Properties

Label 100.6.a.b.1.1
Level $100$
Weight $6$
Character 100.1
Self dual yes
Analytic conductor $16.038$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [100,6,Mod(1,100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("100.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.0383819813\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+12.0000 q^{3} +88.0000 q^{7} -99.0000 q^{9} +540.000 q^{11} +418.000 q^{13} -594.000 q^{17} +836.000 q^{19} +1056.00 q^{21} +4104.00 q^{23} -4104.00 q^{27} -594.000 q^{29} +4256.00 q^{31} +6480.00 q^{33} +298.000 q^{37} +5016.00 q^{39} +17226.0 q^{41} +12100.0 q^{43} +1296.00 q^{47} -9063.00 q^{49} -7128.00 q^{51} -19494.0 q^{53} +10032.0 q^{57} -7668.00 q^{59} -34738.0 q^{61} -8712.00 q^{63} -21812.0 q^{67} +49248.0 q^{69} -46872.0 q^{71} -67562.0 q^{73} +47520.0 q^{77} -76912.0 q^{79} -25191.0 q^{81} -67716.0 q^{83} -7128.00 q^{87} +29754.0 q^{89} +36784.0 q^{91} +51072.0 q^{93} +122398. q^{97} -53460.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.0000 0.769800 0.384900 0.922958i \(-0.374236\pi\)
0.384900 + 0.922958i \(0.374236\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 88.0000 0.678793 0.339397 0.940643i \(-0.389777\pi\)
0.339397 + 0.940643i \(0.389777\pi\)
\(8\) 0 0
\(9\) −99.0000 −0.407407
\(10\) 0 0
\(11\) 540.000 1.34559 0.672794 0.739830i \(-0.265094\pi\)
0.672794 + 0.739830i \(0.265094\pi\)
\(12\) 0 0
\(13\) 418.000 0.685990 0.342995 0.939337i \(-0.388559\pi\)
0.342995 + 0.939337i \(0.388559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −594.000 −0.498499 −0.249249 0.968439i \(-0.580184\pi\)
−0.249249 + 0.968439i \(0.580184\pi\)
\(18\) 0 0
\(19\) 836.000 0.531279 0.265639 0.964072i \(-0.414417\pi\)
0.265639 + 0.964072i \(0.414417\pi\)
\(20\) 0 0
\(21\) 1056.00 0.522535
\(22\) 0 0
\(23\) 4104.00 1.61766 0.808831 0.588041i \(-0.200101\pi\)
0.808831 + 0.588041i \(0.200101\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −4104.00 −1.08342
\(28\) 0 0
\(29\) −594.000 −0.131157 −0.0655785 0.997847i \(-0.520889\pi\)
−0.0655785 + 0.997847i \(0.520889\pi\)
\(30\) 0 0
\(31\) 4256.00 0.795422 0.397711 0.917511i \(-0.369805\pi\)
0.397711 + 0.917511i \(0.369805\pi\)
\(32\) 0 0
\(33\) 6480.00 1.03583
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 298.000 0.0357859 0.0178930 0.999840i \(-0.494304\pi\)
0.0178930 + 0.999840i \(0.494304\pi\)
\(38\) 0 0
\(39\) 5016.00 0.528075
\(40\) 0 0
\(41\) 17226.0 1.60039 0.800193 0.599742i \(-0.204730\pi\)
0.800193 + 0.599742i \(0.204730\pi\)
\(42\) 0 0
\(43\) 12100.0 0.997963 0.498981 0.866613i \(-0.333708\pi\)
0.498981 + 0.866613i \(0.333708\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1296.00 0.0855777 0.0427888 0.999084i \(-0.486376\pi\)
0.0427888 + 0.999084i \(0.486376\pi\)
\(48\) 0 0
\(49\) −9063.00 −0.539240
\(50\) 0 0
\(51\) −7128.00 −0.383745
\(52\) 0 0
\(53\) −19494.0 −0.953260 −0.476630 0.879104i \(-0.658142\pi\)
−0.476630 + 0.879104i \(0.658142\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 10032.0 0.408978
\(58\) 0 0
\(59\) −7668.00 −0.286782 −0.143391 0.989666i \(-0.545801\pi\)
−0.143391 + 0.989666i \(0.545801\pi\)
\(60\) 0 0
\(61\) −34738.0 −1.19531 −0.597655 0.801754i \(-0.703901\pi\)
−0.597655 + 0.801754i \(0.703901\pi\)
\(62\) 0 0
\(63\) −8712.00 −0.276545
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −21812.0 −0.593620 −0.296810 0.954937i \(-0.595923\pi\)
−0.296810 + 0.954937i \(0.595923\pi\)
\(68\) 0 0
\(69\) 49248.0 1.24528
\(70\) 0 0
\(71\) −46872.0 −1.10349 −0.551744 0.834014i \(-0.686037\pi\)
−0.551744 + 0.834014i \(0.686037\pi\)
\(72\) 0 0
\(73\) −67562.0 −1.48387 −0.741934 0.670473i \(-0.766091\pi\)
−0.741934 + 0.670473i \(0.766091\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 47520.0 0.913376
\(78\) 0 0
\(79\) −76912.0 −1.38652 −0.693260 0.720687i \(-0.743826\pi\)
−0.693260 + 0.720687i \(0.743826\pi\)
\(80\) 0 0
\(81\) −25191.0 −0.426612
\(82\) 0 0
\(83\) −67716.0 −1.07894 −0.539468 0.842006i \(-0.681375\pi\)
−0.539468 + 0.842006i \(0.681375\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −7128.00 −0.100965
\(88\) 0 0
\(89\) 29754.0 0.398172 0.199086 0.979982i \(-0.436203\pi\)
0.199086 + 0.979982i \(0.436203\pi\)
\(90\) 0 0
\(91\) 36784.0 0.465646
\(92\) 0 0
\(93\) 51072.0 0.612316
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 122398. 1.32082 0.660412 0.750903i \(-0.270382\pi\)
0.660412 + 0.750903i \(0.270382\pi\)
\(98\) 0 0
\(99\) −53460.0 −0.548202
\(100\) 0 0
\(101\) 11286.0 0.110087 0.0550436 0.998484i \(-0.482470\pi\)
0.0550436 + 0.998484i \(0.482470\pi\)
\(102\) 0 0
\(103\) 27256.0 0.253145 0.126572 0.991957i \(-0.459602\pi\)
0.126572 + 0.991957i \(0.459602\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −122364. −1.03322 −0.516612 0.856220i \(-0.672807\pi\)
−0.516612 + 0.856220i \(0.672807\pi\)
\(108\) 0 0
\(109\) 99902.0 0.805393 0.402697 0.915334i \(-0.368073\pi\)
0.402697 + 0.915334i \(0.368073\pi\)
\(110\) 0 0
\(111\) 3576.00 0.0275480
\(112\) 0 0
\(113\) 29646.0 0.218409 0.109204 0.994019i \(-0.465170\pi\)
0.109204 + 0.994019i \(0.465170\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −41382.0 −0.279477
\(118\) 0 0
\(119\) −52272.0 −0.338378
\(120\) 0 0
\(121\) 130549. 0.810607
\(122\) 0 0
\(123\) 206712. 1.23198
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −336512. −1.85136 −0.925681 0.378305i \(-0.876507\pi\)
−0.925681 + 0.378305i \(0.876507\pi\)
\(128\) 0 0
\(129\) 145200. 0.768232
\(130\) 0 0
\(131\) 100980. 0.514111 0.257056 0.966397i \(-0.417248\pi\)
0.257056 + 0.966397i \(0.417248\pi\)
\(132\) 0 0
\(133\) 73568.0 0.360628
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 317142. 1.44362 0.721809 0.692092i \(-0.243311\pi\)
0.721809 + 0.692092i \(0.243311\pi\)
\(138\) 0 0
\(139\) −148324. −0.651140 −0.325570 0.945518i \(-0.605556\pi\)
−0.325570 + 0.945518i \(0.605556\pi\)
\(140\) 0 0
\(141\) 15552.0 0.0658777
\(142\) 0 0
\(143\) 225720. 0.923060
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −108756. −0.415107
\(148\) 0 0
\(149\) 196614. 0.725519 0.362759 0.931883i \(-0.381835\pi\)
0.362759 + 0.931883i \(0.381835\pi\)
\(150\) 0 0
\(151\) 74360.0 0.265398 0.132699 0.991156i \(-0.457636\pi\)
0.132699 + 0.991156i \(0.457636\pi\)
\(152\) 0 0
\(153\) 58806.0 0.203092
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −120878. −0.391380 −0.195690 0.980666i \(-0.562695\pi\)
−0.195690 + 0.980666i \(0.562695\pi\)
\(158\) 0 0
\(159\) −233928. −0.733820
\(160\) 0 0
\(161\) 361152. 1.09806
\(162\) 0 0
\(163\) 111340. 0.328233 0.164116 0.986441i \(-0.447523\pi\)
0.164116 + 0.986441i \(0.447523\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 491832. 1.36466 0.682332 0.731043i \(-0.260966\pi\)
0.682332 + 0.731043i \(0.260966\pi\)
\(168\) 0 0
\(169\) −196569. −0.529417
\(170\) 0 0
\(171\) −82764.0 −0.216447
\(172\) 0 0
\(173\) −707454. −1.79714 −0.898572 0.438826i \(-0.855395\pi\)
−0.898572 + 0.438826i \(0.855395\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −92016.0 −0.220765
\(178\) 0 0
\(179\) 493668. 1.15160 0.575801 0.817590i \(-0.304690\pi\)
0.575801 + 0.817590i \(0.304690\pi\)
\(180\) 0 0
\(181\) −559450. −1.26930 −0.634651 0.772799i \(-0.718856\pi\)
−0.634651 + 0.772799i \(0.718856\pi\)
\(182\) 0 0
\(183\) −416856. −0.920149
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −320760. −0.670774
\(188\) 0 0
\(189\) −361152. −0.735420
\(190\) 0 0
\(191\) −724032. −1.43607 −0.718033 0.696009i \(-0.754957\pi\)
−0.718033 + 0.696009i \(0.754957\pi\)
\(192\) 0 0
\(193\) −7106.00 −0.0137319 −0.00686597 0.999976i \(-0.502186\pi\)
−0.00686597 + 0.999976i \(0.502186\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 530442. 0.973806 0.486903 0.873456i \(-0.338127\pi\)
0.486903 + 0.873456i \(0.338127\pi\)
\(198\) 0 0
\(199\) 56168.0 0.100544 0.0502720 0.998736i \(-0.483991\pi\)
0.0502720 + 0.998736i \(0.483991\pi\)
\(200\) 0 0
\(201\) −261744. −0.456969
\(202\) 0 0
\(203\) −52272.0 −0.0890285
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −406296. −0.659047
\(208\) 0 0
\(209\) 451440. 0.714882
\(210\) 0 0
\(211\) −339196. −0.524499 −0.262249 0.965000i \(-0.584464\pi\)
−0.262249 + 0.965000i \(0.584464\pi\)
\(212\) 0 0
\(213\) −562464. −0.849465
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 374528. 0.539927
\(218\) 0 0
\(219\) −810744. −1.14228
\(220\) 0 0
\(221\) −248292. −0.341965
\(222\) 0 0
\(223\) −779360. −1.04948 −0.524742 0.851261i \(-0.675838\pi\)
−0.524742 + 0.851261i \(0.675838\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 744876. 0.959443 0.479722 0.877421i \(-0.340738\pi\)
0.479722 + 0.877421i \(0.340738\pi\)
\(228\) 0 0
\(229\) −272746. −0.343692 −0.171846 0.985124i \(-0.554973\pi\)
−0.171846 + 0.985124i \(0.554973\pi\)
\(230\) 0 0
\(231\) 570240. 0.703117
\(232\) 0 0
\(233\) 153846. 0.185651 0.0928253 0.995682i \(-0.470410\pi\)
0.0928253 + 0.995682i \(0.470410\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −922944. −1.06734
\(238\) 0 0
\(239\) 1.15474e6 1.30764 0.653820 0.756650i \(-0.273166\pi\)
0.653820 + 0.756650i \(0.273166\pi\)
\(240\) 0 0
\(241\) 657074. 0.728738 0.364369 0.931255i \(-0.381285\pi\)
0.364369 + 0.931255i \(0.381285\pi\)
\(242\) 0 0
\(243\) 694980. 0.755017
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 349448. 0.364452
\(248\) 0 0
\(249\) −812592. −0.830566
\(250\) 0 0
\(251\) 1.34190e6 1.34442 0.672211 0.740359i \(-0.265345\pi\)
0.672211 + 0.740359i \(0.265345\pi\)
\(252\) 0 0
\(253\) 2.21616e6 2.17671
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −132354. −0.124998 −0.0624992 0.998045i \(-0.519907\pi\)
−0.0624992 + 0.998045i \(0.519907\pi\)
\(258\) 0 0
\(259\) 26224.0 0.0242912
\(260\) 0 0
\(261\) 58806.0 0.0534343
\(262\) 0 0
\(263\) −943272. −0.840906 −0.420453 0.907314i \(-0.638129\pi\)
−0.420453 + 0.907314i \(0.638129\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 357048. 0.306513
\(268\) 0 0
\(269\) 967518. 0.815227 0.407613 0.913155i \(-0.366361\pi\)
0.407613 + 0.913155i \(0.366361\pi\)
\(270\) 0 0
\(271\) −518320. −0.428721 −0.214360 0.976755i \(-0.568767\pi\)
−0.214360 + 0.976755i \(0.568767\pi\)
\(272\) 0 0
\(273\) 441408. 0.358454
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.22273e6 −1.74055 −0.870275 0.492566i \(-0.836059\pi\)
−0.870275 + 0.492566i \(0.836059\pi\)
\(278\) 0 0
\(279\) −421344. −0.324061
\(280\) 0 0
\(281\) −196614. −0.148542 −0.0742709 0.997238i \(-0.523663\pi\)
−0.0742709 + 0.997238i \(0.523663\pi\)
\(282\) 0 0
\(283\) 1.55228e6 1.15213 0.576067 0.817403i \(-0.304587\pi\)
0.576067 + 0.817403i \(0.304587\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.51589e6 1.08633
\(288\) 0 0
\(289\) −1.06702e6 −0.751499
\(290\) 0 0
\(291\) 1.46878e6 1.01677
\(292\) 0 0
\(293\) 1.07217e6 0.729616 0.364808 0.931083i \(-0.381135\pi\)
0.364808 + 0.931083i \(0.381135\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2.21616e6 −1.45784
\(298\) 0 0
\(299\) 1.71547e6 1.10970
\(300\) 0 0
\(301\) 1.06480e6 0.677410
\(302\) 0 0
\(303\) 135432. 0.0847451
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −1.58589e6 −0.960346 −0.480173 0.877174i \(-0.659426\pi\)
−0.480173 + 0.877174i \(0.659426\pi\)
\(308\) 0 0
\(309\) 327072. 0.194871
\(310\) 0 0
\(311\) −730728. −0.428405 −0.214203 0.976789i \(-0.568715\pi\)
−0.214203 + 0.976789i \(0.568715\pi\)
\(312\) 0 0
\(313\) −584858. −0.337435 −0.168717 0.985664i \(-0.553962\pi\)
−0.168717 + 0.985664i \(0.553962\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.48287e6 1.38773 0.693865 0.720105i \(-0.255906\pi\)
0.693865 + 0.720105i \(0.255906\pi\)
\(318\) 0 0
\(319\) −320760. −0.176483
\(320\) 0 0
\(321\) −1.46837e6 −0.795376
\(322\) 0 0
\(323\) −496584. −0.264842
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1.19882e6 0.619992
\(328\) 0 0
\(329\) 114048. 0.0580895
\(330\) 0 0
\(331\) 377948. 0.189610 0.0948052 0.995496i \(-0.469777\pi\)
0.0948052 + 0.995496i \(0.469777\pi\)
\(332\) 0 0
\(333\) −29502.0 −0.0145794
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −639122. −0.306555 −0.153278 0.988183i \(-0.548983\pi\)
−0.153278 + 0.988183i \(0.548983\pi\)
\(338\) 0 0
\(339\) 355752. 0.168131
\(340\) 0 0
\(341\) 2.29824e6 1.07031
\(342\) 0 0
\(343\) −2.27656e6 −1.04483
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.90466e6 1.29501 0.647503 0.762063i \(-0.275813\pi\)
0.647503 + 0.762063i \(0.275813\pi\)
\(348\) 0 0
\(349\) −3.99157e6 −1.75420 −0.877102 0.480304i \(-0.840526\pi\)
−0.877102 + 0.480304i \(0.840526\pi\)
\(350\) 0 0
\(351\) −1.71547e6 −0.743217
\(352\) 0 0
\(353\) −1.42922e6 −0.610466 −0.305233 0.952278i \(-0.598734\pi\)
−0.305233 + 0.952278i \(0.598734\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −627264. −0.260483
\(358\) 0 0
\(359\) 1.16186e6 0.475794 0.237897 0.971290i \(-0.423542\pi\)
0.237897 + 0.971290i \(0.423542\pi\)
\(360\) 0 0
\(361\) −1.77720e6 −0.717743
\(362\) 0 0
\(363\) 1.56659e6 0.624005
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.08923e6 0.422139 0.211069 0.977471i \(-0.432305\pi\)
0.211069 + 0.977471i \(0.432305\pi\)
\(368\) 0 0
\(369\) −1.70537e6 −0.652009
\(370\) 0 0
\(371\) −1.71547e6 −0.647066
\(372\) 0 0
\(373\) −3.50577e6 −1.30470 −0.652350 0.757918i \(-0.726217\pi\)
−0.652350 + 0.757918i \(0.726217\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −248292. −0.0899724
\(378\) 0 0
\(379\) 4.04385e6 1.44610 0.723048 0.690798i \(-0.242740\pi\)
0.723048 + 0.690798i \(0.242740\pi\)
\(380\) 0 0
\(381\) −4.03814e6 −1.42518
\(382\) 0 0
\(383\) −5.18746e6 −1.80700 −0.903499 0.428591i \(-0.859010\pi\)
−0.903499 + 0.428591i \(0.859010\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.19790e6 −0.406577
\(388\) 0 0
\(389\) −950346. −0.318425 −0.159213 0.987244i \(-0.550896\pi\)
−0.159213 + 0.987244i \(0.550896\pi\)
\(390\) 0 0
\(391\) −2.43778e6 −0.806403
\(392\) 0 0
\(393\) 1.21176e6 0.395763
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 520738. 0.165822 0.0829112 0.996557i \(-0.473578\pi\)
0.0829112 + 0.996557i \(0.473578\pi\)
\(398\) 0 0
\(399\) 882816. 0.277612
\(400\) 0 0
\(401\) 764370. 0.237379 0.118690 0.992931i \(-0.462131\pi\)
0.118690 + 0.992931i \(0.462131\pi\)
\(402\) 0 0
\(403\) 1.77901e6 0.545651
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 160920. 0.0481531
\(408\) 0 0
\(409\) 2.64051e6 0.780511 0.390255 0.920707i \(-0.372387\pi\)
0.390255 + 0.920707i \(0.372387\pi\)
\(410\) 0 0
\(411\) 3.80570e6 1.11130
\(412\) 0 0
\(413\) −674784. −0.194666
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −1.77989e6 −0.501248
\(418\) 0 0
\(419\) −4.98020e6 −1.38584 −0.692918 0.721016i \(-0.743675\pi\)
−0.692918 + 0.721016i \(0.743675\pi\)
\(420\) 0 0
\(421\) −237994. −0.0654426 −0.0327213 0.999465i \(-0.510417\pi\)
−0.0327213 + 0.999465i \(0.510417\pi\)
\(422\) 0 0
\(423\) −128304. −0.0348650
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.05694e6 −0.811368
\(428\) 0 0
\(429\) 2.70864e6 0.710572
\(430\) 0 0
\(431\) −3.88238e6 −1.00671 −0.503356 0.864079i \(-0.667902\pi\)
−0.503356 + 0.864079i \(0.667902\pi\)
\(432\) 0 0
\(433\) 66958.0 0.0171626 0.00858129 0.999963i \(-0.497268\pi\)
0.00858129 + 0.999963i \(0.497268\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.43094e6 0.859429
\(438\) 0 0
\(439\) −6.50135e6 −1.61006 −0.805031 0.593233i \(-0.797851\pi\)
−0.805031 + 0.593233i \(0.797851\pi\)
\(440\) 0 0
\(441\) 897237. 0.219690
\(442\) 0 0
\(443\) 4.60760e6 1.11549 0.557745 0.830012i \(-0.311667\pi\)
0.557745 + 0.830012i \(0.311667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2.35937e6 0.558505
\(448\) 0 0
\(449\) 3.77671e6 0.884092 0.442046 0.896992i \(-0.354253\pi\)
0.442046 + 0.896992i \(0.354253\pi\)
\(450\) 0 0
\(451\) 9.30204e6 2.15346
\(452\) 0 0
\(453\) 892320. 0.204303
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.18069e6 0.712412 0.356206 0.934407i \(-0.384070\pi\)
0.356206 + 0.934407i \(0.384070\pi\)
\(458\) 0 0
\(459\) 2.43778e6 0.540085
\(460\) 0 0
\(461\) 6.68547e6 1.46514 0.732571 0.680691i \(-0.238320\pi\)
0.732571 + 0.680691i \(0.238320\pi\)
\(462\) 0 0
\(463\) 4.35122e6 0.943318 0.471659 0.881781i \(-0.343655\pi\)
0.471659 + 0.881781i \(0.343655\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.07994e6 −1.50223 −0.751117 0.660170i \(-0.770484\pi\)
−0.751117 + 0.660170i \(0.770484\pi\)
\(468\) 0 0
\(469\) −1.91946e6 −0.402945
\(470\) 0 0
\(471\) −1.45054e6 −0.301284
\(472\) 0 0
\(473\) 6.53400e6 1.34285
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1.92991e6 0.388365
\(478\) 0 0
\(479\) 3.22186e6 0.641604 0.320802 0.947146i \(-0.396048\pi\)
0.320802 + 0.947146i \(0.396048\pi\)
\(480\) 0 0
\(481\) 124564. 0.0245488
\(482\) 0 0
\(483\) 4.33382e6 0.845286
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −2.29710e6 −0.438891 −0.219446 0.975625i \(-0.570425\pi\)
−0.219446 + 0.975625i \(0.570425\pi\)
\(488\) 0 0
\(489\) 1.33608e6 0.252674
\(490\) 0 0
\(491\) 2.82150e6 0.528173 0.264087 0.964499i \(-0.414930\pi\)
0.264087 + 0.964499i \(0.414930\pi\)
\(492\) 0 0
\(493\) 352836. 0.0653816
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.12474e6 −0.749040
\(498\) 0 0
\(499\) −4.13628e6 −0.743634 −0.371817 0.928306i \(-0.621265\pi\)
−0.371817 + 0.928306i \(0.621265\pi\)
\(500\) 0 0
\(501\) 5.90198e6 1.05052
\(502\) 0 0
\(503\) −8.33263e6 −1.46846 −0.734230 0.678901i \(-0.762457\pi\)
−0.734230 + 0.678901i \(0.762457\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.35883e6 −0.407546
\(508\) 0 0
\(509\) 4.34101e6 0.742670 0.371335 0.928499i \(-0.378900\pi\)
0.371335 + 0.928499i \(0.378900\pi\)
\(510\) 0 0
\(511\) −5.94546e6 −1.00724
\(512\) 0 0
\(513\) −3.43094e6 −0.575599
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 699840. 0.115152
\(518\) 0 0
\(519\) −8.48945e6 −1.38344
\(520\) 0 0
\(521\) −6.74185e6 −1.08814 −0.544070 0.839040i \(-0.683117\pi\)
−0.544070 + 0.839040i \(0.683117\pi\)
\(522\) 0 0
\(523\) 7.72196e6 1.23445 0.617224 0.786787i \(-0.288257\pi\)
0.617224 + 0.786787i \(0.288257\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.52806e6 −0.396517
\(528\) 0 0
\(529\) 1.04065e7 1.61683
\(530\) 0 0
\(531\) 759132. 0.116837
\(532\) 0 0
\(533\) 7.20047e6 1.09785
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 5.92402e6 0.886504
\(538\) 0 0
\(539\) −4.89402e6 −0.725594
\(540\) 0 0
\(541\) −682066. −0.100192 −0.0500960 0.998744i \(-0.515953\pi\)
−0.0500960 + 0.998744i \(0.515953\pi\)
\(542\) 0 0
\(543\) −6.71340e6 −0.977109
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2.15772e6 −0.308337 −0.154169 0.988045i \(-0.549270\pi\)
−0.154169 + 0.988045i \(0.549270\pi\)
\(548\) 0 0
\(549\) 3.43906e6 0.486978
\(550\) 0 0
\(551\) −496584. −0.0696809
\(552\) 0 0
\(553\) −6.76826e6 −0.941161
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.67597e6 0.365463 0.182731 0.983163i \(-0.441506\pi\)
0.182731 + 0.983163i \(0.441506\pi\)
\(558\) 0 0
\(559\) 5.05780e6 0.684592
\(560\) 0 0
\(561\) −3.84912e6 −0.516362
\(562\) 0 0
\(563\) 3.55331e6 0.472457 0.236228 0.971698i \(-0.424089\pi\)
0.236228 + 0.971698i \(0.424089\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.21681e6 −0.289581
\(568\) 0 0
\(569\) −1.29225e7 −1.67327 −0.836633 0.547764i \(-0.815479\pi\)
−0.836633 + 0.547764i \(0.815479\pi\)
\(570\) 0 0
\(571\) −6.08357e6 −0.780851 −0.390426 0.920634i \(-0.627672\pi\)
−0.390426 + 0.920634i \(0.627672\pi\)
\(572\) 0 0
\(573\) −8.68838e6 −1.10548
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 1.58241e7 1.97869 0.989347 0.145579i \(-0.0465047\pi\)
0.989347 + 0.145579i \(0.0465047\pi\)
\(578\) 0 0
\(579\) −85272.0 −0.0105709
\(580\) 0 0
\(581\) −5.95901e6 −0.732375
\(582\) 0 0
\(583\) −1.05268e7 −1.28269
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.60220e6 −0.551278 −0.275639 0.961261i \(-0.588889\pi\)
−0.275639 + 0.961261i \(0.588889\pi\)
\(588\) 0 0
\(589\) 3.55802e6 0.422590
\(590\) 0 0
\(591\) 6.36530e6 0.749636
\(592\) 0 0
\(593\) −8.61122e6 −1.00561 −0.502803 0.864401i \(-0.667698\pi\)
−0.502803 + 0.864401i \(0.667698\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 674016. 0.0773988
\(598\) 0 0
\(599\) −7.98228e6 −0.908992 −0.454496 0.890749i \(-0.650181\pi\)
−0.454496 + 0.890749i \(0.650181\pi\)
\(600\) 0 0
\(601\) 1.01740e7 1.14896 0.574481 0.818518i \(-0.305204\pi\)
0.574481 + 0.818518i \(0.305204\pi\)
\(602\) 0 0
\(603\) 2.15939e6 0.241845
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.95843e6 1.09703 0.548516 0.836140i \(-0.315193\pi\)
0.548516 + 0.836140i \(0.315193\pi\)
\(608\) 0 0
\(609\) −627264. −0.0685342
\(610\) 0 0
\(611\) 541728. 0.0587054
\(612\) 0 0
\(613\) −4.19586e6 −0.450993 −0.225497 0.974244i \(-0.572400\pi\)
−0.225497 + 0.974244i \(0.572400\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −9.12551e6 −0.965038 −0.482519 0.875885i \(-0.660278\pi\)
−0.482519 + 0.875885i \(0.660278\pi\)
\(618\) 0 0
\(619\) 6.45734e6 0.677372 0.338686 0.940900i \(-0.390018\pi\)
0.338686 + 0.940900i \(0.390018\pi\)
\(620\) 0 0
\(621\) −1.68428e7 −1.75261
\(622\) 0 0
\(623\) 2.61835e6 0.270276
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 5.41728e6 0.550316
\(628\) 0 0
\(629\) −177012. −0.0178392
\(630\) 0 0
\(631\) −1.40514e7 −1.40490 −0.702450 0.711733i \(-0.747910\pi\)
−0.702450 + 0.711733i \(0.747910\pi\)
\(632\) 0 0
\(633\) −4.07035e6 −0.403759
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.78833e6 −0.369913
\(638\) 0 0
\(639\) 4.64033e6 0.449569
\(640\) 0 0
\(641\) 8.47168e6 0.814375 0.407188 0.913345i \(-0.366510\pi\)
0.407188 + 0.913345i \(0.366510\pi\)
\(642\) 0 0
\(643\) −488564. −0.0466009 −0.0233004 0.999729i \(-0.507417\pi\)
−0.0233004 + 0.999729i \(0.507417\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.48119e6 −0.233023 −0.116512 0.993189i \(-0.537171\pi\)
−0.116512 + 0.993189i \(0.537171\pi\)
\(648\) 0 0
\(649\) −4.14072e6 −0.385891
\(650\) 0 0
\(651\) 4.49434e6 0.415636
\(652\) 0 0
\(653\) 5.29130e6 0.485601 0.242800 0.970076i \(-0.421934\pi\)
0.242800 + 0.970076i \(0.421934\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.68864e6 0.604539
\(658\) 0 0
\(659\) 4.72468e6 0.423798 0.211899 0.977292i \(-0.432035\pi\)
0.211899 + 0.977292i \(0.432035\pi\)
\(660\) 0 0
\(661\) −6.17420e6 −0.549639 −0.274819 0.961496i \(-0.588618\pi\)
−0.274819 + 0.961496i \(0.588618\pi\)
\(662\) 0 0
\(663\) −2.97950e6 −0.263245
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.43778e6 −0.212168
\(668\) 0 0
\(669\) −9.35232e6 −0.807893
\(670\) 0 0
\(671\) −1.87585e7 −1.60839
\(672\) 0 0
\(673\) 9.40925e6 0.800787 0.400394 0.916343i \(-0.368873\pi\)
0.400394 + 0.916343i \(0.368873\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.50086e7 −1.25854 −0.629272 0.777185i \(-0.716647\pi\)
−0.629272 + 0.777185i \(0.716647\pi\)
\(678\) 0 0
\(679\) 1.07710e7 0.896567
\(680\) 0 0
\(681\) 8.93851e6 0.738580
\(682\) 0 0
\(683\) 1.29707e7 1.06393 0.531963 0.846768i \(-0.321455\pi\)
0.531963 + 0.846768i \(0.321455\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3.27295e6 −0.264574
\(688\) 0 0
\(689\) −8.14849e6 −0.653927
\(690\) 0 0
\(691\) 2.26556e7 1.80501 0.902506 0.430677i \(-0.141725\pi\)
0.902506 + 0.430677i \(0.141725\pi\)
\(692\) 0 0
\(693\) −4.70448e6 −0.372116
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −1.02322e7 −0.797791
\(698\) 0 0
\(699\) 1.84615e6 0.142914
\(700\) 0 0
\(701\) 1.90169e7 1.46166 0.730828 0.682562i \(-0.239134\pi\)
0.730828 + 0.682562i \(0.239134\pi\)
\(702\) 0 0
\(703\) 249128. 0.0190123
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 993168. 0.0747264
\(708\) 0 0
\(709\) 1.51311e7 1.13046 0.565231 0.824933i \(-0.308787\pi\)
0.565231 + 0.824933i \(0.308787\pi\)
\(710\) 0 0
\(711\) 7.61429e6 0.564879
\(712\) 0 0
\(713\) 1.74666e7 1.28672
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.38568e7 1.00662
\(718\) 0 0
\(719\) −1.50323e7 −1.08443 −0.542217 0.840238i \(-0.682415\pi\)
−0.542217 + 0.840238i \(0.682415\pi\)
\(720\) 0 0
\(721\) 2.39853e6 0.171833
\(722\) 0 0
\(723\) 7.88489e6 0.560983
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 7.41230e6 0.520136 0.260068 0.965590i \(-0.416255\pi\)
0.260068 + 0.965590i \(0.416255\pi\)
\(728\) 0 0
\(729\) 1.44612e7 1.00782
\(730\) 0 0
\(731\) −7.18740e6 −0.497483
\(732\) 0 0
\(733\) 2.77928e6 0.191061 0.0955306 0.995426i \(-0.469545\pi\)
0.0955306 + 0.995426i \(0.469545\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.17785e7 −0.798768
\(738\) 0 0
\(739\) −1.21046e7 −0.815342 −0.407671 0.913129i \(-0.633659\pi\)
−0.407671 + 0.913129i \(0.633659\pi\)
\(740\) 0 0
\(741\) 4.19338e6 0.280555
\(742\) 0 0
\(743\) −4.46926e6 −0.297005 −0.148502 0.988912i \(-0.547445\pi\)
−0.148502 + 0.988912i \(0.547445\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6.70388e6 0.439567
\(748\) 0 0
\(749\) −1.07680e7 −0.701345
\(750\) 0 0
\(751\) 2.88463e7 1.86634 0.933168 0.359442i \(-0.117033\pi\)
0.933168 + 0.359442i \(0.117033\pi\)
\(752\) 0 0
\(753\) 1.61028e7 1.03494
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.60868e6 −0.609430 −0.304715 0.952444i \(-0.598561\pi\)
−0.304715 + 0.952444i \(0.598561\pi\)
\(758\) 0 0
\(759\) 2.65939e7 1.67563
\(760\) 0 0
\(761\) 4.54588e6 0.284549 0.142274 0.989827i \(-0.454558\pi\)
0.142274 + 0.989827i \(0.454558\pi\)
\(762\) 0 0
\(763\) 8.79138e6 0.546696
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −3.20522e6 −0.196730
\(768\) 0 0
\(769\) −2.15923e7 −1.31669 −0.658345 0.752716i \(-0.728743\pi\)
−0.658345 + 0.752716i \(0.728743\pi\)
\(770\) 0 0
\(771\) −1.58825e6 −0.0962238
\(772\) 0 0
\(773\) 1.48400e7 0.893276 0.446638 0.894715i \(-0.352621\pi\)
0.446638 + 0.894715i \(0.352621\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 314688. 0.0186994
\(778\) 0 0
\(779\) 1.44009e7 0.850251
\(780\) 0 0
\(781\) −2.53109e7 −1.48484
\(782\) 0 0
\(783\) 2.43778e6 0.142098
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2.48785e7 1.43182 0.715909 0.698194i \(-0.246013\pi\)
0.715909 + 0.698194i \(0.246013\pi\)
\(788\) 0 0
\(789\) −1.13193e7 −0.647330
\(790\) 0 0
\(791\) 2.60885e6 0.148254
\(792\) 0 0
\(793\) −1.45205e7 −0.819970
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.16080e7 −1.76259 −0.881294 0.472568i \(-0.843327\pi\)
−0.881294 + 0.472568i \(0.843327\pi\)
\(798\) 0 0
\(799\) −769824. −0.0426604
\(800\) 0 0
\(801\) −2.94565e6 −0.162218
\(802\) 0 0
\(803\) −3.64835e7 −1.99668
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.16102e7 0.627562
\(808\) 0 0
\(809\) −3.10009e6 −0.166534 −0.0832669 0.996527i \(-0.526535\pi\)
−0.0832669 + 0.996527i \(0.526535\pi\)
\(810\) 0 0
\(811\) 1.87180e6 0.0999328 0.0499664 0.998751i \(-0.484089\pi\)
0.0499664 + 0.998751i \(0.484089\pi\)
\(812\) 0 0
\(813\) −6.21984e6 −0.330030
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.01156e7 0.530196
\(818\) 0 0
\(819\) −3.64162e6 −0.189707
\(820\) 0 0
\(821\) −2.00184e7 −1.03650 −0.518252 0.855228i \(-0.673417\pi\)
−0.518252 + 0.855228i \(0.673417\pi\)
\(822\) 0 0
\(823\) −1.53118e7 −0.787999 −0.394000 0.919111i \(-0.628909\pi\)
−0.394000 + 0.919111i \(0.628909\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −9.59310e6 −0.487748 −0.243874 0.969807i \(-0.578418\pi\)
−0.243874 + 0.969807i \(0.578418\pi\)
\(828\) 0 0
\(829\) 2.52209e7 1.27460 0.637302 0.770615i \(-0.280051\pi\)
0.637302 + 0.770615i \(0.280051\pi\)
\(830\) 0 0
\(831\) −2.66727e7 −1.33988
\(832\) 0 0
\(833\) 5.38342e6 0.268810
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.74666e7 −0.861778
\(838\) 0 0
\(839\) −1.77623e7 −0.871154 −0.435577 0.900151i \(-0.643456\pi\)
−0.435577 + 0.900151i \(0.643456\pi\)
\(840\) 0 0
\(841\) −2.01583e7 −0.982798
\(842\) 0 0
\(843\) −2.35937e6 −0.114348
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.14883e7 0.550234
\(848\) 0 0
\(849\) 1.86273e7 0.886913
\(850\) 0 0
\(851\) 1.22299e6 0.0578895
\(852\) 0 0
\(853\) 486970. 0.0229155 0.0114578 0.999934i \(-0.496353\pi\)
0.0114578 + 0.999934i \(0.496353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.92634e6 0.0895945 0.0447972 0.998996i \(-0.485736\pi\)
0.0447972 + 0.998996i \(0.485736\pi\)
\(858\) 0 0
\(859\) 2.23538e7 1.03364 0.516820 0.856094i \(-0.327116\pi\)
0.516820 + 0.856094i \(0.327116\pi\)
\(860\) 0 0
\(861\) 1.81907e7 0.836258
\(862\) 0 0
\(863\) −1.85838e7 −0.849390 −0.424695 0.905337i \(-0.639619\pi\)
−0.424695 + 0.905337i \(0.639619\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1.28043e7 −0.578504
\(868\) 0 0
\(869\) −4.15325e7 −1.86569
\(870\) 0 0
\(871\) −9.11742e6 −0.407217
\(872\) 0 0
\(873\) −1.21174e7 −0.538114
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2.91048e7 1.27781 0.638905 0.769286i \(-0.279388\pi\)
0.638905 + 0.769286i \(0.279388\pi\)
\(878\) 0 0
\(879\) 1.28660e7 0.561659
\(880\) 0 0
\(881\) −3.14696e6 −0.136600 −0.0683001 0.997665i \(-0.521758\pi\)
−0.0683001 + 0.997665i \(0.521758\pi\)
\(882\) 0 0
\(883\) −1.59995e7 −0.690566 −0.345283 0.938499i \(-0.612217\pi\)
−0.345283 + 0.938499i \(0.612217\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.45874e7 1.47608 0.738039 0.674758i \(-0.235752\pi\)
0.738039 + 0.674758i \(0.235752\pi\)
\(888\) 0 0
\(889\) −2.96131e7 −1.25669
\(890\) 0 0
\(891\) −1.36031e7 −0.574044
\(892\) 0 0
\(893\) 1.08346e6 0.0454656
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 2.05857e7 0.854248
\(898\) 0 0
\(899\) −2.52806e6 −0.104325
\(900\) 0 0
\(901\) 1.15794e7 0.475199
\(902\) 0 0
\(903\) 1.27776e7 0.521471
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1.74396e7 −0.703914 −0.351957 0.936016i \(-0.614484\pi\)
−0.351957 + 0.936016i \(0.614484\pi\)
\(908\) 0 0
\(909\) −1.11731e6 −0.0448503
\(910\) 0 0
\(911\) −2.59589e6 −0.103631 −0.0518155 0.998657i \(-0.516501\pi\)
−0.0518155 + 0.998657i \(0.516501\pi\)
\(912\) 0 0
\(913\) −3.65666e7 −1.45180
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.88624e6 0.348975
\(918\) 0 0
\(919\) −1.76411e7 −0.689028 −0.344514 0.938781i \(-0.611956\pi\)
−0.344514 + 0.938781i \(0.611956\pi\)
\(920\) 0 0
\(921\) −1.90307e7 −0.739275
\(922\) 0 0
\(923\) −1.95925e7 −0.756982
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −2.69834e6 −0.103133
\(928\) 0 0
\(929\) 3.96785e7 1.50840 0.754199 0.656646i \(-0.228025\pi\)
0.754199 + 0.656646i \(0.228025\pi\)
\(930\) 0 0
\(931\) −7.57667e6 −0.286486
\(932\) 0 0
\(933\) −8.76874e6 −0.329787
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.93413e7 −1.46386 −0.731930 0.681380i \(-0.761380\pi\)
−0.731930 + 0.681380i \(0.761380\pi\)
\(938\) 0 0
\(939\) −7.01830e6 −0.259757
\(940\) 0 0
\(941\) 4.62506e7 1.70272 0.851361 0.524581i \(-0.175778\pi\)
0.851361 + 0.524581i \(0.175778\pi\)
\(942\) 0 0
\(943\) 7.06955e7 2.58888
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.79025e7 1.37339 0.686693 0.726947i \(-0.259062\pi\)
0.686693 + 0.726947i \(0.259062\pi\)
\(948\) 0 0
\(949\) −2.82409e7 −1.01792
\(950\) 0 0
\(951\) 2.97944e7 1.06828
\(952\) 0 0
\(953\) 2.66462e7 0.950394 0.475197 0.879879i \(-0.342377\pi\)
0.475197 + 0.879879i \(0.342377\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −3.84912e6 −0.135857
\(958\) 0 0
\(959\) 2.79085e7 0.979918
\(960\) 0 0
\(961\) −1.05156e7 −0.367304
\(962\) 0 0
\(963\) 1.21140e7 0.420943
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −4.09790e7 −1.40927 −0.704637 0.709568i \(-0.748890\pi\)
−0.704637 + 0.709568i \(0.748890\pi\)
\(968\) 0 0
\(969\) −5.95901e6 −0.203875
\(970\) 0 0
\(971\) −2.72034e7 −0.925922 −0.462961 0.886379i \(-0.653213\pi\)
−0.462961 + 0.886379i \(0.653213\pi\)
\(972\) 0 0
\(973\) −1.30525e7 −0.441990
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −2.53555e7 −0.849839 −0.424919 0.905231i \(-0.639698\pi\)
−0.424919 + 0.905231i \(0.639698\pi\)
\(978\) 0 0
\(979\) 1.60672e7 0.535775
\(980\) 0 0
\(981\) −9.89030e6 −0.328123
\(982\) 0 0
\(983\) −1.19139e7 −0.393252 −0.196626 0.980479i \(-0.562998\pi\)
−0.196626 + 0.980479i \(0.562998\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.36858e6 0.0447173
\(988\) 0 0
\(989\) 4.96584e7 1.61437
\(990\) 0 0
\(991\) 2.91931e7 0.944268 0.472134 0.881527i \(-0.343484\pi\)
0.472134 + 0.881527i \(0.343484\pi\)
\(992\) 0 0
\(993\) 4.53538e6 0.145962
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 1.73001e7 0.551201 0.275601 0.961272i \(-0.411123\pi\)
0.275601 + 0.961272i \(0.411123\pi\)
\(998\) 0 0
\(999\) −1.22299e6 −0.0387713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.6.a.b.1.1 1
3.2 odd 2 900.6.a.h.1.1 1
4.3 odd 2 400.6.a.d.1.1 1
5.2 odd 4 100.6.c.b.49.1 2
5.3 odd 4 100.6.c.b.49.2 2
5.4 even 2 4.6.a.a.1.1 1
15.2 even 4 900.6.d.a.649.2 2
15.8 even 4 900.6.d.a.649.1 2
15.14 odd 2 36.6.a.a.1.1 1
20.3 even 4 400.6.c.f.49.1 2
20.7 even 4 400.6.c.f.49.2 2
20.19 odd 2 16.6.a.b.1.1 1
35.4 even 6 196.6.e.g.177.1 2
35.9 even 6 196.6.e.g.165.1 2
35.19 odd 6 196.6.e.d.165.1 2
35.24 odd 6 196.6.e.d.177.1 2
35.34 odd 2 196.6.a.e.1.1 1
40.19 odd 2 64.6.a.b.1.1 1
40.29 even 2 64.6.a.f.1.1 1
45.4 even 6 324.6.e.a.217.1 2
45.14 odd 6 324.6.e.d.217.1 2
45.29 odd 6 324.6.e.d.109.1 2
45.34 even 6 324.6.e.a.109.1 2
55.54 odd 2 484.6.a.a.1.1 1
60.59 even 2 144.6.a.c.1.1 1
65.34 odd 4 676.6.d.a.337.2 2
65.44 odd 4 676.6.d.a.337.1 2
65.64 even 2 676.6.a.a.1.1 1
80.19 odd 4 256.6.b.c.129.2 2
80.29 even 4 256.6.b.g.129.1 2
80.59 odd 4 256.6.b.c.129.1 2
80.69 even 4 256.6.b.g.129.2 2
120.29 odd 2 576.6.a.bc.1.1 1
120.59 even 2 576.6.a.bd.1.1 1
140.139 even 2 784.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4.6.a.a.1.1 1 5.4 even 2
16.6.a.b.1.1 1 20.19 odd 2
36.6.a.a.1.1 1 15.14 odd 2
64.6.a.b.1.1 1 40.19 odd 2
64.6.a.f.1.1 1 40.29 even 2
100.6.a.b.1.1 1 1.1 even 1 trivial
100.6.c.b.49.1 2 5.2 odd 4
100.6.c.b.49.2 2 5.3 odd 4
144.6.a.c.1.1 1 60.59 even 2
196.6.a.e.1.1 1 35.34 odd 2
196.6.e.d.165.1 2 35.19 odd 6
196.6.e.d.177.1 2 35.24 odd 6
196.6.e.g.165.1 2 35.9 even 6
196.6.e.g.177.1 2 35.4 even 6
256.6.b.c.129.1 2 80.59 odd 4
256.6.b.c.129.2 2 80.19 odd 4
256.6.b.g.129.1 2 80.29 even 4
256.6.b.g.129.2 2 80.69 even 4
324.6.e.a.109.1 2 45.34 even 6
324.6.e.a.217.1 2 45.4 even 6
324.6.e.d.109.1 2 45.29 odd 6
324.6.e.d.217.1 2 45.14 odd 6
400.6.a.d.1.1 1 4.3 odd 2
400.6.c.f.49.1 2 20.3 even 4
400.6.c.f.49.2 2 20.7 even 4
484.6.a.a.1.1 1 55.54 odd 2
576.6.a.bc.1.1 1 120.29 odd 2
576.6.a.bd.1.1 1 120.59 even 2
676.6.a.a.1.1 1 65.64 even 2
676.6.d.a.337.1 2 65.44 odd 4
676.6.d.a.337.2 2 65.34 odd 4
784.6.a.d.1.1 1 140.139 even 2
900.6.a.h.1.1 1 3.2 odd 2
900.6.d.a.649.1 2 15.8 even 4
900.6.d.a.649.2 2 15.2 even 4