Properties

Label 10.7.c.a
Level $10$
Weight $7$
Character orbit 10.c
Analytic conductor $2.301$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,7,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.30054083620\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 i - 4) q^{2} + (23 i - 23) q^{3} + 32 i q^{4} + (100 i - 75) q^{5} + 184 q^{6} + ( - 247 i - 247) q^{7} + ( - 128 i + 128) q^{8} - 329 i q^{9} + ( - 100 i + 700) q^{10} + 1402 q^{11} + ( - 736 i - 736) q^{12} + \cdots - 461258 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 46 q^{3} - 150 q^{5} + 368 q^{6} - 494 q^{7} + 256 q^{8} + 1400 q^{10} + 2804 q^{11} - 1472 q^{12} - 5406 q^{13} - 1150 q^{15} - 2048 q^{16} + 5186 q^{17} - 2632 q^{18} - 6400 q^{20} + 22724 q^{21}+ \cdots + 34952 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
1.00000i
1.00000i
−4.00000 + 4.00000i −23.0000 23.0000i 32.0000i −75.0000 100.000i 184.000 −247.000 + 247.000i 128.000 + 128.000i 329.000i 700.000 + 100.000i
7.1 −4.00000 4.00000i −23.0000 + 23.0000i 32.0000i −75.0000 + 100.000i 184.000 −247.000 247.000i 128.000 128.000i 329.000i 700.000 100.000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.7.c.a 2
3.b odd 2 1 90.7.g.a 2
4.b odd 2 1 80.7.p.a 2
5.b even 2 1 50.7.c.c 2
5.c odd 4 1 inner 10.7.c.a 2
5.c odd 4 1 50.7.c.c 2
15.d odd 2 1 450.7.g.b 2
15.e even 4 1 90.7.g.a 2
15.e even 4 1 450.7.g.b 2
20.e even 4 1 80.7.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.7.c.a 2 1.a even 1 1 trivial
10.7.c.a 2 5.c odd 4 1 inner
50.7.c.c 2 5.b even 2 1
50.7.c.c 2 5.c odd 4 1
80.7.p.a 2 4.b odd 2 1
80.7.p.a 2 20.e even 4 1
90.7.g.a 2 3.b odd 2 1
90.7.g.a 2 15.e even 4 1
450.7.g.b 2 15.d odd 2 1
450.7.g.b 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 46T_{3} + 1058 \) acting on \(S_{7}^{\mathrm{new}}(10, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 8T + 32 \) Copy content Toggle raw display
$3$ \( T^{2} + 46T + 1058 \) Copy content Toggle raw display
$5$ \( T^{2} + 150T + 15625 \) Copy content Toggle raw display
$7$ \( T^{2} + 494T + 122018 \) Copy content Toggle raw display
$11$ \( (T - 1402)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 5406 T + 14612418 \) Copy content Toggle raw display
$17$ \( T^{2} - 5186 T + 13447298 \) Copy content Toggle raw display
$19$ \( T^{2} + 2958400 \) Copy content Toggle raw display
$23$ \( T^{2} - 4274 T + 9133538 \) Copy content Toggle raw display
$29$ \( T^{2} + 931470400 \) Copy content Toggle raw display
$31$ \( (T + 37838)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 2754749538 \) Copy content Toggle raw display
$41$ \( (T + 35438)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 3069674658 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 18123414498 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 2594448578 \) Copy content Toggle raw display
$59$ \( T^{2} + 1293121600 \) Copy content Toggle raw display
$61$ \( (T - 83322)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 7401307778 \) Copy content Toggle raw display
$71$ \( (T + 40318)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 33293869058 \) Copy content Toggle raw display
$79$ \( T^{2} + 275247129600 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 26185245858 \) Copy content Toggle raw display
$89$ \( T^{2} + 35073798400 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 567822011778 \) Copy content Toggle raw display
show more
show less