816\) −4.59642e37 −0.0226257
\(817\) 4.39389e38i 0.212741i
\(818\) 5.89615e38i 0.280801i
\(819\) 1.41262e39 0.661748
\(820\) 1.07714e39 + 1.09732e39i 0.496344 + 0.505645i
\(821\) −4.22643e39 −1.91576 −0.957881 0.287167i \(-0.907287\pi\)
−0.957881 + 0.287167i \(0.907287\pi\)
\(822\) 4.24794e38i 0.189412i
\(823\) 3.58910e38i 0.157430i −0.996897 0.0787150i \(-0.974918\pi\)
0.996897 0.0787150i \(-0.0250817\pi\)
\(824\) 2.50933e38 0.108278
\(825\) −9.43431e38 1.75148e37i −0.400481 0.00743495i
\(826\) −4.78203e39 −1.99702
\(827\) 9.52564e37i 0.0391354i −0.999809 0.0195677i \(-0.993771\pi\)
0.999809 0.0195677i \(-0.00622899\pi\)
\(828\) 1.69937e39i 0.686877i
\(829\) −3.09619e39 −1.23123 −0.615617 0.788045i \(-0.711093\pi\)
−0.615617 + 0.788045i \(0.711093\pi\)
\(830\) −2.58438e38 2.63281e38i −0.101112 0.103007i
\(831\) 1.22449e39 0.471349
\(832\) 1.39215e38i 0.0527255i
\(833\) 1.79369e39i 0.668404i
\(834\) 9.95750e37 0.0365097
\(835\) 2.56280e39 2.51567e39i 0.924588 0.907582i
\(836\) −3.02898e38 −0.107526
\(837\) 1.65934e39i 0.579617i
\(838\) 1.94595e39i 0.668863i
\(839\) −2.60400e38 −0.0880753 −0.0440377 0.999030i \(-0.514022\pi\)
−0.0440377 + 0.999030i \(0.514022\pi\)
\(840\) −3.02518e38 + 2.96954e38i −0.100689 + 0.0988368i
\(841\) −1.12495e39 −0.368459
\(842\) 3.62379e39i 1.16802i
\(843\) 3.29805e38i 0.104613i
\(844\) 2.11565e39 0.660421
\(845\) 1.87455e39 + 1.90967e39i 0.575879 + 0.586669i
\(846\) 1.54681e39 0.467667
\(847\) 1.00202e40i 2.98160i
\(848\) 3.85050e38i 0.112765i
\(849\) 1.45477e38 0.0419316
\(850\) −1.74650e37 + 9.40745e38i −0.00495464 + 0.266880i
\(851\) −1.51647e39 −0.423433
\(852\) 5.47070e38i 0.150352i
\(853\) 3.02315e39i 0.817802i −0.912579 0.408901i \(-0.865912\pi\)
0.912579 0.408901i \(-0.134088\pi\)
\(854\) 4.77801e39 1.27223
\(855\) −3.24258e38 3.30334e38i −0.0849862 0.0865786i
\(856\) −1.84039e39 −0.474803
\(857\) 3.38170e37i 0.00858803i 0.999991 + 0.00429402i \(0.00136683\pi\)
−0.999991 + 0.00429402i \(0.998633\pi\)
\(858\) 4.77893e38i 0.119468i
\(859\) −7.23756e39 −1.78108 −0.890542 0.454902i \(-0.849674\pi\)
−0.890542 + 0.454902i \(0.849674\pi\)
\(860\) −2.43438e39 + 2.38960e39i −0.589738 + 0.578891i
\(861\) 2.37130e39 0.565515
\(862\) 6.17809e37i 0.0145046i
\(863\) 1.91878e39i 0.443485i 0.975105 + 0.221742i \(0.0711744\pi\)
−0.975105 + 0.221742i \(0.928826\pi\)
\(864\) 3.61812e38 0.0823279
\(865\) −3.48901e39 + 3.42484e39i −0.781601 + 0.767225i
\(866\) 1.27268e39 0.280690
\(867\) 9.46779e38i 0.205585i
\(868\) 4.84503e39i 1.03581i
\(869\) −8.86022e39 −1.86499
\(870\) −4.55374e38 4.63907e38i −0.0943754 0.0961437i
\(871\) 4.85740e38 0.0991195
\(872\) 3.63399e38i 0.0730149i
\(873\) 3.39748e39i 0.672147i
\(874\) 6.81002e38 0.132661
\(875\) 5.96278e39 + 6.30444e39i 1.14377 + 1.20931i
\(876\) 4.65807e37 0.00879835
\(877\) 4.76343e39i 0.885983i −0.896526 0.442991i \(-0.853917\pi\)
0.896526 0.442991i \(-0.146083\pi\)
\(878\) 1.65641e39i 0.303383i
\(879\) −1.44051e39 −0.259816
\(880\) −1.64730e39 1.67817e39i −0.292588 0.298071i
\(881\) 3.85203e39 0.673775 0.336888 0.941545i \(-0.390626\pi\)
0.336888 + 0.941545i \(0.390626\pi\)
\(882\) 6.85069e39i 1.18007i
\(883\) 7.75251e39i 1.31514i 0.753392 + 0.657572i \(0.228416\pi\)
−0.753392 + 0.657572i \(0.771584\pi\)
\(884\) −4.76532e38 −0.0796135
\(885\) −1.76431e39 + 1.73186e39i −0.290296 + 0.284956i
\(886\) 5.28942e39 0.857141
\(887\) 1.02617e40i 1.63775i 0.573968 + 0.818877i \(0.305403\pi\)
−0.573968 + 0.818877i \(0.694597\pi\)
\(888\) 1.56658e38i 0.0246251i
\(889\) 1.71268e40 2.65156
\(890\) 4.16186e39 4.08531e39i 0.634632 0.622960i
\(891\) −9.24230e39 −1.38813
\(892\) 1.81595e39i 0.268644i
\(893\) 6.19864e38i 0.0903237i
\(894\) −5.56754e38 −0.0799110
\(895\) 6.67951e37 + 6.80466e37i 0.00944351 + 0.00962045i
\(896\) −1.05644e39 −0.147125
\(897\) 1.07444e39i 0.147396i
\(898\) 6.69283e39i 0.904439i
\(899\) 7.42978e39 0.989054
\(900\) 6.67046e37 3.59302e39i 0.00874746 0.471179i
\(901\) −1.31802e39 −0.170270
\(902\) 1.31544e40i 1.67410i
\(903\) 5.26068e39i 0.659565i
\(904\) 2.68535e39 0.331686
\(905\) −2.01045e39 2.04812e39i −0.244646 0.249230i
\(906\) 4.36889e38 0.0523770
\(907\) 1.44604e40i 1.70797i −0.520295 0.853986i \(-0.674178\pi\)
0.520295 0.853986i \(-0.325822\pi\)
\(908\) 1.10884e39i 0.129036i
\(909\) −1.43666e40 −1.64718
\(910\) −3.13635e39 + 3.07866e39i −0.354295 + 0.347779i
\(911\) 9.39433e39 1.04561 0.522803 0.852454i \(-0.324886\pi\)
0.522803 + 0.852454i \(0.324886\pi\)
\(912\) 7.03506e37i 0.00771503i
\(913\) 3.15615e39i 0.341037i
\(914\) 1.48585e38 0.0158198
\(915\) 1.76283e39 1.73041e39i 0.184938 0.181536i
\(916\) −2.70746e39 −0.279881
\(917\) 2.97326e39i 0.302864i
\(918\) 1.23848e39i 0.124312i
\(919\) 8.70113e39 0.860630 0.430315 0.902679i \(-0.358403\pi\)
0.430315 + 0.902679i \(0.358403\pi\)
\(920\) 3.70361e39 + 3.77301e39i 0.360985 + 0.367749i
\(921\) −1.30415e39 −0.125263
\(922\) 5.50157e39i 0.520738i
\(923\) 5.67173e39i 0.529045i
\(924\) −3.62651e39 −0.333363
\(925\) −3.20631e39 5.95252e37i −0.290464 0.00539247i
\(926\) 8.59419e39 0.767285
\(927\) 3.28060e39i 0.288654i
\(928\) 1.62003e39i 0.140484i
\(929\) 3.28721e39 0.280941 0.140471 0.990085i \(-0.455138\pi\)
0.140471 + 0.990085i \(0.455138\pi\)
\(930\) −1.75468e39 1.78755e39i −0.147801 0.150570i
\(931\) 2.74533e39 0.227916
\(932\) 1.01082e39i 0.0827100i
\(933\) 1.58905e39i 0.128155i
\(934\) −1.06191e40 −0.844119
\(935\) −5.74436e39 + 5.63871e39i −0.450075 + 0.441797i
\(936\) 1.82004e39 0.140558
\(937\) 2.36225e39i 0.179822i 0.995950 + 0.0899108i \(0.0286582\pi\)
−0.995950 + 0.0899108i \(0.971342\pi\)
\(938\) 3.68606e39i 0.276582i
\(939\) −4.21938e39 −0.312078
\(940\) −3.43428e39 + 3.37111e39i −0.250386 + 0.245780i
\(941\) 1.68672e40 1.21223 0.606113 0.795378i \(-0.292728\pi\)
0.606113 + 0.795378i \(0.292728\pi\)
\(942\) 7.37106e38i 0.0522207i
\(943\) 2.95749e40i 2.06545i
\(944\) −6.16123e39 −0.424175
\(945\) −8.00127e39 8.15119e39i −0.543037 0.553212i
\(946\) −2.91827e40 −1.95252
\(947\) 2.10988e40i 1.39166i 0.718206 + 0.695831i \(0.244964\pi\)
−0.718206 + 0.695831i \(0.755036\pi\)
\(948\) 2.05786e39i 0.133815i
\(949\) 4.82924e38 0.0309589
\(950\) 1.43986e39 + 2.67310e37i 0.0910021 + 0.00168946i
\(951\) 3.47352e39 0.216438
\(952\) 3.61619e39i 0.222153i
\(953\) 1.89573e39i 0.114822i −0.998351 0.0574108i \(-0.981716\pi\)
0.998351 0.0574108i \(-0.0182845\pi\)
\(954\) 5.03398e39 0.300613
\(955\) −1.87491e40 1.91004e40i −1.10391 1.12460i
\(956\) 8.91314e39 0.517427
\(957\) 5.56120e39i 0.318315i
\(958\) 2.23745e40i 1.26275i
\(959\) −3.34202e40 −1.85976
\(960\) −3.89769e38 + 3.82600e38i −0.0213868 + 0.0209934i
\(961\) 1.01462e40 0.548954
\(962\) 1.62415e39i 0.0866488i
\(963\) 2.40605e40i 1.26576i
\(964\) −1.04853e40 −0.543928
\(965\) 1.95097e40 1.91509e40i 0.998003 0.979647i
\(966\) 8.15346e39 0.411292
\(967\) 3.67291e40i 1.82706i 0.406771 + 0.913530i \(0.366655\pi\)
−0.406771 + 0.913530i \(0.633345\pi\)
\(968\) 1.29102e40i 0.633307i
\(969\) 2.40810e38 0.0116494
\(970\) −7.40446e39 7.54320e39i −0.353244 0.359863i
\(971\) −3.15382e40 −1.48381 −0.741903 0.670508i \(-0.766076\pi\)
−0.741903 + 0.670508i \(0.766076\pi\)
\(972\) 7.16525e39i 0.332458i
\(973\) 7.83396e39i 0.358474i
\(974\) 1.32262e39 0.0596882
\(975\) −4.21746e37 + 2.27172e39i −0.00187710 + 0.101110i
\(976\) 6.15606e39 0.270228
\(977\) 1.89630e40i 0.820975i 0.911866 + 0.410488i \(0.134641\pi\)
−0.911866 + 0.410488i \(0.865359\pi\)
\(978\) 5.13896e38i 0.0219432i
\(979\) 4.98913e40 2.10116
\(980\) 1.49304e40 + 1.52102e40i 0.620182 + 0.631803i
\(981\) 4.75094e39 0.194647
\(982\) 8.12674e39i 0.328406i
\(983\) 3.69535e40i 1.47293i 0.676474 + 0.736466i \(0.263507\pi\)
−0.676474 + 0.736466i \(0.736493\pi\)
\(984\) 3.05522e39 0.120118
\(985\) 1.56159e40 1.53287e40i 0.605588 0.594450i
\(986\) −5.54537e39 −0.212125
\(987\) 7.42147e39i 0.280032i
\(988\) 7.29358e38i 0.0271470i
\(989\) 6.56113e40 2.40895
\(990\) 2.19397e40 2.15361e40i 0.794611 0.779996i
\(991\) −2.78228e40 −0.994046 −0.497023 0.867737i \(-0.665573\pi\)
−0.497023 + 0.867737i \(0.665573\pi\)
\(992\) 6.24240e39i 0.220011i
\(993\) 4.12662e39i 0.143476i
\(994\) −4.30402e40 −1.47624
\(995\) 8.97037e39 + 9.13846e39i 0.303528 + 0.309215i
\(996\) −7.33042e38 −0.0244697
\(997\) 1.80597e40i 0.594740i −0.954762 0.297370i \(-0.903891\pi\)
0.954762 0.297370i \(-0.0961094\pi\)
\(998\) 1.59153e40i 0.517075i
\(999\) 4.22107e39 0.135297
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 10.28.b.a.9.11 yes 14
5.2 odd 4 50.28.a.k.1.4 7
5.3 odd 4 50.28.a.l.1.4 7
5.4 even 2 inner 10.28.b.a.9.4 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
10.28.b.a.9.4 14 5.4 even 2 inner
10.28.b.a.9.11 yes 14 1.1 even 1 trivial
50.28.a.k.1.4 7 5.2 odd 4
50.28.a.l.1.4 7 5.3 odd 4