Properties

Label 10.4.b.a
Level 1010
Weight 44
Character orbit 10.b
Analytic conductor 0.5900.590
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,4,Mod(9,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.9");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 10=25 10 = 2 \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 10.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5900191000570.590019100057
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+βq2βq34q4+(5β5)q5+4q6+13βq74βq8+23q9+(5β+20)q1028q11+4βq126βq1352q14+644q99+O(q100) q + \beta q^{2} - \beta q^{3} - 4 q^{4} + ( - 5 \beta - 5) q^{5} + 4 q^{6} + 13 \beta q^{7} - 4 \beta q^{8} + 23 q^{9} + ( - 5 \beta + 20) q^{10} - 28 q^{11} + 4 \beta q^{12} - 6 \beta q^{13} - 52 q^{14} + \cdots - 644 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q410q5+8q6+46q9+40q1056q11104q1440q15+32q16+120q19+40q20+104q2132q24150q25+48q26180q2940q30+1288q99+O(q100) 2 q - 8 q^{4} - 10 q^{5} + 8 q^{6} + 46 q^{9} + 40 q^{10} - 56 q^{11} - 104 q^{14} - 40 q^{15} + 32 q^{16} + 120 q^{19} + 40 q^{20} + 104 q^{21} - 32 q^{24} - 150 q^{25} + 48 q^{26} - 180 q^{29} - 40 q^{30}+ \cdots - 1288 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/10Z)×\left(\mathbb{Z}/10\mathbb{Z}\right)^\times.

nn 77
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
9.1
1.00000i
1.00000i
2.00000i 2.00000i −4.00000 −5.00000 + 10.0000i 4.00000 26.0000i 8.00000i 23.0000 20.0000 + 10.0000i
9.2 2.00000i 2.00000i −4.00000 −5.00000 10.0000i 4.00000 26.0000i 8.00000i 23.0000 20.0000 10.0000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.4.b.a 2
3.b odd 2 1 90.4.c.b 2
4.b odd 2 1 80.4.c.a 2
5.b even 2 1 inner 10.4.b.a 2
5.c odd 4 1 50.4.a.b 1
5.c odd 4 1 50.4.a.d 1
7.b odd 2 1 490.4.c.b 2
8.b even 2 1 320.4.c.d 2
8.d odd 2 1 320.4.c.c 2
12.b even 2 1 720.4.f.f 2
15.d odd 2 1 90.4.c.b 2
15.e even 4 1 450.4.a.j 1
15.e even 4 1 450.4.a.k 1
20.d odd 2 1 80.4.c.a 2
20.e even 4 1 400.4.a.h 1
20.e even 4 1 400.4.a.n 1
35.c odd 2 1 490.4.c.b 2
35.f even 4 1 2450.4.a.o 1
35.f even 4 1 2450.4.a.bb 1
40.e odd 2 1 320.4.c.c 2
40.f even 2 1 320.4.c.d 2
40.i odd 4 1 1600.4.a.u 1
40.i odd 4 1 1600.4.a.bh 1
40.k even 4 1 1600.4.a.t 1
40.k even 4 1 1600.4.a.bg 1
60.h even 2 1 720.4.f.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.4.b.a 2 1.a even 1 1 trivial
10.4.b.a 2 5.b even 2 1 inner
50.4.a.b 1 5.c odd 4 1
50.4.a.d 1 5.c odd 4 1
80.4.c.a 2 4.b odd 2 1
80.4.c.a 2 20.d odd 2 1
90.4.c.b 2 3.b odd 2 1
90.4.c.b 2 15.d odd 2 1
320.4.c.c 2 8.d odd 2 1
320.4.c.c 2 40.e odd 2 1
320.4.c.d 2 8.b even 2 1
320.4.c.d 2 40.f even 2 1
400.4.a.h 1 20.e even 4 1
400.4.a.n 1 20.e even 4 1
450.4.a.j 1 15.e even 4 1
450.4.a.k 1 15.e even 4 1
490.4.c.b 2 7.b odd 2 1
490.4.c.b 2 35.c odd 2 1
720.4.f.f 2 12.b even 2 1
720.4.f.f 2 60.h even 2 1
1600.4.a.t 1 40.k even 4 1
1600.4.a.u 1 40.i odd 4 1
1600.4.a.bg 1 40.k even 4 1
1600.4.a.bh 1 40.i odd 4 1
2450.4.a.o 1 35.f even 4 1
2450.4.a.bb 1 35.f even 4 1

Hecke kernels

This newform subspace is the entire newspace S4new(10,[χ])S_{4}^{\mathrm{new}}(10, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+4 T^{2} + 4 Copy content Toggle raw display
33 T2+4 T^{2} + 4 Copy content Toggle raw display
55 T2+10T+125 T^{2} + 10T + 125 Copy content Toggle raw display
77 T2+676 T^{2} + 676 Copy content Toggle raw display
1111 (T+28)2 (T + 28)^{2} Copy content Toggle raw display
1313 T2+144 T^{2} + 144 Copy content Toggle raw display
1717 T2+4096 T^{2} + 4096 Copy content Toggle raw display
1919 (T60)2 (T - 60)^{2} Copy content Toggle raw display
2323 T2+3364 T^{2} + 3364 Copy content Toggle raw display
2929 (T+90)2 (T + 90)^{2} Copy content Toggle raw display
3131 (T+128)2 (T + 128)^{2} Copy content Toggle raw display
3737 T2+55696 T^{2} + 55696 Copy content Toggle raw display
4141 (T242)2 (T - 242)^{2} Copy content Toggle raw display
4343 T2+131044 T^{2} + 131044 Copy content Toggle raw display
4747 T2+51076 T^{2} + 51076 Copy content Toggle raw display
5353 T2+11664 T^{2} + 11664 Copy content Toggle raw display
5959 (T20)2 (T - 20)^{2} Copy content Toggle raw display
6161 (T542)2 (T - 542)^{2} Copy content Toggle raw display
6767 T2+188356 T^{2} + 188356 Copy content Toggle raw display
7171 (T+1128)2 (T + 1128)^{2} Copy content Toggle raw display
7373 T2+399424 T^{2} + 399424 Copy content Toggle raw display
7979 (T720)2 (T - 720)^{2} Copy content Toggle raw display
8383 T2+228484 T^{2} + 228484 Copy content Toggle raw display
8989 (T490)2 (T - 490)^{2} Copy content Toggle raw display
9797 T2+2119936 T^{2} + 2119936 Copy content Toggle raw display
show more
show less