Properties

Label 100.5.d.a.99.2
Level $100$
Weight $5$
Character 100.99
Analytic conductor $10.337$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,5,Mod(99,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.99");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3369963084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 99.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 100.99
Dual form 100.5.d.a.99.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -16.0000 q^{4} -64.0000i q^{8} -81.0000 q^{9} -238.000i q^{13} +256.000 q^{16} -322.000i q^{17} -324.000i q^{18} +952.000 q^{26} -82.0000 q^{29} +1024.00i q^{32} +1288.00 q^{34} +1296.00 q^{36} -2162.00i q^{37} -3038.00 q^{41} -2401.00 q^{49} +3808.00i q^{52} +2482.00i q^{53} -328.000i q^{58} -6958.00 q^{61} -4096.00 q^{64} +5152.00i q^{68} +5184.00i q^{72} +1442.00i q^{73} +8648.00 q^{74} +6561.00 q^{81} -12152.0i q^{82} +9758.00 q^{89} +1918.00i q^{97} -9604.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 162 q^{9} + 512 q^{16} + 1904 q^{26} - 164 q^{29} + 2576 q^{34} + 2592 q^{36} - 6076 q^{41} - 4802 q^{49} - 13916 q^{61} - 8192 q^{64} + 17296 q^{74} + 13122 q^{81} + 19516 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 1.00000i
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) −16.0000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) − 64.0000i − 1.00000i
\(9\) −81.0000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 238.000i − 1.40828i −0.710059 0.704142i \(-0.751332\pi\)
0.710059 0.704142i \(-0.248668\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 1.00000
\(17\) − 322.000i − 1.11419i −0.830450 0.557093i \(-0.811917\pi\)
0.830450 0.557093i \(-0.188083\pi\)
\(18\) − 324.000i − 1.00000i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 952.000 1.40828
\(27\) 0 0
\(28\) 0 0
\(29\) −82.0000 −0.0975030 −0.0487515 0.998811i \(-0.515524\pi\)
−0.0487515 + 0.998811i \(0.515524\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 1024.00i 1.00000i
\(33\) 0 0
\(34\) 1288.00 1.11419
\(35\) 0 0
\(36\) 1296.00 1.00000
\(37\) − 2162.00i − 1.57925i −0.613587 0.789627i \(-0.710274\pi\)
0.613587 0.789627i \(-0.289726\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3038.00 −1.80726 −0.903629 0.428316i \(-0.859107\pi\)
−0.903629 + 0.428316i \(0.859107\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −2401.00 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 3808.00i 1.40828i
\(53\) 2482.00i 0.883588i 0.897116 + 0.441794i \(0.145658\pi\)
−0.897116 + 0.441794i \(0.854342\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) − 328.000i − 0.0975030i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) −6958.00 −1.86993 −0.934964 0.354743i \(-0.884568\pi\)
−0.934964 + 0.354743i \(0.884568\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −4096.00 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 5152.00i 1.11419i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 5184.00i 1.00000i
\(73\) 1442.00i 0.270595i 0.990805 + 0.135297i \(0.0431990\pi\)
−0.990805 + 0.135297i \(0.956801\pi\)
\(74\) 8648.00 1.57925
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 6561.00 1.00000
\(82\) − 12152.0i − 1.80726i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9758.00 1.23192 0.615958 0.787779i \(-0.288769\pi\)
0.615958 + 0.787779i \(0.288769\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1918.00i 0.203847i 0.994792 + 0.101924i \(0.0324998\pi\)
−0.994792 + 0.101924i \(0.967500\pi\)
\(98\) − 9604.00i − 1.00000i
\(99\) 0 0
\(100\) 0 0
\(101\) 18802.0 1.84315 0.921576 0.388197i \(-0.126902\pi\)
0.921576 + 0.388197i \(0.126902\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −15232.0 −1.40828
\(105\) 0 0
\(106\) −9928.00 −0.883588
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −9362.00 −0.787981 −0.393990 0.919115i \(-0.628906\pi\)
−0.393990 + 0.919115i \(0.628906\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 24638.0i − 1.92952i −0.263137 0.964758i \(-0.584757\pi\)
0.263137 0.964758i \(-0.415243\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1312.00 0.0975030
\(117\) 19278.0i 1.40828i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 14641.0 1.00000
\(122\) − 27832.0i − 1.86993i
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) − 16384.0i − 1.00000i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −20608.0 −1.11419
\(137\) − 6562.00i − 0.349619i −0.984602 0.174810i \(-0.944069\pi\)
0.984602 0.174810i \(-0.0559310\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −20736.0 −1.00000
\(145\) 0 0
\(146\) −5768.00 −0.270595
\(147\) 0 0
\(148\) 34592.0i 1.57925i
\(149\) 33998.0 1.53137 0.765686 0.643214i \(-0.222400\pi\)
0.765686 + 0.643214i \(0.222400\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 26082.0i 1.11419i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 20398.0i 0.827539i 0.910382 + 0.413769i \(0.135788\pi\)
−0.910382 + 0.413769i \(0.864212\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 26244.0i 1.00000i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 48608.0 1.80726
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −28083.0 −0.983264
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 49042.0i 1.63861i 0.573357 + 0.819306i \(0.305641\pi\)
−0.573357 + 0.819306i \(0.694359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 39032.0i 1.23192i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −64078.0 −1.95592 −0.977962 0.208785i \(-0.933049\pi\)
−0.977962 + 0.208785i \(0.933049\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) − 38398.0i − 1.03085i −0.856936 0.515423i \(-0.827635\pi\)
0.856936 0.515423i \(-0.172365\pi\)
\(194\) −7672.00 −0.203847
\(195\) 0 0
\(196\) 38416.0 1.00000
\(197\) − 74482.0i − 1.91919i −0.281378 0.959597i \(-0.590791\pi\)
0.281378 0.959597i \(-0.409209\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 75208.0i 1.84315i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) − 60928.0i − 1.40828i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) − 39712.0i − 0.883588i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 37448.0i − 0.787981i
\(219\) 0 0
\(220\) 0 0
\(221\) −76636.0 −1.56909
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 98552.0 1.92952
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −90482.0 −1.72541 −0.862703 0.505711i \(-0.831230\pi\)
−0.862703 + 0.505711i \(0.831230\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5248.00i 0.0975030i
\(233\) − 64478.0i − 1.18768i −0.804583 0.593840i \(-0.797611\pi\)
0.804583 0.593840i \(-0.202389\pi\)
\(234\) −77112.0 −1.40828
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 58562.0 1.00828 0.504141 0.863621i \(-0.331809\pi\)
0.504141 + 0.863621i \(0.331809\pi\)
\(242\) 58564.0i 1.00000i
\(243\) 0 0
\(244\) 111328. 1.86993
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 65536.0 1.00000
\(257\) − 128002.i − 1.93799i −0.247089 0.968993i \(-0.579474\pi\)
0.247089 0.968993i \(-0.420526\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 6642.00 0.0975030
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 125678. 1.73682 0.868410 0.495847i \(-0.165142\pi\)
0.868410 + 0.495847i \(0.165142\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) − 82432.0i − 1.11419i
\(273\) 0 0
\(274\) 26248.0 0.349619
\(275\) 0 0
\(276\) 0 0
\(277\) 100558.i 1.31056i 0.755386 + 0.655280i \(0.227449\pi\)
−0.755386 + 0.655280i \(0.772551\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 55522.0 0.703157 0.351579 0.936158i \(-0.385645\pi\)
0.351579 + 0.936158i \(0.385645\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) − 82944.0i − 1.00000i
\(289\) −20163.0 −0.241412
\(290\) 0 0
\(291\) 0 0
\(292\) − 23072.0i − 0.270595i
\(293\) 153202.i 1.78455i 0.451490 + 0.892276i \(0.350893\pi\)
−0.451490 + 0.892276i \(0.649107\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −138368. −1.57925
\(297\) 0 0
\(298\) 135992.i 1.53137i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −104328. −1.11419
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) − 193438.i − 1.97448i −0.159234 0.987241i \(-0.550902\pi\)
0.159234 0.987241i \(-0.449098\pi\)
\(314\) −81592.0 −0.827539
\(315\) 0 0
\(316\) 0 0
\(317\) 178478.i 1.77609i 0.459752 + 0.888047i \(0.347938\pi\)
−0.459752 + 0.888047i \(0.652062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −104976. −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 194432.i 1.80726i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 175122.i 1.57925i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 104638.i 0.921361i 0.887566 + 0.460680i \(0.152395\pi\)
−0.887566 + 0.460680i \(0.847605\pi\)
\(338\) − 112332.i − 0.983264i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −196168. −1.63861
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) −114002. −0.935969 −0.467985 0.883737i \(-0.655020\pi\)
−0.467985 + 0.883737i \(0.655020\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 46718.0i − 0.374917i −0.982273 0.187458i \(-0.939975\pi\)
0.982273 0.187458i \(-0.0600250\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −156128. −1.23192
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 130321. 1.00000
\(362\) − 256312.i − 1.95592i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 246078. 1.80726
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 24242.0i 0.174241i 0.996198 + 0.0871206i \(0.0277665\pi\)
−0.996198 + 0.0871206i \(0.972233\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19516.0i 0.137312i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 153592. 1.03085
\(387\) 0 0
\(388\) − 30688.0i − 0.203847i
\(389\) 159758. 1.05576 0.527878 0.849320i \(-0.322988\pi\)
0.527878 + 0.849320i \(0.322988\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 153664.i 1.00000i
\(393\) 0 0
\(394\) 297928. 1.91919
\(395\) 0 0
\(396\) 0 0
\(397\) − 107282.i − 0.680684i −0.940302 0.340342i \(-0.889457\pi\)
0.940302 0.340342i \(-0.110543\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 315202. 1.96020 0.980100 0.198506i \(-0.0636090\pi\)
0.980100 + 0.198506i \(0.0636090\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −300832. −1.84315
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −276962. −1.65567 −0.827835 0.560972i \(-0.810427\pi\)
−0.827835 + 0.560972i \(0.810427\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 243712. 1.40828
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −351118. −1.98102 −0.990510 0.137440i \(-0.956113\pi\)
−0.990510 + 0.137440i \(0.956113\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 158848. 0.883588
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) − 290878.i − 1.55144i −0.631077 0.775720i \(-0.717387\pi\)
0.631077 0.775720i \(-0.282613\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 149792. 0.787981
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 194481. 1.00000
\(442\) − 306544.i − 1.56909i
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −89602.0 −0.444452 −0.222226 0.974995i \(-0.571332\pi\)
−0.222226 + 0.974995i \(0.571332\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 394208.i 1.92952i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 304802.i − 1.45944i −0.683748 0.729719i \(-0.739651\pi\)
0.683748 0.729719i \(-0.260349\pi\)
\(458\) − 361928.i − 1.72541i
\(459\) 0 0
\(460\) 0 0
\(461\) −152558. −0.717849 −0.358925 0.933367i \(-0.616856\pi\)
−0.358925 + 0.933367i \(0.616856\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) −20992.0 −0.0975030
\(465\) 0 0
\(466\) 257912. 1.18768
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) − 308448.i − 1.40828i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 201042.i − 0.883588i
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) −514556. −2.22404
\(482\) 234248.i 1.00828i
\(483\) 0 0
\(484\) −234256. −1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 445312.i 1.86993i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 26404.0i 0.108637i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −324562. −1.25274 −0.626372 0.779525i \(-0.715461\pi\)
−0.626372 + 0.779525i \(0.715461\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144.i 1.00000i
\(513\) 0 0
\(514\) 512008. 1.93799
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −231518. −0.852922 −0.426461 0.904506i \(-0.640240\pi\)
−0.426461 + 0.904506i \(0.640240\pi\)
\(522\) 26568.0i 0.0975030i
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −279841. −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 723044.i 2.54513i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 502712.i 1.73682i
\(539\) 0 0
\(540\) 0 0
\(541\) −120238. −0.410816 −0.205408 0.978676i \(-0.565852\pi\)
−0.205408 + 0.978676i \(0.565852\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 329728. 1.11419
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 104992.i 0.349619i
\(549\) 563598. 1.86993
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −402232. −1.31056
\(555\) 0 0
\(556\) 0 0
\(557\) 511598.i 1.64899i 0.565868 + 0.824496i \(0.308541\pi\)
−0.565868 + 0.824496i \(0.691459\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 222088.i 0.703157i
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 434078. 1.34074 0.670368 0.742029i \(-0.266136\pi\)
0.670368 + 0.742029i \(0.266136\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 331776. 1.00000
\(577\) − 656642.i − 1.97232i −0.165801 0.986159i \(-0.553021\pi\)
0.165801 0.986159i \(-0.446979\pi\)
\(578\) − 80652.0i − 0.241412i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 92288.0 0.270595
\(585\) 0 0
\(586\) −612808. −1.78455
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) − 553472.i − 1.57925i
\(593\) 161602.i 0.459555i 0.973243 + 0.229777i \(0.0737998\pi\)
−0.973243 + 0.229777i \(0.926200\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −543968. −1.53137
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 492002. 1.36213 0.681064 0.732224i \(-0.261518\pi\)
0.681064 + 0.732224i \(0.261518\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) − 417312.i − 1.11419i
\(613\) − 746638.i − 1.98696i −0.114006 0.993480i \(-0.536368\pi\)
0.114006 0.993480i \(-0.463632\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 717278.i 1.88416i 0.335392 + 0.942079i \(0.391131\pi\)
−0.335392 + 0.942079i \(0.608869\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 773752. 1.97448
\(627\) 0 0
\(628\) − 326368.i − 0.827539i
\(629\) −696164. −1.75959
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −713912. −1.77609
\(635\) 0 0
\(636\) 0 0
\(637\) 571438.i 1.40828i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 661762. 1.61059 0.805296 0.592872i \(-0.202006\pi\)
0.805296 + 0.592872i \(0.202006\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) − 419904.i − 1.00000i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 455918.i − 1.06920i −0.845104 0.534602i \(-0.820462\pi\)
0.845104 0.534602i \(-0.179538\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −777728. −1.80726
\(657\) − 116802.i − 0.270595i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 513842. 1.17605 0.588026 0.808842i \(-0.299905\pi\)
0.588026 + 0.808842i \(0.299905\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −700488. −1.57925
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 312958.i − 0.690965i −0.938425 0.345482i \(-0.887715\pi\)
0.938425 0.345482i \(-0.112285\pi\)
\(674\) −418552. −0.921361
\(675\) 0 0
\(676\) 449328. 0.983264
\(677\) − 905842.i − 1.97640i −0.153165 0.988201i \(-0.548947\pi\)
0.153165 0.988201i \(-0.451053\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 590716. 1.24434
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) − 784672.i − 1.63861i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 978236.i 2.01362i
\(698\) − 456008.i − 0.935969i
\(699\) 0 0
\(700\) 0 0
\(701\) 712402. 1.44974 0.724868 0.688887i \(-0.241901\pi\)
0.724868 + 0.688887i \(0.241901\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 186872. 0.374917
\(707\) 0 0
\(708\) 0 0
\(709\) 737038. 1.46621 0.733107 0.680113i \(-0.238069\pi\)
0.733107 + 0.680113i \(0.238069\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 624512.i − 1.23192i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 521284.i 1.00000i
\(723\) 0 0
\(724\) 1.02525e6 1.95592
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −531441. −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.02792e6i 1.91316i 0.291463 + 0.956582i \(0.405858\pi\)
−0.291463 + 0.956582i \(0.594142\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 984312.i 1.80726i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −96968.0 −0.174241
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −78064.0 −0.137312
\(755\) 0 0
\(756\) 0 0
\(757\) − 270002.i − 0.471167i −0.971854 0.235584i \(-0.924300\pi\)
0.971854 0.235584i \(-0.0757002\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.15216e6 −1.98949 −0.994747 0.102362i \(-0.967360\pi\)
−0.994747 + 0.102362i \(0.967360\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 257278. 0.435061 0.217530 0.976054i \(-0.430200\pi\)
0.217530 + 0.976054i \(0.430200\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 614368.i 1.03085i
\(773\) − 1.04296e6i − 1.74545i −0.488211 0.872726i \(-0.662350\pi\)
0.488211 0.872726i \(-0.337650\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 122752. 0.203847
\(777\) 0 0
\(778\) 639032.i 1.05576i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −614656. −1.00000
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 1.19171e6i 1.91919i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.65600e6i 2.63339i
\(794\) 429128. 0.680684
\(795\) 0 0
\(796\) 0 0
\(797\) 38318.0i 0.0603235i 0.999545 + 0.0301617i \(0.00960223\pi\)
−0.999545 + 0.0301617i \(0.990398\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −790398. −1.23192
\(802\) 1.26081e6i 1.96020i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) − 1.20333e6i − 1.84315i
\(809\) −995362. −1.52084 −0.760421 0.649431i \(-0.775007\pi\)
−0.760421 + 0.649431i \(0.775007\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) − 1.10785e6i − 1.65567i
\(819\) 0 0
\(820\) 0 0
\(821\) −611918. −0.907835 −0.453917 0.891044i \(-0.649974\pi\)
−0.453917 + 0.891044i \(0.649974\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −208082. −0.302779 −0.151389 0.988474i \(-0.548375\pi\)
−0.151389 + 0.988474i \(0.548375\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 974848.i 1.40828i
\(833\) 773122.i 1.11419i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) −700557. −0.990493
\(842\) − 1.40447e6i − 1.98102i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 635392.i 0.883588i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 1.28712e6i − 1.76897i −0.466569 0.884485i \(-0.654510\pi\)
0.466569 0.884485i \(-0.345490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.25360e6i − 1.70686i −0.521207 0.853430i \(-0.674518\pi\)
0.521207 0.853430i \(-0.325482\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1.16351e6 1.55144
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 599168.i 0.787981i
\(873\) − 155358.i − 0.203847i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.05384e6i − 1.37018i −0.728460 0.685088i \(-0.759764\pi\)
0.728460 0.685088i \(-0.240236\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.00768e6 −1.29828 −0.649142 0.760667i \(-0.724872\pi\)
−0.649142 + 0.760667i \(0.724872\pi\)
\(882\) 777924.i 1.00000i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 1.22618e6 1.56909
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) − 358408.i − 0.444452i
\(899\) 0 0
\(900\) 0 0
\(901\) 799204. 0.984483
\(902\) 0 0
\(903\) 0 0
\(904\) −1.57683e6 −1.92952
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) −1.52296e6 −1.84315
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 1.21921e6 1.45944
\(915\) 0 0
\(916\) 1.44771e6 1.72541
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 610232.i − 0.717849i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) − 83968.0i − 0.0975030i
\(929\) 1.65952e6 1.92287 0.961436 0.275027i \(-0.0886870\pi\)
0.961436 + 0.275027i \(0.0886870\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.03165e6i 1.18768i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 1.23379e6 1.40828
\(937\) 1.57104e6i 1.78940i 0.446667 + 0.894700i \(0.352611\pi\)
−0.446667 + 0.894700i \(0.647389\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 425362. 0.480374 0.240187 0.970727i \(-0.422791\pi\)
0.240187 + 0.970727i \(0.422791\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 343196. 0.381074
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 303518.i − 0.334194i −0.985940 0.167097i \(-0.946561\pi\)
0.985940 0.167097i \(-0.0534393\pi\)
\(954\) 804168. 0.883588
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 923521. 1.00000
\(962\) − 2.05822e6i − 2.22404i
\(963\) 0 0
\(964\) −936992. −1.00828
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) − 937024.i − 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −1.78125e6 −1.86993
\(977\) − 1.66304e6i − 1.74226i −0.491048 0.871132i \(-0.663386\pi\)
0.491048 0.871132i \(-0.336614\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 758322. 0.787981
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −105616. −0.108637
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.43448e6i − 1.44313i −0.692348 0.721564i \(-0.743424\pi\)
0.692348 0.721564i \(-0.256576\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.5.d.a.99.2 2
4.3 odd 2 CM 100.5.d.a.99.2 2
5.2 odd 4 4.5.b.a.3.1 1
5.3 odd 4 100.5.b.a.51.1 1
5.4 even 2 inner 100.5.d.a.99.1 2
15.2 even 4 36.5.d.a.19.1 1
20.3 even 4 100.5.b.a.51.1 1
20.7 even 4 4.5.b.a.3.1 1
20.19 odd 2 inner 100.5.d.a.99.1 2
35.27 even 4 196.5.c.a.99.1 1
40.27 even 4 64.5.c.a.63.1 1
40.37 odd 4 64.5.c.a.63.1 1
60.47 odd 4 36.5.d.a.19.1 1
80.27 even 4 256.5.d.c.127.1 2
80.37 odd 4 256.5.d.c.127.1 2
80.67 even 4 256.5.d.c.127.2 2
80.77 odd 4 256.5.d.c.127.2 2
120.77 even 4 576.5.g.b.127.1 1
120.107 odd 4 576.5.g.b.127.1 1
140.27 odd 4 196.5.c.a.99.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4.5.b.a.3.1 1 5.2 odd 4
4.5.b.a.3.1 1 20.7 even 4
36.5.d.a.19.1 1 15.2 even 4
36.5.d.a.19.1 1 60.47 odd 4
64.5.c.a.63.1 1 40.27 even 4
64.5.c.a.63.1 1 40.37 odd 4
100.5.b.a.51.1 1 5.3 odd 4
100.5.b.a.51.1 1 20.3 even 4
100.5.d.a.99.1 2 5.4 even 2 inner
100.5.d.a.99.1 2 20.19 odd 2 inner
100.5.d.a.99.2 2 1.1 even 1 trivial
100.5.d.a.99.2 2 4.3 odd 2 CM
196.5.c.a.99.1 1 35.27 even 4
196.5.c.a.99.1 1 140.27 odd 4
256.5.d.c.127.1 2 80.27 even 4
256.5.d.c.127.1 2 80.37 odd 4
256.5.d.c.127.2 2 80.67 even 4
256.5.d.c.127.2 2 80.77 odd 4
576.5.g.b.127.1 1 120.77 even 4
576.5.g.b.127.1 1 120.107 odd 4