Properties

Label 1008.2.b.d
Level $1008$
Weight $2$
Character orbit 1008.b
Analytic conductor $8.049$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(559,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{5} + ( - \beta - 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{5} + ( - \beta - 1) q^{7} - \beta q^{11} - 2 \beta q^{13} + \beta q^{17} - 2 q^{19} - 3 \beta q^{23} - q^{25} - 6 q^{29} + 8 q^{31} + ( - \beta + 6) q^{35} + 4 q^{37} - 3 \beta q^{41} - 2 \beta q^{43} + 12 q^{47} + (2 \beta - 5) q^{49} + 6 q^{53} + 6 q^{55} - 12 q^{59} + 12 q^{65} - 5 \beta q^{71} + 6 \beta q^{73} + (\beta - 6) q^{77} - 4 \beta q^{79} - 6 q^{85} - 5 \beta q^{89} + (2 \beta - 12) q^{91} - 2 \beta q^{95} - 2 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{7} - 4 q^{19} - 2 q^{25} - 12 q^{29} + 16 q^{31} + 12 q^{35} + 8 q^{37} + 24 q^{47} - 10 q^{49} + 12 q^{53} + 12 q^{55} - 24 q^{59} + 24 q^{65} - 12 q^{77} - 12 q^{85} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
559.1
2.44949i
2.44949i
0 0 0 2.44949i 0 −1.00000 + 2.44949i 0 0 0
559.2 0 0 0 2.44949i 0 −1.00000 2.44949i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.b.d 2
3.b odd 2 1 336.2.b.c yes 2
4.b odd 2 1 1008.2.b.e 2
7.b odd 2 1 1008.2.b.e 2
8.b even 2 1 4032.2.b.d 2
8.d odd 2 1 4032.2.b.f 2
12.b even 2 1 336.2.b.b 2
21.c even 2 1 336.2.b.b 2
21.g even 6 2 2352.2.bl.n 4
21.h odd 6 2 2352.2.bl.m 4
24.f even 2 1 1344.2.b.d 2
24.h odd 2 1 1344.2.b.a 2
28.d even 2 1 inner 1008.2.b.d 2
56.e even 2 1 4032.2.b.d 2
56.h odd 2 1 4032.2.b.f 2
84.h odd 2 1 336.2.b.c yes 2
84.j odd 6 2 2352.2.bl.m 4
84.n even 6 2 2352.2.bl.n 4
168.e odd 2 1 1344.2.b.a 2
168.i even 2 1 1344.2.b.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
336.2.b.b 2 12.b even 2 1
336.2.b.b 2 21.c even 2 1
336.2.b.c yes 2 3.b odd 2 1
336.2.b.c yes 2 84.h odd 2 1
1008.2.b.d 2 1.a even 1 1 trivial
1008.2.b.d 2 28.d even 2 1 inner
1008.2.b.e 2 4.b odd 2 1
1008.2.b.e 2 7.b odd 2 1
1344.2.b.a 2 24.h odd 2 1
1344.2.b.a 2 168.e odd 2 1
1344.2.b.d 2 24.f even 2 1
1344.2.b.d 2 168.i even 2 1
2352.2.bl.m 4 21.h odd 6 2
2352.2.bl.m 4 84.j odd 6 2
2352.2.bl.n 4 21.g even 6 2
2352.2.bl.n 4 84.n even 6 2
4032.2.b.d 2 8.b even 2 1
4032.2.b.d 2 56.e even 2 1
4032.2.b.f 2 8.d odd 2 1
4032.2.b.f 2 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):

\( T_{5}^{2} + 6 \) Copy content Toggle raw display
\( T_{11}^{2} + 6 \) Copy content Toggle raw display
\( T_{19} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 6 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 6 \) Copy content Toggle raw display
$13$ \( T^{2} + 24 \) Copy content Toggle raw display
$17$ \( T^{2} + 6 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 54 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T - 8)^{2} \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 54 \) Copy content Toggle raw display
$43$ \( T^{2} + 24 \) Copy content Toggle raw display
$47$ \( (T - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( (T + 12)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 150 \) Copy content Toggle raw display
$73$ \( T^{2} + 216 \) Copy content Toggle raw display
$79$ \( T^{2} + 96 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 150 \) Copy content Toggle raw display
$97$ \( T^{2} + 24 \) Copy content Toggle raw display
show more
show less