Properties

Label 10.38.a.b
Level $10$
Weight $38$
Character orbit 10.a
Self dual yes
Analytic conductor $86.714$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,38,Mod(1,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 38, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.1");
 
S:= CuspForms(chi, 38);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 38 \)
Character orbit: \([\chi]\) \(=\) 10.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.7140381246\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 354229391290x - 56510296564182800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{5}\cdot 5^{3}\cdot 7 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 262144 q^{2} + (\beta_1 - 183464796) q^{3} + 68719476736 q^{4} + 3814697265625 q^{5} + ( - 262144 \beta_1 + 48094195482624) q^{6} + ( - 29491 \beta_{2} + \cdots - 15\!\cdots\!72) q^{7} - 18\!\cdots\!84 q^{8}+ \cdots + ( - 26\!\cdots\!01 \beta_{2} + \cdots + 62\!\cdots\!56) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 786432 q^{2} - 550394388 q^{3} + 206158430208 q^{4} + 11444091796875 q^{5} + 144282586447872 q^{6} - 45\!\cdots\!16 q^{7} - 54\!\cdots\!52 q^{8} - 15\!\cdots\!41 q^{9} - 30\!\cdots\!00 q^{10} - 25\!\cdots\!44 q^{11}+ \cdots + 18\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 354229391290x - 56510296564182800 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 18\nu^{2} + 197982\nu - 4250752761480 ) / 5083 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -90\nu^{2} + 43563690\nu + 21253748956200 ) / 221 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 115\beta _1 + 67200 ) / 201600 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -10999\beta_{2} + 55664715\beta _1 + 47608430189443200 ) / 201600 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−174541.
−488386.
662928.
−262144. −9.18650e8 6.87195e10 3.81470e12 2.40818e14 −4.46427e15 −1.80144e16 3.93633e17 −1.00000e18
1.2 −262144. −1.94103e8 6.87195e10 3.81470e12 5.08830e13 1.33426e15 −1.80144e16 −4.12608e17 −1.00000e18
1.3 −262144. 5.62358e8 6.87195e10 3.81470e12 −1.47419e14 −1.40493e15 −1.80144e16 −1.34037e17 −1.00000e18
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.38.a.b 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.38.a.b 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 550394388T_{3}^{2} - 447453021323175552T_{3} - 100275628892080438522808064 \) acting on \(S_{38}^{\mathrm{new}}(\Gamma_0(10))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 262144)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + \cdots - 10\!\cdots\!64 \) Copy content Toggle raw display
$5$ \( (T - 3814697265625)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + \cdots - 83\!\cdots\!52 \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots - 22\!\cdots\!08 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 16\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 30\!\cdots\!68 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 37\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots - 24\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 25\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 94\!\cdots\!48 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots - 46\!\cdots\!24 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 13\!\cdots\!92 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots - 54\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 15\!\cdots\!12 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 13\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 64\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 16\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 47\!\cdots\!52 \) Copy content Toggle raw display
show more
show less