Properties

Label 1000.2.a.b.1.2
Level $1000$
Weight $2$
Character 1000.1
Self dual yes
Analytic conductor $7.985$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1000,2,Mod(1,1000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1000.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.98504020213\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1000.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.618034 q^{3} -0.236068 q^{7} -2.61803 q^{9} +O(q^{10})\) \(q+0.618034 q^{3} -0.236068 q^{7} -2.61803 q^{9} -1.76393 q^{11} -4.61803 q^{13} +2.23607 q^{17} -7.09017 q^{19} -0.145898 q^{21} +0.763932 q^{23} -3.47214 q^{27} -5.76393 q^{29} +0.854102 q^{31} -1.09017 q^{33} -3.23607 q^{37} -2.85410 q^{39} -3.00000 q^{41} +10.7082 q^{43} +9.32624 q^{47} -6.94427 q^{49} +1.38197 q^{51} -3.14590 q^{53} -4.38197 q^{57} -5.61803 q^{59} +7.56231 q^{61} +0.618034 q^{63} +0.381966 q^{67} +0.472136 q^{69} -4.23607 q^{71} -12.8541 q^{73} +0.416408 q^{77} -6.23607 q^{79} +5.70820 q^{81} +10.9443 q^{83} -3.56231 q^{87} -8.47214 q^{89} +1.09017 q^{91} +0.527864 q^{93} +8.56231 q^{97} +4.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 4 q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + 4 q^{7} - 3 q^{9} - 8 q^{11} - 7 q^{13} - 3 q^{19} - 7 q^{21} + 6 q^{23} + 2 q^{27} - 16 q^{29} - 5 q^{31} + 9 q^{33} - 2 q^{37} + q^{39} - 6 q^{41} + 8 q^{43} + 3 q^{47} + 4 q^{49} + 5 q^{51} - 13 q^{53} - 11 q^{57} - 9 q^{59} - 5 q^{61} - q^{63} + 3 q^{67} - 8 q^{69} - 4 q^{71} - 19 q^{73} - 26 q^{77} - 8 q^{79} - 2 q^{81} + 4 q^{83} + 13 q^{87} - 8 q^{89} - 9 q^{91} + 10 q^{93} - 3 q^{97} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.618034 0.356822 0.178411 0.983956i \(-0.442904\pi\)
0.178411 + 0.983956i \(0.442904\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.236068 −0.0892253 −0.0446127 0.999004i \(-0.514205\pi\)
−0.0446127 + 0.999004i \(0.514205\pi\)
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) −1.76393 −0.531846 −0.265923 0.963994i \(-0.585677\pi\)
−0.265923 + 0.963994i \(0.585677\pi\)
\(12\) 0 0
\(13\) −4.61803 −1.28081 −0.640406 0.768036i \(-0.721234\pi\)
−0.640406 + 0.768036i \(0.721234\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.23607 0.542326 0.271163 0.962533i \(-0.412592\pi\)
0.271163 + 0.962533i \(0.412592\pi\)
\(18\) 0 0
\(19\) −7.09017 −1.62660 −0.813298 0.581847i \(-0.802330\pi\)
−0.813298 + 0.581847i \(0.802330\pi\)
\(20\) 0 0
\(21\) −0.145898 −0.0318376
\(22\) 0 0
\(23\) 0.763932 0.159291 0.0796454 0.996823i \(-0.474621\pi\)
0.0796454 + 0.996823i \(0.474621\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.47214 −0.668213
\(28\) 0 0
\(29\) −5.76393 −1.07034 −0.535168 0.844746i \(-0.679752\pi\)
−0.535168 + 0.844746i \(0.679752\pi\)
\(30\) 0 0
\(31\) 0.854102 0.153401 0.0767006 0.997054i \(-0.475561\pi\)
0.0767006 + 0.997054i \(0.475561\pi\)
\(32\) 0 0
\(33\) −1.09017 −0.189774
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.23607 −0.532006 −0.266003 0.963972i \(-0.585703\pi\)
−0.266003 + 0.963972i \(0.585703\pi\)
\(38\) 0 0
\(39\) −2.85410 −0.457022
\(40\) 0 0
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) 0 0
\(43\) 10.7082 1.63299 0.816493 0.577355i \(-0.195915\pi\)
0.816493 + 0.577355i \(0.195915\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.32624 1.36037 0.680186 0.733040i \(-0.261899\pi\)
0.680186 + 0.733040i \(0.261899\pi\)
\(48\) 0 0
\(49\) −6.94427 −0.992039
\(50\) 0 0
\(51\) 1.38197 0.193514
\(52\) 0 0
\(53\) −3.14590 −0.432122 −0.216061 0.976380i \(-0.569321\pi\)
−0.216061 + 0.976380i \(0.569321\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.38197 −0.580406
\(58\) 0 0
\(59\) −5.61803 −0.731406 −0.365703 0.930732i \(-0.619171\pi\)
−0.365703 + 0.930732i \(0.619171\pi\)
\(60\) 0 0
\(61\) 7.56231 0.968254 0.484127 0.874998i \(-0.339137\pi\)
0.484127 + 0.874998i \(0.339137\pi\)
\(62\) 0 0
\(63\) 0.618034 0.0778650
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.381966 0.0466646 0.0233323 0.999728i \(-0.492572\pi\)
0.0233323 + 0.999728i \(0.492572\pi\)
\(68\) 0 0
\(69\) 0.472136 0.0568385
\(70\) 0 0
\(71\) −4.23607 −0.502729 −0.251364 0.967893i \(-0.580879\pi\)
−0.251364 + 0.967893i \(0.580879\pi\)
\(72\) 0 0
\(73\) −12.8541 −1.50446 −0.752229 0.658901i \(-0.771021\pi\)
−0.752229 + 0.658901i \(0.771021\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.416408 0.0474541
\(78\) 0 0
\(79\) −6.23607 −0.701612 −0.350806 0.936448i \(-0.614092\pi\)
−0.350806 + 0.936448i \(0.614092\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 10.9443 1.20129 0.600645 0.799516i \(-0.294911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −3.56231 −0.381919
\(88\) 0 0
\(89\) −8.47214 −0.898045 −0.449022 0.893521i \(-0.648228\pi\)
−0.449022 + 0.893521i \(0.648228\pi\)
\(90\) 0 0
\(91\) 1.09017 0.114281
\(92\) 0 0
\(93\) 0.527864 0.0547370
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.56231 0.869370 0.434685 0.900582i \(-0.356860\pi\)
0.434685 + 0.900582i \(0.356860\pi\)
\(98\) 0 0
\(99\) 4.61803 0.464130
\(100\) 0 0
\(101\) −13.4721 −1.34053 −0.670264 0.742123i \(-0.733819\pi\)
−0.670264 + 0.742123i \(0.733819\pi\)
\(102\) 0 0
\(103\) 13.4721 1.32745 0.663724 0.747977i \(-0.268975\pi\)
0.663724 + 0.747977i \(0.268975\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.2705 −1.86295 −0.931475 0.363805i \(-0.881478\pi\)
−0.931475 + 0.363805i \(0.881478\pi\)
\(108\) 0 0
\(109\) 8.14590 0.780236 0.390118 0.920765i \(-0.372434\pi\)
0.390118 + 0.920765i \(0.372434\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) −9.00000 −0.846649 −0.423324 0.905978i \(-0.639137\pi\)
−0.423324 + 0.905978i \(0.639137\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 12.0902 1.11774
\(118\) 0 0
\(119\) −0.527864 −0.0483892
\(120\) 0 0
\(121\) −7.88854 −0.717140
\(122\) 0 0
\(123\) −1.85410 −0.167179
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 15.7082 1.39388 0.696939 0.717131i \(-0.254545\pi\)
0.696939 + 0.717131i \(0.254545\pi\)
\(128\) 0 0
\(129\) 6.61803 0.582685
\(130\) 0 0
\(131\) −2.32624 −0.203244 −0.101622 0.994823i \(-0.532403\pi\)
−0.101622 + 0.994823i \(0.532403\pi\)
\(132\) 0 0
\(133\) 1.67376 0.145134
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.56231 −0.816963 −0.408481 0.912767i \(-0.633942\pi\)
−0.408481 + 0.912767i \(0.633942\pi\)
\(138\) 0 0
\(139\) 16.8885 1.43247 0.716234 0.697860i \(-0.245864\pi\)
0.716234 + 0.697860i \(0.245864\pi\)
\(140\) 0 0
\(141\) 5.76393 0.485411
\(142\) 0 0
\(143\) 8.14590 0.681194
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −4.29180 −0.353981
\(148\) 0 0
\(149\) 7.47214 0.612141 0.306071 0.952009i \(-0.400986\pi\)
0.306071 + 0.952009i \(0.400986\pi\)
\(150\) 0 0
\(151\) 20.0902 1.63491 0.817457 0.575989i \(-0.195383\pi\)
0.817457 + 0.575989i \(0.195383\pi\)
\(152\) 0 0
\(153\) −5.85410 −0.473276
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.0344 −1.27969 −0.639844 0.768505i \(-0.721001\pi\)
−0.639844 + 0.768505i \(0.721001\pi\)
\(158\) 0 0
\(159\) −1.94427 −0.154191
\(160\) 0 0
\(161\) −0.180340 −0.0142128
\(162\) 0 0
\(163\) −21.6180 −1.69326 −0.846628 0.532186i \(-0.821371\pi\)
−0.846628 + 0.532186i \(0.821371\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.2361 1.17900 0.589501 0.807768i \(-0.299324\pi\)
0.589501 + 0.807768i \(0.299324\pi\)
\(168\) 0 0
\(169\) 8.32624 0.640480
\(170\) 0 0
\(171\) 18.5623 1.41950
\(172\) 0 0
\(173\) −20.4164 −1.55223 −0.776115 0.630591i \(-0.782813\pi\)
−0.776115 + 0.630591i \(0.782813\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.47214 −0.260982
\(178\) 0 0
\(179\) 15.4721 1.15644 0.578221 0.815880i \(-0.303747\pi\)
0.578221 + 0.815880i \(0.303747\pi\)
\(180\) 0 0
\(181\) −0.763932 −0.0567826 −0.0283913 0.999597i \(-0.509038\pi\)
−0.0283913 + 0.999597i \(0.509038\pi\)
\(182\) 0 0
\(183\) 4.67376 0.345494
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.94427 −0.288434
\(188\) 0 0
\(189\) 0.819660 0.0596215
\(190\) 0 0
\(191\) −20.0000 −1.44715 −0.723575 0.690246i \(-0.757502\pi\)
−0.723575 + 0.690246i \(0.757502\pi\)
\(192\) 0 0
\(193\) 19.9787 1.43810 0.719050 0.694959i \(-0.244577\pi\)
0.719050 + 0.694959i \(0.244577\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4721 1.24484 0.622419 0.782684i \(-0.286150\pi\)
0.622419 + 0.782684i \(0.286150\pi\)
\(198\) 0 0
\(199\) 12.6525 0.896910 0.448455 0.893805i \(-0.351974\pi\)
0.448455 + 0.893805i \(0.351974\pi\)
\(200\) 0 0
\(201\) 0.236068 0.0166510
\(202\) 0 0
\(203\) 1.36068 0.0955010
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −2.00000 −0.139010
\(208\) 0 0
\(209\) 12.5066 0.865098
\(210\) 0 0
\(211\) −16.6525 −1.14640 −0.573202 0.819414i \(-0.694299\pi\)
−0.573202 + 0.819414i \(0.694299\pi\)
\(212\) 0 0
\(213\) −2.61803 −0.179385
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −0.201626 −0.0136873
\(218\) 0 0
\(219\) −7.94427 −0.536824
\(220\) 0 0
\(221\) −10.3262 −0.694618
\(222\) 0 0
\(223\) −3.79837 −0.254358 −0.127179 0.991880i \(-0.540592\pi\)
−0.127179 + 0.991880i \(0.540592\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −21.7984 −1.44681 −0.723404 0.690425i \(-0.757424\pi\)
−0.723404 + 0.690425i \(0.757424\pi\)
\(228\) 0 0
\(229\) 5.90983 0.390533 0.195266 0.980750i \(-0.437443\pi\)
0.195266 + 0.980750i \(0.437443\pi\)
\(230\) 0 0
\(231\) 0.257354 0.0169327
\(232\) 0 0
\(233\) 11.0000 0.720634 0.360317 0.932830i \(-0.382669\pi\)
0.360317 + 0.932830i \(0.382669\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.85410 −0.250351
\(238\) 0 0
\(239\) 25.5066 1.64988 0.824942 0.565218i \(-0.191208\pi\)
0.824942 + 0.565218i \(0.191208\pi\)
\(240\) 0 0
\(241\) 15.7639 1.01544 0.507722 0.861521i \(-0.330488\pi\)
0.507722 + 0.861521i \(0.330488\pi\)
\(242\) 0 0
\(243\) 13.9443 0.894525
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 32.7426 2.08336
\(248\) 0 0
\(249\) 6.76393 0.428647
\(250\) 0 0
\(251\) −12.0344 −0.759607 −0.379804 0.925067i \(-0.624008\pi\)
−0.379804 + 0.925067i \(0.624008\pi\)
\(252\) 0 0
\(253\) −1.34752 −0.0847181
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.58359 0.0987818 0.0493909 0.998780i \(-0.484272\pi\)
0.0493909 + 0.998780i \(0.484272\pi\)
\(258\) 0 0
\(259\) 0.763932 0.0474684
\(260\) 0 0
\(261\) 15.0902 0.934058
\(262\) 0 0
\(263\) −10.8541 −0.669293 −0.334646 0.942344i \(-0.608617\pi\)
−0.334646 + 0.942344i \(0.608617\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.23607 −0.320442
\(268\) 0 0
\(269\) 27.7426 1.69150 0.845749 0.533580i \(-0.179154\pi\)
0.845749 + 0.533580i \(0.179154\pi\)
\(270\) 0 0
\(271\) 17.0902 1.03815 0.519077 0.854728i \(-0.326276\pi\)
0.519077 + 0.854728i \(0.326276\pi\)
\(272\) 0 0
\(273\) 0.673762 0.0407779
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −14.2361 −0.855362 −0.427681 0.903930i \(-0.640669\pi\)
−0.427681 + 0.903930i \(0.640669\pi\)
\(278\) 0 0
\(279\) −2.23607 −0.133870
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) −6.65248 −0.395449 −0.197724 0.980258i \(-0.563355\pi\)
−0.197724 + 0.980258i \(0.563355\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.708204 0.0418040
\(288\) 0 0
\(289\) −12.0000 −0.705882
\(290\) 0 0
\(291\) 5.29180 0.310211
\(292\) 0 0
\(293\) 23.0000 1.34367 0.671837 0.740699i \(-0.265505\pi\)
0.671837 + 0.740699i \(0.265505\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.12461 0.355386
\(298\) 0 0
\(299\) −3.52786 −0.204022
\(300\) 0 0
\(301\) −2.52786 −0.145704
\(302\) 0 0
\(303\) −8.32624 −0.478330
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −20.6180 −1.17673 −0.588367 0.808594i \(-0.700229\pi\)
−0.588367 + 0.808594i \(0.700229\pi\)
\(308\) 0 0
\(309\) 8.32624 0.473663
\(310\) 0 0
\(311\) −15.7984 −0.895844 −0.447922 0.894073i \(-0.647836\pi\)
−0.447922 + 0.894073i \(0.647836\pi\)
\(312\) 0 0
\(313\) −15.4164 −0.871387 −0.435693 0.900095i \(-0.643497\pi\)
−0.435693 + 0.900095i \(0.643497\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 10.9443 0.614692 0.307346 0.951598i \(-0.400559\pi\)
0.307346 + 0.951598i \(0.400559\pi\)
\(318\) 0 0
\(319\) 10.1672 0.569253
\(320\) 0 0
\(321\) −11.9098 −0.664742
\(322\) 0 0
\(323\) −15.8541 −0.882146
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.03444 0.278405
\(328\) 0 0
\(329\) −2.20163 −0.121380
\(330\) 0 0
\(331\) 5.03444 0.276718 0.138359 0.990382i \(-0.455817\pi\)
0.138359 + 0.990382i \(0.455817\pi\)
\(332\) 0 0
\(333\) 8.47214 0.464270
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −8.88854 −0.484190 −0.242095 0.970253i \(-0.577835\pi\)
−0.242095 + 0.970253i \(0.577835\pi\)
\(338\) 0 0
\(339\) −5.56231 −0.302103
\(340\) 0 0
\(341\) −1.50658 −0.0815858
\(342\) 0 0
\(343\) 3.29180 0.177740
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.29180 −0.0693472 −0.0346736 0.999399i \(-0.511039\pi\)
−0.0346736 + 0.999399i \(0.511039\pi\)
\(348\) 0 0
\(349\) −30.8885 −1.65343 −0.826713 0.562624i \(-0.809792\pi\)
−0.826713 + 0.562624i \(0.809792\pi\)
\(350\) 0 0
\(351\) 16.0344 0.855855
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −0.326238 −0.0172663
\(358\) 0 0
\(359\) −10.4377 −0.550880 −0.275440 0.961318i \(-0.588824\pi\)
−0.275440 + 0.961318i \(0.588824\pi\)
\(360\) 0 0
\(361\) 31.2705 1.64582
\(362\) 0 0
\(363\) −4.87539 −0.255892
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 17.5623 0.916745 0.458372 0.888760i \(-0.348433\pi\)
0.458372 + 0.888760i \(0.348433\pi\)
\(368\) 0 0
\(369\) 7.85410 0.408868
\(370\) 0 0
\(371\) 0.742646 0.0385562
\(372\) 0 0
\(373\) 34.9230 1.80824 0.904122 0.427275i \(-0.140526\pi\)
0.904122 + 0.427275i \(0.140526\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26.6180 1.37090
\(378\) 0 0
\(379\) 4.67376 0.240075 0.120038 0.992769i \(-0.461699\pi\)
0.120038 + 0.992769i \(0.461699\pi\)
\(380\) 0 0
\(381\) 9.70820 0.497366
\(382\) 0 0
\(383\) −10.7082 −0.547164 −0.273582 0.961849i \(-0.588208\pi\)
−0.273582 + 0.961849i \(0.588208\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −28.0344 −1.42507
\(388\) 0 0
\(389\) −32.8885 −1.66752 −0.833758 0.552131i \(-0.813815\pi\)
−0.833758 + 0.552131i \(0.813815\pi\)
\(390\) 0 0
\(391\) 1.70820 0.0863876
\(392\) 0 0
\(393\) −1.43769 −0.0725221
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −9.94427 −0.499089 −0.249544 0.968363i \(-0.580281\pi\)
−0.249544 + 0.968363i \(0.580281\pi\)
\(398\) 0 0
\(399\) 1.03444 0.0517869
\(400\) 0 0
\(401\) −32.9443 −1.64516 −0.822579 0.568651i \(-0.807466\pi\)
−0.822579 + 0.568651i \(0.807466\pi\)
\(402\) 0 0
\(403\) −3.94427 −0.196478
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.70820 0.282945
\(408\) 0 0
\(409\) 11.2361 0.555588 0.277794 0.960641i \(-0.410397\pi\)
0.277794 + 0.960641i \(0.410397\pi\)
\(410\) 0 0
\(411\) −5.90983 −0.291510
\(412\) 0 0
\(413\) 1.32624 0.0652599
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10.4377 0.511136
\(418\) 0 0
\(419\) −36.4164 −1.77906 −0.889529 0.456879i \(-0.848967\pi\)
−0.889529 + 0.456879i \(0.848967\pi\)
\(420\) 0 0
\(421\) 1.61803 0.0788582 0.0394291 0.999222i \(-0.487446\pi\)
0.0394291 + 0.999222i \(0.487446\pi\)
\(422\) 0 0
\(423\) −24.4164 −1.18717
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.78522 −0.0863928
\(428\) 0 0
\(429\) 5.03444 0.243065
\(430\) 0 0
\(431\) −37.7426 −1.81800 −0.909000 0.416797i \(-0.863153\pi\)
−0.909000 + 0.416797i \(0.863153\pi\)
\(432\) 0 0
\(433\) 6.18034 0.297008 0.148504 0.988912i \(-0.452554\pi\)
0.148504 + 0.988912i \(0.452554\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.41641 −0.259102
\(438\) 0 0
\(439\) −2.41641 −0.115329 −0.0576644 0.998336i \(-0.518365\pi\)
−0.0576644 + 0.998336i \(0.518365\pi\)
\(440\) 0 0
\(441\) 18.1803 0.865730
\(442\) 0 0
\(443\) −15.4721 −0.735103 −0.367552 0.930003i \(-0.619804\pi\)
−0.367552 + 0.930003i \(0.619804\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.61803 0.218426
\(448\) 0 0
\(449\) −16.5623 −0.781624 −0.390812 0.920471i \(-0.627806\pi\)
−0.390812 + 0.920471i \(0.627806\pi\)
\(450\) 0 0
\(451\) 5.29180 0.249181
\(452\) 0 0
\(453\) 12.4164 0.583374
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.8885 −1.49168 −0.745842 0.666123i \(-0.767952\pi\)
−0.745842 + 0.666123i \(0.767952\pi\)
\(458\) 0 0
\(459\) −7.76393 −0.362389
\(460\) 0 0
\(461\) −17.2705 −0.804368 −0.402184 0.915559i \(-0.631749\pi\)
−0.402184 + 0.915559i \(0.631749\pi\)
\(462\) 0 0
\(463\) −13.3607 −0.620923 −0.310462 0.950586i \(-0.600484\pi\)
−0.310462 + 0.950586i \(0.600484\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.1803 −0.656188 −0.328094 0.944645i \(-0.606406\pi\)
−0.328094 + 0.944645i \(0.606406\pi\)
\(468\) 0 0
\(469\) −0.0901699 −0.00416366
\(470\) 0 0
\(471\) −9.90983 −0.456621
\(472\) 0 0
\(473\) −18.8885 −0.868496
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.23607 0.377104
\(478\) 0 0
\(479\) −28.9787 −1.32407 −0.662036 0.749472i \(-0.730307\pi\)
−0.662036 + 0.749472i \(0.730307\pi\)
\(480\) 0 0
\(481\) 14.9443 0.681400
\(482\) 0 0
\(483\) −0.111456 −0.00507143
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 42.6525 1.93277 0.966384 0.257103i \(-0.0827679\pi\)
0.966384 + 0.257103i \(0.0827679\pi\)
\(488\) 0 0
\(489\) −13.3607 −0.604191
\(490\) 0 0
\(491\) −8.14590 −0.367619 −0.183810 0.982962i \(-0.558843\pi\)
−0.183810 + 0.982962i \(0.558843\pi\)
\(492\) 0 0
\(493\) −12.8885 −0.580471
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.00000 0.0448561
\(498\) 0 0
\(499\) 6.00000 0.268597 0.134298 0.990941i \(-0.457122\pi\)
0.134298 + 0.990941i \(0.457122\pi\)
\(500\) 0 0
\(501\) 9.41641 0.420694
\(502\) 0 0
\(503\) −31.5623 −1.40729 −0.703647 0.710550i \(-0.748446\pi\)
−0.703647 + 0.710550i \(0.748446\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 5.14590 0.228537
\(508\) 0 0
\(509\) −20.4721 −0.907411 −0.453706 0.891152i \(-0.649898\pi\)
−0.453706 + 0.891152i \(0.649898\pi\)
\(510\) 0 0
\(511\) 3.03444 0.134236
\(512\) 0 0
\(513\) 24.6180 1.08691
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.4508 −0.723508
\(518\) 0 0
\(519\) −12.6180 −0.553870
\(520\) 0 0
\(521\) 2.03444 0.0891305 0.0445653 0.999006i \(-0.485810\pi\)
0.0445653 + 0.999006i \(0.485810\pi\)
\(522\) 0 0
\(523\) −1.05573 −0.0461638 −0.0230819 0.999734i \(-0.507348\pi\)
−0.0230819 + 0.999734i \(0.507348\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.90983 0.0831935
\(528\) 0 0
\(529\) −22.4164 −0.974626
\(530\) 0 0
\(531\) 14.7082 0.638282
\(532\) 0 0
\(533\) 13.8541 0.600088
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9.56231 0.412644
\(538\) 0 0
\(539\) 12.2492 0.527611
\(540\) 0 0
\(541\) −10.2918 −0.442479 −0.221239 0.975220i \(-0.571010\pi\)
−0.221239 + 0.975220i \(0.571010\pi\)
\(542\) 0 0
\(543\) −0.472136 −0.0202613
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.72949 0.0739477 0.0369738 0.999316i \(-0.488228\pi\)
0.0369738 + 0.999316i \(0.488228\pi\)
\(548\) 0 0
\(549\) −19.7984 −0.844974
\(550\) 0 0
\(551\) 40.8673 1.74100
\(552\) 0 0
\(553\) 1.47214 0.0626016
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.36068 0.184768 0.0923840 0.995723i \(-0.470551\pi\)
0.0923840 + 0.995723i \(0.470551\pi\)
\(558\) 0 0
\(559\) −49.4508 −2.09155
\(560\) 0 0
\(561\) −2.43769 −0.102920
\(562\) 0 0
\(563\) 28.0000 1.18006 0.590030 0.807382i \(-0.299116\pi\)
0.590030 + 0.807382i \(0.299116\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1.34752 −0.0565907
\(568\) 0 0
\(569\) 0.944272 0.0395859 0.0197930 0.999804i \(-0.493699\pi\)
0.0197930 + 0.999804i \(0.493699\pi\)
\(570\) 0 0
\(571\) 35.6525 1.49201 0.746005 0.665941i \(-0.231970\pi\)
0.746005 + 0.665941i \(0.231970\pi\)
\(572\) 0 0
\(573\) −12.3607 −0.516375
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −19.5066 −0.812069 −0.406035 0.913858i \(-0.633089\pi\)
−0.406035 + 0.913858i \(0.633089\pi\)
\(578\) 0 0
\(579\) 12.3475 0.513146
\(580\) 0 0
\(581\) −2.58359 −0.107185
\(582\) 0 0
\(583\) 5.54915 0.229822
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −35.4164 −1.46179 −0.730896 0.682489i \(-0.760897\pi\)
−0.730896 + 0.682489i \(0.760897\pi\)
\(588\) 0 0
\(589\) −6.05573 −0.249522
\(590\) 0 0
\(591\) 10.7984 0.444186
\(592\) 0 0
\(593\) 22.4164 0.920532 0.460266 0.887781i \(-0.347754\pi\)
0.460266 + 0.887781i \(0.347754\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 7.81966 0.320037
\(598\) 0 0
\(599\) 2.03444 0.0831250 0.0415625 0.999136i \(-0.486766\pi\)
0.0415625 + 0.999136i \(0.486766\pi\)
\(600\) 0 0
\(601\) −22.5279 −0.918931 −0.459465 0.888196i \(-0.651959\pi\)
−0.459465 + 0.888196i \(0.651959\pi\)
\(602\) 0 0
\(603\) −1.00000 −0.0407231
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.7639 0.518072 0.259036 0.965868i \(-0.416595\pi\)
0.259036 + 0.965868i \(0.416595\pi\)
\(608\) 0 0
\(609\) 0.840946 0.0340769
\(610\) 0 0
\(611\) −43.0689 −1.74238
\(612\) 0 0
\(613\) 2.88854 0.116667 0.0583336 0.998297i \(-0.481421\pi\)
0.0583336 + 0.998297i \(0.481421\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.81966 −0.274549 −0.137275 0.990533i \(-0.543834\pi\)
−0.137275 + 0.990533i \(0.543834\pi\)
\(618\) 0 0
\(619\) −35.0689 −1.40954 −0.704769 0.709437i \(-0.748949\pi\)
−0.704769 + 0.709437i \(0.748949\pi\)
\(620\) 0 0
\(621\) −2.65248 −0.106440
\(622\) 0 0
\(623\) 2.00000 0.0801283
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 7.72949 0.308686
\(628\) 0 0
\(629\) −7.23607 −0.288521
\(630\) 0 0
\(631\) −4.47214 −0.178033 −0.0890165 0.996030i \(-0.528372\pi\)
−0.0890165 + 0.996030i \(0.528372\pi\)
\(632\) 0 0
\(633\) −10.2918 −0.409062
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 32.0689 1.27062
\(638\) 0 0
\(639\) 11.0902 0.438720
\(640\) 0 0
\(641\) −26.8541 −1.06067 −0.530337 0.847787i \(-0.677934\pi\)
−0.530337 + 0.847787i \(0.677934\pi\)
\(642\) 0 0
\(643\) −28.9098 −1.14009 −0.570046 0.821613i \(-0.693075\pi\)
−0.570046 + 0.821613i \(0.693075\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −38.5279 −1.51469 −0.757343 0.653017i \(-0.773503\pi\)
−0.757343 + 0.653017i \(0.773503\pi\)
\(648\) 0 0
\(649\) 9.90983 0.388995
\(650\) 0 0
\(651\) −0.124612 −0.00488392
\(652\) 0 0
\(653\) −23.5967 −0.923412 −0.461706 0.887033i \(-0.652763\pi\)
−0.461706 + 0.887033i \(0.652763\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 33.6525 1.31291
\(658\) 0 0
\(659\) 23.7984 0.927053 0.463527 0.886083i \(-0.346584\pi\)
0.463527 + 0.886083i \(0.346584\pi\)
\(660\) 0 0
\(661\) 28.4721 1.10744 0.553719 0.832704i \(-0.313208\pi\)
0.553719 + 0.832704i \(0.313208\pi\)
\(662\) 0 0
\(663\) −6.38197 −0.247855
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.40325 −0.170495
\(668\) 0 0
\(669\) −2.34752 −0.0907605
\(670\) 0 0
\(671\) −13.3394 −0.514962
\(672\) 0 0
\(673\) 36.6869 1.41418 0.707088 0.707125i \(-0.250008\pi\)
0.707088 + 0.707125i \(0.250008\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.9443 −0.420623 −0.210311 0.977634i \(-0.567448\pi\)
−0.210311 + 0.977634i \(0.567448\pi\)
\(678\) 0 0
\(679\) −2.02129 −0.0775698
\(680\) 0 0
\(681\) −13.4721 −0.516253
\(682\) 0 0
\(683\) −4.05573 −0.155188 −0.0775941 0.996985i \(-0.524724\pi\)
−0.0775941 + 0.996985i \(0.524724\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.65248 0.139351
\(688\) 0 0
\(689\) 14.5279 0.553468
\(690\) 0 0
\(691\) −13.3475 −0.507764 −0.253882 0.967235i \(-0.581707\pi\)
−0.253882 + 0.967235i \(0.581707\pi\)
\(692\) 0 0
\(693\) −1.09017 −0.0414121
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −6.70820 −0.254091
\(698\) 0 0
\(699\) 6.79837 0.257138
\(700\) 0 0
\(701\) −19.5066 −0.736753 −0.368377 0.929677i \(-0.620086\pi\)
−0.368377 + 0.929677i \(0.620086\pi\)
\(702\) 0 0
\(703\) 22.9443 0.865360
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.18034 0.119609
\(708\) 0 0
\(709\) 12.9787 0.487426 0.243713 0.969847i \(-0.421635\pi\)
0.243713 + 0.969847i \(0.421635\pi\)
\(710\) 0 0
\(711\) 16.3262 0.612282
\(712\) 0 0
\(713\) 0.652476 0.0244354
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15.7639 0.588715
\(718\) 0 0
\(719\) 5.79837 0.216243 0.108121 0.994138i \(-0.465516\pi\)
0.108121 + 0.994138i \(0.465516\pi\)
\(720\) 0 0
\(721\) −3.18034 −0.118442
\(722\) 0 0
\(723\) 9.74265 0.362333
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 8.00000 0.296704 0.148352 0.988935i \(-0.452603\pi\)
0.148352 + 0.988935i \(0.452603\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) 23.9443 0.885611
\(732\) 0 0
\(733\) −25.5066 −0.942107 −0.471053 0.882105i \(-0.656126\pi\)
−0.471053 + 0.882105i \(0.656126\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −0.673762 −0.0248183
\(738\) 0 0
\(739\) −17.4721 −0.642723 −0.321361 0.946957i \(-0.604140\pi\)
−0.321361 + 0.946957i \(0.604140\pi\)
\(740\) 0 0
\(741\) 20.2361 0.743391
\(742\) 0 0
\(743\) 6.50658 0.238703 0.119352 0.992852i \(-0.461918\pi\)
0.119352 + 0.992852i \(0.461918\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −28.6525 −1.04834
\(748\) 0 0
\(749\) 4.54915 0.166222
\(750\) 0 0
\(751\) −11.6525 −0.425205 −0.212602 0.977139i \(-0.568194\pi\)
−0.212602 + 0.977139i \(0.568194\pi\)
\(752\) 0 0
\(753\) −7.43769 −0.271045
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.47214 −0.271579 −0.135790 0.990738i \(-0.543357\pi\)
−0.135790 + 0.990738i \(0.543357\pi\)
\(758\) 0 0
\(759\) −0.832816 −0.0302293
\(760\) 0 0
\(761\) 37.7771 1.36942 0.684709 0.728816i \(-0.259929\pi\)
0.684709 + 0.728816i \(0.259929\pi\)
\(762\) 0 0
\(763\) −1.92299 −0.0696168
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 25.9443 0.936793
\(768\) 0 0
\(769\) 37.7214 1.36027 0.680134 0.733088i \(-0.261922\pi\)
0.680134 + 0.733088i \(0.261922\pi\)
\(770\) 0 0
\(771\) 0.978714 0.0352475
\(772\) 0 0
\(773\) 32.7639 1.17844 0.589218 0.807974i \(-0.299436\pi\)
0.589218 + 0.807974i \(0.299436\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.472136 0.0169378
\(778\) 0 0
\(779\) 21.2705 0.762095
\(780\) 0 0
\(781\) 7.47214 0.267374
\(782\) 0 0
\(783\) 20.0132 0.715212
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 29.8328 1.06343 0.531713 0.846925i \(-0.321549\pi\)
0.531713 + 0.846925i \(0.321549\pi\)
\(788\) 0 0
\(789\) −6.70820 −0.238818
\(790\) 0 0
\(791\) 2.12461 0.0755425
\(792\) 0 0
\(793\) −34.9230 −1.24015
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −20.4377 −0.723940 −0.361970 0.932190i \(-0.617896\pi\)
−0.361970 + 0.932190i \(0.617896\pi\)
\(798\) 0 0
\(799\) 20.8541 0.737765
\(800\) 0 0
\(801\) 22.1803 0.783704
\(802\) 0 0
\(803\) 22.6738 0.800140
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.1459 0.603564
\(808\) 0 0
\(809\) 8.65248 0.304205 0.152102 0.988365i \(-0.451396\pi\)
0.152102 + 0.988365i \(0.451396\pi\)
\(810\) 0 0
\(811\) −22.1803 −0.778857 −0.389429 0.921057i \(-0.627327\pi\)
−0.389429 + 0.921057i \(0.627327\pi\)
\(812\) 0 0
\(813\) 10.5623 0.370436
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −75.9230 −2.65621
\(818\) 0 0
\(819\) −2.85410 −0.0997304
\(820\) 0 0
\(821\) −39.1033 −1.36472 −0.682358 0.731018i \(-0.739045\pi\)
−0.682358 + 0.731018i \(0.739045\pi\)
\(822\) 0 0
\(823\) 48.1246 1.67752 0.838759 0.544502i \(-0.183281\pi\)
0.838759 + 0.544502i \(0.183281\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.618034 −0.0214911 −0.0107456 0.999942i \(-0.503420\pi\)
−0.0107456 + 0.999942i \(0.503420\pi\)
\(828\) 0 0
\(829\) 1.90983 0.0663311 0.0331656 0.999450i \(-0.489441\pi\)
0.0331656 + 0.999450i \(0.489441\pi\)
\(830\) 0 0
\(831\) −8.79837 −0.305212
\(832\) 0 0
\(833\) −15.5279 −0.538009
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −2.96556 −0.102505
\(838\) 0 0
\(839\) 37.0902 1.28049 0.640247 0.768169i \(-0.278832\pi\)
0.640247 + 0.768169i \(0.278832\pi\)
\(840\) 0 0
\(841\) 4.22291 0.145618
\(842\) 0 0
\(843\) −7.41641 −0.255435
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 1.86223 0.0639871
\(848\) 0 0
\(849\) −4.11146 −0.141105
\(850\) 0 0
\(851\) −2.47214 −0.0847437
\(852\) 0 0
\(853\) 18.5279 0.634382 0.317191 0.948362i \(-0.397260\pi\)
0.317191 + 0.948362i \(0.397260\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 49.4853 1.69039 0.845193 0.534462i \(-0.179486\pi\)
0.845193 + 0.534462i \(0.179486\pi\)
\(858\) 0 0
\(859\) 22.1803 0.756783 0.378392 0.925646i \(-0.376477\pi\)
0.378392 + 0.925646i \(0.376477\pi\)
\(860\) 0 0
\(861\) 0.437694 0.0149166
\(862\) 0 0
\(863\) 26.2918 0.894983 0.447492 0.894288i \(-0.352317\pi\)
0.447492 + 0.894288i \(0.352317\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −7.41641 −0.251874
\(868\) 0 0
\(869\) 11.0000 0.373149
\(870\) 0 0
\(871\) −1.76393 −0.0597686
\(872\) 0 0
\(873\) −22.4164 −0.758680
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 5.50658 0.185944 0.0929720 0.995669i \(-0.470363\pi\)
0.0929720 + 0.995669i \(0.470363\pi\)
\(878\) 0 0
\(879\) 14.2148 0.479453
\(880\) 0 0
\(881\) 16.7082 0.562914 0.281457 0.959574i \(-0.409182\pi\)
0.281457 + 0.959574i \(0.409182\pi\)
\(882\) 0 0
\(883\) −40.1246 −1.35030 −0.675150 0.737680i \(-0.735921\pi\)
−0.675150 + 0.737680i \(0.735921\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −15.4164 −0.517632 −0.258816 0.965927i \(-0.583332\pi\)
−0.258816 + 0.965927i \(0.583332\pi\)
\(888\) 0 0
\(889\) −3.70820 −0.124369
\(890\) 0 0
\(891\) −10.0689 −0.337320
\(892\) 0 0
\(893\) −66.1246 −2.21278
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −2.18034 −0.0727994
\(898\) 0 0
\(899\) −4.92299 −0.164191
\(900\) 0 0
\(901\) −7.03444 −0.234351
\(902\) 0 0
\(903\) −1.56231 −0.0519903
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 35.0902 1.16515 0.582575 0.812777i \(-0.302045\pi\)
0.582575 + 0.812777i \(0.302045\pi\)
\(908\) 0 0
\(909\) 35.2705 1.16985
\(910\) 0 0
\(911\) 19.7082 0.652962 0.326481 0.945204i \(-0.394137\pi\)
0.326481 + 0.945204i \(0.394137\pi\)
\(912\) 0 0
\(913\) −19.3050 −0.638901
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.549150 0.0181345
\(918\) 0 0
\(919\) 44.5410 1.46927 0.734636 0.678461i \(-0.237353\pi\)
0.734636 + 0.678461i \(0.237353\pi\)
\(920\) 0 0
\(921\) −12.7426 −0.419884
\(922\) 0 0
\(923\) 19.5623 0.643901
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −35.2705 −1.15844
\(928\) 0 0
\(929\) 30.4853 1.00019 0.500095 0.865971i \(-0.333298\pi\)
0.500095 + 0.865971i \(0.333298\pi\)
\(930\) 0 0
\(931\) 49.2361 1.61365
\(932\) 0 0
\(933\) −9.76393 −0.319657
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 15.4508 0.504757 0.252379 0.967629i \(-0.418787\pi\)
0.252379 + 0.967629i \(0.418787\pi\)
\(938\) 0 0
\(939\) −9.52786 −0.310930
\(940\) 0 0
\(941\) 23.7984 0.775805 0.387902 0.921700i \(-0.373200\pi\)
0.387902 + 0.921700i \(0.373200\pi\)
\(942\) 0 0
\(943\) −2.29180 −0.0746311
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.11146 0.231091 0.115546 0.993302i \(-0.463138\pi\)
0.115546 + 0.993302i \(0.463138\pi\)
\(948\) 0 0
\(949\) 59.3607 1.92693
\(950\) 0 0
\(951\) 6.76393 0.219336
\(952\) 0 0
\(953\) −54.0476 −1.75077 −0.875387 0.483423i \(-0.839393\pi\)
−0.875387 + 0.483423i \(0.839393\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.28367 0.203122
\(958\) 0 0
\(959\) 2.25735 0.0728938
\(960\) 0 0
\(961\) −30.2705 −0.976468
\(962\) 0 0
\(963\) 50.4508 1.62576
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −45.9787 −1.47858 −0.739288 0.673390i \(-0.764838\pi\)
−0.739288 + 0.673390i \(0.764838\pi\)
\(968\) 0 0
\(969\) −9.79837 −0.314769
\(970\) 0 0
\(971\) 0.0557281 0.00178840 0.000894200 1.00000i \(-0.499715\pi\)
0.000894200 1.00000i \(0.499715\pi\)
\(972\) 0 0
\(973\) −3.98684 −0.127812
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.72949 0.247288 0.123644 0.992327i \(-0.460542\pi\)
0.123644 + 0.992327i \(0.460542\pi\)
\(978\) 0 0
\(979\) 14.9443 0.477621
\(980\) 0 0
\(981\) −21.3262 −0.680894
\(982\) 0 0
\(983\) 0.798374 0.0254642 0.0127321 0.999919i \(-0.495947\pi\)
0.0127321 + 0.999919i \(0.495947\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −1.36068 −0.0433109
\(988\) 0 0
\(989\) 8.18034 0.260120
\(990\) 0 0
\(991\) −19.3607 −0.615012 −0.307506 0.951546i \(-0.599494\pi\)
−0.307506 + 0.951546i \(0.599494\pi\)
\(992\) 0 0
\(993\) 3.11146 0.0987391
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −21.2705 −0.673644 −0.336822 0.941568i \(-0.609352\pi\)
−0.336822 + 0.941568i \(0.609352\pi\)
\(998\) 0 0
\(999\) 11.2361 0.355493
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.a.b.1.2 2
3.2 odd 2 9000.2.a.o.1.1 2
4.3 odd 2 2000.2.a.g.1.1 2
5.2 odd 4 1000.2.c.a.249.2 4
5.3 odd 4 1000.2.c.a.249.3 4
5.4 even 2 1000.2.a.c.1.1 yes 2
8.3 odd 2 8000.2.a.g.1.2 2
8.5 even 2 8000.2.a.r.1.1 2
15.14 odd 2 9000.2.a.c.1.2 2
20.3 even 4 2000.2.c.h.1249.2 4
20.7 even 4 2000.2.c.h.1249.3 4
20.19 odd 2 2000.2.a.f.1.2 2
40.19 odd 2 8000.2.a.q.1.1 2
40.29 even 2 8000.2.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.a.b.1.2 2 1.1 even 1 trivial
1000.2.a.c.1.1 yes 2 5.4 even 2
1000.2.c.a.249.2 4 5.2 odd 4
1000.2.c.a.249.3 4 5.3 odd 4
2000.2.a.f.1.2 2 20.19 odd 2
2000.2.a.g.1.1 2 4.3 odd 2
2000.2.c.h.1249.2 4 20.3 even 4
2000.2.c.h.1249.3 4 20.7 even 4
8000.2.a.g.1.2 2 8.3 odd 2
8000.2.a.h.1.2 2 40.29 even 2
8000.2.a.q.1.1 2 40.19 odd 2
8000.2.a.r.1.1 2 8.5 even 2
9000.2.a.c.1.2 2 15.14 odd 2
9000.2.a.o.1.1 2 3.2 odd 2