Properties

Label 1008.2.b.i
Level 10081008
Weight 22
Character orbit 1008.b
Analytic conductor 8.0498.049
Analytic rank 00
Dimension 44
CM discriminant -84
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1008,2,Mod(559,1008)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1008, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1008.559");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1008=24327 1008 = 2^{4} \cdot 3^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1008.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.048920523758.04892052375
Analytic rank: 00
Dimension: 44
Coefficient field: Q(6,7)\Q(\sqrt{-6}, \sqrt{7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+24x2+81 x^{4} + 24x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q5β3q7β2q11+3β1q172β3q19+β2q23q254β3q31+β2q358q375β1q41+7q49++2β2q95+O(q100) q - \beta_1 q^{5} - \beta_{3} q^{7} - \beta_{2} q^{11} + 3 \beta_1 q^{17} - 2 \beta_{3} q^{19} + \beta_{2} q^{23} - q^{25} - 4 \beta_{3} q^{31} + \beta_{2} q^{35} - 8 q^{37} - 5 \beta_1 q^{41} + 7 q^{49}+ \cdots + 2 \beta_{2} q^{95}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2532q37+28q49+72q85+O(q100) 4 q - 4 q^{25} - 32 q^{37} + 28 q^{49} + 72 q^{85}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+24x2+81 x^{4} + 24x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== (ν3+15ν)/9 ( \nu^{3} + 15\nu ) / 9 Copy content Toggle raw display
β2\beta_{2}== (ν3+33ν)/9 ( \nu^{3} + 33\nu ) / 9 Copy content Toggle raw display
β3\beta_{3}== (ν2+12)/3 ( \nu^{2} + 12 ) / 3 Copy content Toggle raw display
ν\nu== (β2β1)/2 ( \beta_{2} - \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== 3β312 3\beta_{3} - 12 Copy content Toggle raw display
ν3\nu^{3}== (15β2+33β1)/2 ( -15\beta_{2} + 33\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1008Z)×\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times.

nn 127127 577577 757757 785785
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
559.1
2.01563i
4.46512i
2.01563i
4.46512i
0 0 0 2.44949i 0 −2.64575 0 0 0
559.2 0 0 0 2.44949i 0 2.64575 0 0 0
559.3 0 0 0 2.44949i 0 −2.64575 0 0 0
559.4 0 0 0 2.44949i 0 2.64575 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
84.h odd 2 1 CM by Q(21)\Q(\sqrt{-21})
3.b odd 2 1 inner
4.b odd 2 1 inner
7.b odd 2 1 inner
12.b even 2 1 inner
21.c even 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1008.2.b.i 4
3.b odd 2 1 inner 1008.2.b.i 4
4.b odd 2 1 inner 1008.2.b.i 4
7.b odd 2 1 inner 1008.2.b.i 4
8.b even 2 1 4032.2.b.l 4
8.d odd 2 1 4032.2.b.l 4
12.b even 2 1 inner 1008.2.b.i 4
21.c even 2 1 inner 1008.2.b.i 4
24.f even 2 1 4032.2.b.l 4
24.h odd 2 1 4032.2.b.l 4
28.d even 2 1 inner 1008.2.b.i 4
56.e even 2 1 4032.2.b.l 4
56.h odd 2 1 4032.2.b.l 4
84.h odd 2 1 CM 1008.2.b.i 4
168.e odd 2 1 4032.2.b.l 4
168.i even 2 1 4032.2.b.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1008.2.b.i 4 1.a even 1 1 trivial
1008.2.b.i 4 3.b odd 2 1 inner
1008.2.b.i 4 4.b odd 2 1 inner
1008.2.b.i 4 7.b odd 2 1 inner
1008.2.b.i 4 12.b even 2 1 inner
1008.2.b.i 4 21.c even 2 1 inner
1008.2.b.i 4 28.d even 2 1 inner
1008.2.b.i 4 84.h odd 2 1 CM
4032.2.b.l 4 8.b even 2 1
4032.2.b.l 4 8.d odd 2 1
4032.2.b.l 4 24.f even 2 1
4032.2.b.l 4 24.h odd 2 1
4032.2.b.l 4 56.e even 2 1
4032.2.b.l 4 56.h odd 2 1
4032.2.b.l 4 168.e odd 2 1
4032.2.b.l 4 168.i even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1008,[χ])S_{2}^{\mathrm{new}}(1008, [\chi]):

T52+6 T_{5}^{2} + 6 Copy content Toggle raw display
T112+42 T_{11}^{2} + 42 Copy content Toggle raw display
T19228 T_{19}^{2} - 28 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
77 (T27)2 (T^{2} - 7)^{2} Copy content Toggle raw display
1111 (T2+42)2 (T^{2} + 42)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T2+54)2 (T^{2} + 54)^{2} Copy content Toggle raw display
1919 (T228)2 (T^{2} - 28)^{2} Copy content Toggle raw display
2323 (T2+42)2 (T^{2} + 42)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2112)2 (T^{2} - 112)^{2} Copy content Toggle raw display
3737 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
4141 (T2+150)2 (T^{2} + 150)^{2} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 (T2+42)2 (T^{2} + 42)^{2} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 (T2+6)2 (T^{2} + 6)^{2} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less