Properties

Label 10.7.c.a
Level 1010
Weight 77
Character orbit 10.c
Analytic conductor 2.3012.301
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,7,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: N N == 10=25 10 = 2 \cdot 5
Weight: k k == 7 7
Character orbit: [χ][\chi] == 10.c (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.300540836202.30054083620
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(4i4)q2+(23i23)q3+32iq4+(100i75)q5+184q6+(247i247)q7+(128i+128)q8329iq9+(100i+700)q10+1402q11+(736i736)q12+461258iq99+O(q100) q + ( - 4 i - 4) q^{2} + (23 i - 23) q^{3} + 32 i q^{4} + (100 i - 75) q^{5} + 184 q^{6} + ( - 247 i - 247) q^{7} + ( - 128 i + 128) q^{8} - 329 i q^{9} + ( - 100 i + 700) q^{10} + 1402 q^{11} + ( - 736 i - 736) q^{12} + \cdots - 461258 i q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q8q246q3150q5+368q6494q7+256q8+1400q10+2804q111472q125406q131150q152048q16+5186q172632q186400q20+22724q21++34952q98+O(q100) 2 q - 8 q^{2} - 46 q^{3} - 150 q^{5} + 368 q^{6} - 494 q^{7} + 256 q^{8} + 1400 q^{10} + 2804 q^{11} - 1472 q^{12} - 5406 q^{13} - 1150 q^{15} - 2048 q^{16} + 5186 q^{17} - 2632 q^{18} - 6400 q^{20} + 22724 q^{21}+ \cdots + 34952 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/10Z)×\left(\mathbb{Z}/10\mathbb{Z}\right)^\times.

nn 77
χ(n)\chi(n) ii

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3.1
1.00000i
1.00000i
−4.00000 + 4.00000i −23.0000 23.0000i 32.0000i −75.0000 100.000i 184.000 −247.000 + 247.000i 128.000 + 128.000i 329.000i 700.000 + 100.000i
7.1 −4.00000 4.00000i −23.0000 + 23.0000i 32.0000i −75.0000 + 100.000i 184.000 −247.000 247.000i 128.000 128.000i 329.000i 700.000 100.000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.7.c.a 2
3.b odd 2 1 90.7.g.a 2
4.b odd 2 1 80.7.p.a 2
5.b even 2 1 50.7.c.c 2
5.c odd 4 1 inner 10.7.c.a 2
5.c odd 4 1 50.7.c.c 2
15.d odd 2 1 450.7.g.b 2
15.e even 4 1 90.7.g.a 2
15.e even 4 1 450.7.g.b 2
20.e even 4 1 80.7.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.7.c.a 2 1.a even 1 1 trivial
10.7.c.a 2 5.c odd 4 1 inner
50.7.c.c 2 5.b even 2 1
50.7.c.c 2 5.c odd 4 1
80.7.p.a 2 4.b odd 2 1
80.7.p.a 2 20.e even 4 1
90.7.g.a 2 3.b odd 2 1
90.7.g.a 2 15.e even 4 1
450.7.g.b 2 15.d odd 2 1
450.7.g.b 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T32+46T3+1058 T_{3}^{2} + 46T_{3} + 1058 acting on S7new(10,[χ])S_{7}^{\mathrm{new}}(10, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+8T+32 T^{2} + 8T + 32 Copy content Toggle raw display
33 T2+46T+1058 T^{2} + 46T + 1058 Copy content Toggle raw display
55 T2+150T+15625 T^{2} + 150T + 15625 Copy content Toggle raw display
77 T2+494T+122018 T^{2} + 494T + 122018 Copy content Toggle raw display
1111 (T1402)2 (T - 1402)^{2} Copy content Toggle raw display
1313 T2+5406T+14612418 T^{2} + 5406 T + 14612418 Copy content Toggle raw display
1717 T25186T+13447298 T^{2} - 5186 T + 13447298 Copy content Toggle raw display
1919 T2+2958400 T^{2} + 2958400 Copy content Toggle raw display
2323 T24274T+9133538 T^{2} - 4274 T + 9133538 Copy content Toggle raw display
2929 T2+931470400 T^{2} + 931470400 Copy content Toggle raw display
3131 (T+37838)2 (T + 37838)^{2} Copy content Toggle raw display
3737 T2++2754749538 T^{2} + \cdots + 2754749538 Copy content Toggle raw display
4141 (T+35438)2 (T + 35438)^{2} Copy content Toggle raw display
4343 T2++3069674658 T^{2} + \cdots + 3069674658 Copy content Toggle raw display
4747 T2++18123414498 T^{2} + \cdots + 18123414498 Copy content Toggle raw display
5353 T2++2594448578 T^{2} + \cdots + 2594448578 Copy content Toggle raw display
5959 T2+1293121600 T^{2} + 1293121600 Copy content Toggle raw display
6161 (T83322)2 (T - 83322)^{2} Copy content Toggle raw display
6767 T2++7401307778 T^{2} + \cdots + 7401307778 Copy content Toggle raw display
7171 (T+40318)2 (T + 40318)^{2} Copy content Toggle raw display
7373 T2++33293869058 T^{2} + \cdots + 33293869058 Copy content Toggle raw display
7979 T2+275247129600 T^{2} + 275247129600 Copy content Toggle raw display
8383 T2++26185245858 T^{2} + \cdots + 26185245858 Copy content Toggle raw display
8989 T2+35073798400 T^{2} + 35073798400 Copy content Toggle raw display
9797 T2++567822011778 T^{2} + \cdots + 567822011778 Copy content Toggle raw display
show more
show less