Properties

Label 100.5.d.a.99.2
Level 100100
Weight 55
Character 100.99
Analytic conductor 10.33710.337
Analytic rank 00
Dimension 22
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,5,Mod(99,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.99");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 100=2252 100 = 2^{2} \cdot 5^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 100.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.336996308410.3369963084
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 4)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 99.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 100.99
Dual form 100.5.d.a.99.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.00000iq216.0000q464.0000iq881.0000q9238.000iq13+256.000q16322.000iq17324.000iq18+952.000q2682.0000q29+1024.00iq32+1288.00q34+1296.00q362162.00iq373038.00q412401.00q49+3808.00iq52+2482.00iq53328.000iq586958.00q614096.00q64+5152.00iq68+5184.00iq72+1442.00iq73+8648.00q74+6561.00q8112152.0iq82+9758.00q89+1918.00iq979604.00iq98+O(q100)q+4.00000i q^{2} -16.0000 q^{4} -64.0000i q^{8} -81.0000 q^{9} -238.000i q^{13} +256.000 q^{16} -322.000i q^{17} -324.000i q^{18} +952.000 q^{26} -82.0000 q^{29} +1024.00i q^{32} +1288.00 q^{34} +1296.00 q^{36} -2162.00i q^{37} -3038.00 q^{41} -2401.00 q^{49} +3808.00i q^{52} +2482.00i q^{53} -328.000i q^{58} -6958.00 q^{61} -4096.00 q^{64} +5152.00i q^{68} +5184.00i q^{72} +1442.00i q^{73} +8648.00 q^{74} +6561.00 q^{81} -12152.0i q^{82} +9758.00 q^{89} +1918.00i q^{97} -9604.00i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q32q4162q9+512q16+1904q26164q29+2576q34+2592q366076q414802q4913916q618192q64+17296q74+13122q81+19516q89+O(q100) 2 q - 32 q^{4} - 162 q^{9} + 512 q^{16} + 1904 q^{26} - 164 q^{29} + 2576 q^{34} + 2592 q^{36} - 6076 q^{41} - 4802 q^{49} - 13916 q^{61} - 8192 q^{64} + 17296 q^{74} + 13122 q^{81} + 19516 q^{89}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/100Z)×\left(\mathbb{Z}/100\mathbb{Z}\right)^\times.

nn 5151 7777
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 4.00000i 1.00000i
33 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
44 −16.0000 −1.00000
55 0 0
66 0 0
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 − 64.0000i − 1.00000i
99 −81.0000 −1.00000
1010 0 0
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 − 238.000i − 1.40828i −0.710059 0.704142i 0.751332π-0.751332\pi
0.710059 0.704142i 0.248668π-0.248668\pi
1414 0 0
1515 0 0
1616 256.000 1.00000
1717 − 322.000i − 1.11419i −0.830450 0.557093i 0.811917π-0.811917\pi
0.830450 0.557093i 0.188083π-0.188083\pi
1818 − 324.000i − 1.00000i
1919 0 0 1.00000 00
−1.00000 π\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 0 0
2626 952.000 1.40828
2727 0 0
2828 0 0
2929 −82.0000 −0.0975030 −0.0487515 0.998811i 0.515524π-0.515524\pi
−0.0487515 + 0.998811i 0.515524π0.515524\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 1024.00i 1.00000i
3333 0 0
3434 1288.00 1.11419
3535 0 0
3636 1296.00 1.00000
3737 − 2162.00i − 1.57925i −0.613587 0.789627i 0.710274π-0.710274\pi
0.613587 0.789627i 0.289726π-0.289726\pi
3838 0 0
3939 0 0
4040 0 0
4141 −3038.00 −1.80726 −0.903629 0.428316i 0.859107π-0.859107\pi
−0.903629 + 0.428316i 0.859107π0.859107\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 −2401.00 −1.00000
5050 0 0
5151 0 0
5252 3808.00i 1.40828i
5353 2482.00i 0.883588i 0.897116 + 0.441794i 0.145658π0.145658\pi
−0.897116 + 0.441794i 0.854342π0.854342\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 − 328.000i − 0.0975030i
5959 0 0 1.00000 00
−1.00000 π\pi
6060 0 0
6161 −6958.00 −1.86993 −0.934964 0.354743i 0.884568π-0.884568\pi
−0.934964 + 0.354743i 0.884568π0.884568\pi
6262 0 0
6363 0 0
6464 −4096.00 −1.00000
6565 0 0
6666 0 0
6767 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6868 5152.00i 1.11419i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 5184.00i 1.00000i
7373 1442.00i 0.270595i 0.990805 + 0.135297i 0.0431990π0.0431990\pi
−0.990805 + 0.135297i 0.956801π0.956801\pi
7474 8648.00 1.57925
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 6561.00 1.00000
8282 − 12152.0i − 1.80726i
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 9758.00 1.23192 0.615958 0.787779i 0.288769π-0.288769\pi
0.615958 + 0.787779i 0.288769π0.288769\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1918.00i 0.203847i 0.994792 + 0.101924i 0.0324998π0.0324998\pi
−0.994792 + 0.101924i 0.967500π0.967500\pi
9898 − 9604.00i − 1.00000i
9999 0 0
100100 0 0
101101 18802.0 1.84315 0.921576 0.388197i 0.126902π-0.126902\pi
0.921576 + 0.388197i 0.126902π0.126902\pi
102102 0 0
103103 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
104104 −15232.0 −1.40828
105105 0 0
106106 −9928.00 −0.883588
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 −9362.00 −0.787981 −0.393990 0.919115i 0.628906π-0.628906\pi
−0.393990 + 0.919115i 0.628906π0.628906\pi
110110 0 0
111111 0 0
112112 0 0
113113 − 24638.0i − 1.92952i −0.263137 0.964758i 0.584757π-0.584757\pi
0.263137 0.964758i 0.415243π-0.415243\pi
114114 0 0
115115 0 0
116116 1312.00 0.0975030
117117 19278.0i 1.40828i
118118 0 0
119119 0 0
120120 0 0
121121 14641.0 1.00000
122122 − 27832.0i − 1.86993i
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 − 16384.0i − 1.00000i
129129 0 0
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −20608.0 −1.11419
137137 − 6562.00i − 0.349619i −0.984602 0.174810i 0.944069π-0.944069\pi
0.984602 0.174810i 0.0559310π-0.0559310\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −20736.0 −1.00000
145145 0 0
146146 −5768.00 −0.270595
147147 0 0
148148 34592.0i 1.57925i
149149 33998.0 1.53137 0.765686 0.643214i 0.222400π-0.222400\pi
0.765686 + 0.643214i 0.222400π0.222400\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 26082.0i 1.11419i
154154 0 0
155155 0 0
156156 0 0
157157 20398.0i 0.827539i 0.910382 + 0.413769i 0.135788π0.135788\pi
−0.910382 + 0.413769i 0.864212π0.864212\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 26244.0i 1.00000i
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 48608.0 1.80726
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 −28083.0 −0.983264
170170 0 0
171171 0 0
172172 0 0
173173 49042.0i 1.63861i 0.573357 + 0.819306i 0.305641π0.305641\pi
−0.573357 + 0.819306i 0.694359π0.694359\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 39032.0i 1.23192i
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 −64078.0 −1.95592 −0.977962 0.208785i 0.933049π-0.933049\pi
−0.977962 + 0.208785i 0.933049π0.933049\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 − 38398.0i − 1.03085i −0.856936 0.515423i 0.827635π-0.827635\pi
0.856936 0.515423i 0.172365π-0.172365\pi
194194 −7672.00 −0.203847
195195 0 0
196196 38416.0 1.00000
197197 − 74482.0i − 1.91919i −0.281378 0.959597i 0.590791π-0.590791\pi
0.281378 0.959597i 0.409209π-0.409209\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 0 0
201201 0 0
202202 75208.0i 1.84315i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 − 60928.0i − 1.40828i
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 − 39712.0i − 0.883588i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 − 37448.0i − 0.787981i
219219 0 0
220220 0 0
221221 −76636.0 −1.56909
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 98552.0 1.92952
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 −90482.0 −1.72541 −0.862703 0.505711i 0.831230π-0.831230\pi
−0.862703 + 0.505711i 0.831230π0.831230\pi
230230 0 0
231231 0 0
232232 5248.00i 0.0975030i
233233 − 64478.0i − 1.18768i −0.804583 0.593840i 0.797611π-0.797611\pi
0.804583 0.593840i 0.202389π-0.202389\pi
234234 −77112.0 −1.40828
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 58562.0 1.00828 0.504141 0.863621i 0.331809π-0.331809\pi
0.504141 + 0.863621i 0.331809π0.331809\pi
242242 58564.0i 1.00000i
243243 0 0
244244 111328. 1.86993
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 65536.0 1.00000
257257 − 128002.i − 1.93799i −0.247089 0.968993i 0.579474π-0.579474\pi
0.247089 0.968993i 0.420526π-0.420526\pi
258258 0 0
259259 0 0
260260 0 0
261261 6642.00 0.0975030
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 125678. 1.73682 0.868410 0.495847i 0.165142π-0.165142\pi
0.868410 + 0.495847i 0.165142π0.165142\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 − 82432.0i − 1.11419i
273273 0 0
274274 26248.0 0.349619
275275 0 0
276276 0 0
277277 100558.i 1.31056i 0.755386 + 0.655280i 0.227449π0.227449\pi
−0.755386 + 0.655280i 0.772551π0.772551\pi
278278 0 0
279279 0 0
280280 0 0
281281 55522.0 0.703157 0.351579 0.936158i 0.385645π-0.385645\pi
0.351579 + 0.936158i 0.385645π0.385645\pi
282282 0 0
283283 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 − 82944.0i − 1.00000i
289289 −20163.0 −0.241412
290290 0 0
291291 0 0
292292 − 23072.0i − 0.270595i
293293 153202.i 1.78455i 0.451490 + 0.892276i 0.350893π0.350893\pi
−0.451490 + 0.892276i 0.649107π0.649107\pi
294294 0 0
295295 0 0
296296 −138368. −1.57925
297297 0 0
298298 135992.i 1.53137i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 −104328. −1.11419
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 − 193438.i − 1.97448i −0.159234 0.987241i 0.550902π-0.550902\pi
0.159234 0.987241i 0.449098π-0.449098\pi
314314 −81592.0 −0.827539
315315 0 0
316316 0 0
317317 178478.i 1.77609i 0.459752 + 0.888047i 0.347938π0.347938\pi
−0.459752 + 0.888047i 0.652062π0.652062\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 −104976. −1.00000
325325 0 0
326326 0 0
327327 0 0
328328 194432.i 1.80726i
329329 0 0
330330 0 0
331331 0 0 1.00000 00
−1.00000 π\pi
332332 0 0
333333 175122.i 1.57925i
334334 0 0
335335 0 0
336336 0 0
337337 104638.i 0.921361i 0.887566 + 0.460680i 0.152395π0.152395\pi
−0.887566 + 0.460680i 0.847605π0.847605\pi
338338 − 112332.i − 0.983264i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −196168. −1.63861
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 −114002. −0.935969 −0.467985 0.883737i 0.655020π-0.655020\pi
−0.467985 + 0.883737i 0.655020π0.655020\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 46718.0i − 0.374917i −0.982273 0.187458i 0.939975π-0.939975\pi
0.982273 0.187458i 0.0600250π-0.0600250\pi
354354 0 0
355355 0 0
356356 −156128. −1.23192
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 130321. 1.00000
362362 − 256312.i − 1.95592i
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 0 0
369369 246078. 1.80726
370370 0 0
371371 0 0
372372 0 0
373373 24242.0i 0.174241i 0.996198 + 0.0871206i 0.0277665π0.0277665\pi
−0.996198 + 0.0871206i 0.972233π0.972233\pi
374374 0 0
375375 0 0
376376 0 0
377377 19516.0i 0.137312i
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 153592. 1.03085
387387 0 0
388388 − 30688.0i − 0.203847i
389389 159758. 1.05576 0.527878 0.849320i 0.322988π-0.322988\pi
0.527878 + 0.849320i 0.322988π0.322988\pi
390390 0 0
391391 0 0
392392 153664.i 1.00000i
393393 0 0
394394 297928. 1.91919
395395 0 0
396396 0 0
397397 − 107282.i − 0.680684i −0.940302 0.340342i 0.889457π-0.889457\pi
0.940302 0.340342i 0.110543π-0.110543\pi
398398 0 0
399399 0 0
400400 0 0
401401 315202. 1.96020 0.980100 0.198506i 0.0636090π-0.0636090\pi
0.980100 + 0.198506i 0.0636090π0.0636090\pi
402402 0 0
403403 0 0
404404 −300832. −1.84315
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −276962. −1.65567 −0.827835 0.560972i 0.810427π-0.810427\pi
−0.827835 + 0.560972i 0.810427π0.810427\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 243712. 1.40828
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −351118. −1.98102 −0.990510 0.137440i 0.956113π-0.956113\pi
−0.990510 + 0.137440i 0.956113π0.956113\pi
422422 0 0
423423 0 0
424424 158848. 0.883588
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 − 290878.i − 1.55144i −0.631077 0.775720i 0.717387π-0.717387\pi
0.631077 0.775720i 0.282613π-0.282613\pi
434434 0 0
435435 0 0
436436 149792. 0.787981
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 194481. 1.00000
442442 − 306544.i − 1.56909i
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 −89602.0 −0.444452 −0.222226 0.974995i 0.571332π-0.571332\pi
−0.222226 + 0.974995i 0.571332π0.571332\pi
450450 0 0
451451 0 0
452452 394208.i 1.92952i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 − 304802.i − 1.45944i −0.683748 0.729719i 0.739651π-0.739651\pi
0.683748 0.729719i 0.260349π-0.260349\pi
458458 − 361928.i − 1.72541i
459459 0 0
460460 0 0
461461 −152558. −0.717849 −0.358925 0.933367i 0.616856π-0.616856\pi
−0.358925 + 0.933367i 0.616856π0.616856\pi
462462 0 0
463463 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
464464 −20992.0 −0.0975030
465465 0 0
466466 257912. 1.18768
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 − 308448.i − 1.40828i
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 − 201042.i − 0.883588i
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 −514556. −2.22404
482482 234248.i 1.00828i
483483 0 0
484484 −234256. −1.00000
485485 0 0
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 445312.i 1.86993i
489489 0 0
490490 0 0
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 26404.0i 0.108637i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 −324562. −1.25274 −0.626372 0.779525i 0.715461π-0.715461\pi
−0.626372 + 0.779525i 0.715461π0.715461\pi
510510 0 0
511511 0 0
512512 262144.i 1.00000i
513513 0 0
514514 512008. 1.93799
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −231518. −0.852922 −0.426461 0.904506i 0.640240π-0.640240\pi
−0.426461 + 0.904506i 0.640240π0.640240\pi
522522 26568.0i 0.0975030i
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −279841. −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 723044.i 2.54513i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 502712.i 1.73682i
539539 0 0
540540 0 0
541541 −120238. −0.410816 −0.205408 0.978676i 0.565852π-0.565852\pi
−0.205408 + 0.978676i 0.565852π0.565852\pi
542542 0 0
543543 0 0
544544 329728. 1.11419
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 104992.i 0.349619i
549549 563598. 1.86993
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 −402232. −1.31056
555555 0 0
556556 0 0
557557 511598.i 1.64899i 0.565868 + 0.824496i 0.308541π0.308541\pi
−0.565868 + 0.824496i 0.691459π0.691459\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 222088.i 0.703157i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 434078. 1.34074 0.670368 0.742029i 0.266136π-0.266136\pi
0.670368 + 0.742029i 0.266136π0.266136\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 331776. 1.00000
577577 − 656642.i − 1.97232i −0.165801 0.986159i 0.553021π-0.553021\pi
0.165801 0.986159i 0.446979π-0.446979\pi
578578 − 80652.0i − 0.241412i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 92288.0 0.270595
585585 0 0
586586 −612808. −1.78455
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 − 553472.i − 1.57925i
593593 161602.i 0.459555i 0.973243 + 0.229777i 0.0737998π0.0737998\pi
−0.973243 + 0.229777i 0.926200π0.926200\pi
594594 0 0
595595 0 0
596596 −543968. −1.53137
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 492002. 1.36213 0.681064 0.732224i 0.261518π-0.261518\pi
0.681064 + 0.732224i 0.261518π0.261518\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 − 417312.i − 1.11419i
613613 − 746638.i − 1.98696i −0.114006 0.993480i 0.536368π-0.536368\pi
0.114006 0.993480i 0.463632π-0.463632\pi
614614 0 0
615615 0 0
616616 0 0
617617 717278.i 1.88416i 0.335392 + 0.942079i 0.391131π0.391131\pi
−0.335392 + 0.942079i 0.608869π0.608869\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0 0
626626 773752. 1.97448
627627 0 0
628628 − 326368.i − 0.827539i
629629 −696164. −1.75959
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 −713912. −1.77609
635635 0 0
636636 0 0
637637 571438.i 1.40828i
638638 0 0
639639 0 0
640640 0 0
641641 661762. 1.61059 0.805296 0.592872i 0.202006π-0.202006\pi
0.805296 + 0.592872i 0.202006π0.202006\pi
642642 0 0
643643 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 − 419904.i − 1.00000i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 − 455918.i − 1.06920i −0.845104 0.534602i 0.820462π-0.820462\pi
0.845104 0.534602i 0.179538π-0.179538\pi
654654 0 0
655655 0 0
656656 −777728. −1.80726
657657 − 116802.i − 0.270595i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 513842. 1.17605 0.588026 0.808842i 0.299905π-0.299905\pi
0.588026 + 0.808842i 0.299905π0.299905\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 −700488. −1.57925
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 − 312958.i − 0.690965i −0.938425 0.345482i 0.887715π-0.887715\pi
0.938425 0.345482i 0.112285π-0.112285\pi
674674 −418552. −0.921361
675675 0 0
676676 449328. 0.983264
677677 − 905842.i − 1.97640i −0.153165 0.988201i 0.548947π-0.548947\pi
0.153165 0.988201i 0.451053π-0.451053\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 590716. 1.24434
690690 0 0
691691 0 0 1.00000 00
−1.00000 π\pi
692692 − 784672.i − 1.63861i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 978236.i 2.01362i
698698 − 456008.i − 0.935969i
699699 0 0
700700 0 0
701701 712402. 1.44974 0.724868 0.688887i 0.241901π-0.241901\pi
0.724868 + 0.688887i 0.241901π0.241901\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 186872. 0.374917
707707 0 0
708708 0 0
709709 737038. 1.46621 0.733107 0.680113i 0.238069π-0.238069\pi
0.733107 + 0.680113i 0.238069π0.238069\pi
710710 0 0
711711 0 0
712712 − 624512.i − 1.23192i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 521284.i 1.00000i
723723 0 0
724724 1.02525e6 1.95592
725725 0 0
726726 0 0
727727 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
728728 0 0
729729 −531441. −1.00000
730730 0 0
731731 0 0
732732 0 0
733733 1.02792e6i 1.91316i 0.291463 + 0.956582i 0.405858π0.405858\pi
−0.291463 + 0.956582i 0.594142π0.594142\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 984312.i 1.80726i
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 −96968.0 −0.174241
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 −78064.0 −0.137312
755755 0 0
756756 0 0
757757 − 270002.i − 0.471167i −0.971854 0.235584i 0.924300π-0.924300\pi
0.971854 0.235584i 0.0757002π-0.0757002\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.15216e6 −1.98949 −0.994747 0.102362i 0.967360π-0.967360\pi
−0.994747 + 0.102362i 0.967360π0.967360\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 257278. 0.435061 0.217530 0.976054i 0.430200π-0.430200\pi
0.217530 + 0.976054i 0.430200π0.430200\pi
770770 0 0
771771 0 0
772772 614368.i 1.03085i
773773 − 1.04296e6i − 1.74545i −0.488211 0.872726i 0.662350π-0.662350\pi
0.488211 0.872726i 0.337650π-0.337650\pi
774774 0 0
775775 0 0
776776 122752. 0.203847
777777 0 0
778778 639032.i 1.05576i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −614656. −1.00000
785785 0 0
786786 0 0
787787 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
788788 1.19171e6i 1.91919i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 1.65600e6i 2.63339i
794794 429128. 0.680684
795795 0 0
796796 0 0
797797 38318.0i 0.0603235i 0.999545 + 0.0301617i 0.00960223π0.00960223\pi
−0.999545 + 0.0301617i 0.990398π0.990398\pi
798798 0 0
799799 0 0
800800 0 0
801801 −790398. −1.23192
802802 1.26081e6i 1.96020i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 − 1.20333e6i − 1.84315i
809809 −995362. −1.52084 −0.760421 0.649431i 0.775007π-0.775007\pi
−0.760421 + 0.649431i 0.775007π0.775007\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 − 1.10785e6i − 1.65567i
819819 0 0
820820 0 0
821821 −611918. −0.907835 −0.453917 0.891044i 0.649974π-0.649974\pi
−0.453917 + 0.891044i 0.649974π0.649974\pi
822822 0 0
823823 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 −208082. −0.302779 −0.151389 0.988474i 0.548375π-0.548375\pi
−0.151389 + 0.988474i 0.548375π0.548375\pi
830830 0 0
831831 0 0
832832 974848.i 1.40828i
833833 773122.i 1.11419i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 −700557. −0.990493
842842 − 1.40447e6i − 1.98102i
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 635392.i 0.883588i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 − 1.28712e6i − 1.76897i −0.466569 0.884485i 0.654510π-0.654510\pi
0.466569 0.884485i 0.345490π-0.345490\pi
854854 0 0
855855 0 0
856856 0 0
857857 − 1.25360e6i − 1.70686i −0.521207 0.853430i 0.674518π-0.674518\pi
0.521207 0.853430i 0.325482π-0.325482\pi
858858 0 0
859859 0 0 1.00000 00
−1.00000 π\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 1.16351e6 1.55144
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 599168.i 0.787981i
873873 − 155358.i − 0.203847i
874874 0 0
875875 0 0
876876 0 0
877877 − 1.05384e6i − 1.37018i −0.728460 0.685088i 0.759764π-0.759764\pi
0.728460 0.685088i 0.240236π-0.240236\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.00768e6 −1.29828 −0.649142 0.760667i 0.724872π-0.724872\pi
−0.649142 + 0.760667i 0.724872π0.724872\pi
882882 777924.i 1.00000i
883883 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
884884 1.22618e6 1.56909
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 − 358408.i − 0.444452i
899899 0 0
900900 0 0
901901 799204. 0.984483
902902 0 0
903903 0 0
904904 −1.57683e6 −1.92952
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 −1.52296e6 −1.84315
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 1.21921e6 1.45944
915915 0 0
916916 1.44771e6 1.72541
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 − 610232.i − 0.717849i
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 − 83968.0i − 0.0975030i
929929 1.65952e6 1.92287 0.961436 0.275027i 0.0886870π-0.0886870\pi
0.961436 + 0.275027i 0.0886870π0.0886870\pi
930930 0 0
931931 0 0
932932 1.03165e6i 1.18768i
933933 0 0
934934 0 0
935935 0 0
936936 1.23379e6 1.40828
937937 1.57104e6i 1.78940i 0.446667 + 0.894700i 0.352611π0.352611\pi
−0.446667 + 0.894700i 0.647389π0.647389\pi
938938 0 0
939939 0 0
940940 0 0
941941 425362. 0.480374 0.240187 0.970727i 0.422791π-0.422791\pi
0.240187 + 0.970727i 0.422791π0.422791\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 343196. 0.381074
950950 0 0
951951 0 0
952952 0 0
953953 − 303518.i − 0.334194i −0.985940 0.167097i 0.946561π-0.946561\pi
0.985940 0.167097i 0.0534393π-0.0534393\pi
954954 804168. 0.883588
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 923521. 1.00000
962962 − 2.05822e6i − 2.22404i
963963 0 0
964964 −936992. −1.00828
965965 0 0
966966 0 0
967967 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
968968 − 937024.i − 1.00000i
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −1.78125e6 −1.86993
977977 − 1.66304e6i − 1.74226i −0.491048 0.871132i 0.663386π-0.663386\pi
0.491048 0.871132i 0.336614π-0.336614\pi
978978 0 0
979979 0 0
980980 0 0
981981 758322. 0.787981
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 −105616. −0.108637
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 − 1.43448e6i − 1.44313i −0.692348 0.721564i 0.743424π-0.743424\pi
0.692348 0.721564i 0.256576π-0.256576\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.5.d.a.99.2 2
4.3 odd 2 CM 100.5.d.a.99.2 2
5.2 odd 4 4.5.b.a.3.1 1
5.3 odd 4 100.5.b.a.51.1 1
5.4 even 2 inner 100.5.d.a.99.1 2
15.2 even 4 36.5.d.a.19.1 1
20.3 even 4 100.5.b.a.51.1 1
20.7 even 4 4.5.b.a.3.1 1
20.19 odd 2 inner 100.5.d.a.99.1 2
35.27 even 4 196.5.c.a.99.1 1
40.27 even 4 64.5.c.a.63.1 1
40.37 odd 4 64.5.c.a.63.1 1
60.47 odd 4 36.5.d.a.19.1 1
80.27 even 4 256.5.d.c.127.1 2
80.37 odd 4 256.5.d.c.127.1 2
80.67 even 4 256.5.d.c.127.2 2
80.77 odd 4 256.5.d.c.127.2 2
120.77 even 4 576.5.g.b.127.1 1
120.107 odd 4 576.5.g.b.127.1 1
140.27 odd 4 196.5.c.a.99.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4.5.b.a.3.1 1 5.2 odd 4
4.5.b.a.3.1 1 20.7 even 4
36.5.d.a.19.1 1 15.2 even 4
36.5.d.a.19.1 1 60.47 odd 4
64.5.c.a.63.1 1 40.27 even 4
64.5.c.a.63.1 1 40.37 odd 4
100.5.b.a.51.1 1 5.3 odd 4
100.5.b.a.51.1 1 20.3 even 4
100.5.d.a.99.1 2 5.4 even 2 inner
100.5.d.a.99.1 2 20.19 odd 2 inner
100.5.d.a.99.2 2 1.1 even 1 trivial
100.5.d.a.99.2 2 4.3 odd 2 CM
196.5.c.a.99.1 1 35.27 even 4
196.5.c.a.99.1 1 140.27 odd 4
256.5.d.c.127.1 2 80.27 even 4
256.5.d.c.127.1 2 80.37 odd 4
256.5.d.c.127.2 2 80.67 even 4
256.5.d.c.127.2 2 80.77 odd 4
576.5.g.b.127.1 1 120.77 even 4
576.5.g.b.127.1 1 120.107 odd 4