Properties

Label 1014.2.b.g
Level 10141014
Weight 22
Character orbit 1014.b
Analytic conductor 8.0978.097
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(337,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1014=23132 1014 = 2 \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1014.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.096830764968.09683076496
Analytic rank: 00
Dimension: 66
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β5q2+q3q4+(β5+β3+β1)q5+β5q6+(β32β1)q7β5q8+q9+(2β4β2+2)q10++(2β3+β1)q99+O(q100) q + \beta_{5} q^{2} + q^{3} - q^{4} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{5} + \beta_{5} q^{6} + (\beta_{3} - 2 \beta_1) q^{7} - \beta_{5} q^{8} + q^{9} + ( - 2 \beta_{4} - \beta_{2} + 2) q^{10}+ \cdots + (2 \beta_{3} + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+6q36q4+6q9+6q106q12+6q14+6q1624q17+2q2232q234q25+6q27+26q29+6q30+8q356q368q386q40++8q95+O(q100) 6 q + 6 q^{3} - 6 q^{4} + 6 q^{9} + 6 q^{10} - 6 q^{12} + 6 q^{14} + 6 q^{16} - 24 q^{17} + 2 q^{22} - 32 q^{23} - 4 q^{25} + 6 q^{27} + 26 q^{29} + 6 q^{30} + 8 q^{35} - 6 q^{36} - 8 q^{38} - 6 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+5x4+6x2+1 x^{6} + 5x^{4} + 6x^{2} + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== ν3+3ν \nu^{3} + 3\nu Copy content Toggle raw display
β4\beta_{4}== ν4+3ν2+1 \nu^{4} + 3\nu^{2} + 1 Copy content Toggle raw display
β5\beta_{5}== ν5+4ν3+3ν \nu^{5} + 4\nu^{3} + 3\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== β33β1 \beta_{3} - 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β43β2+5 \beta_{4} - 3\beta_{2} + 5 Copy content Toggle raw display
ν5\nu^{5}== β54β3+9β1 \beta_{5} - 4\beta_{3} + 9\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1014Z)×\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times.

nn 677677 847847
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
337.1
0.445042i
1.80194i
1.24698i
1.24698i
1.80194i
0.445042i
1.00000i 1.00000 −1.00000 0.692021i 1.00000i 0.356896i 1.00000i 1.00000 −0.692021
337.2 1.00000i 1.00000 −1.00000 0.356896i 1.00000i 4.04892i 1.00000i 1.00000 −0.356896
337.3 1.00000i 1.00000 −1.00000 4.04892i 1.00000i 0.692021i 1.00000i 1.00000 4.04892
337.4 1.00000i 1.00000 −1.00000 4.04892i 1.00000i 0.692021i 1.00000i 1.00000 4.04892
337.5 1.00000i 1.00000 −1.00000 0.356896i 1.00000i 4.04892i 1.00000i 1.00000 −0.356896
337.6 1.00000i 1.00000 −1.00000 0.692021i 1.00000i 0.356896i 1.00000i 1.00000 −0.692021
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.b.g 6
3.b odd 2 1 3042.2.b.r 6
13.b even 2 1 inner 1014.2.b.g 6
13.c even 3 2 1014.2.i.g 12
13.d odd 4 1 1014.2.a.m 3
13.d odd 4 1 1014.2.a.o yes 3
13.e even 6 2 1014.2.i.g 12
13.f odd 12 2 1014.2.e.k 6
13.f odd 12 2 1014.2.e.m 6
39.d odd 2 1 3042.2.b.r 6
39.f even 4 1 3042.2.a.bd 3
39.f even 4 1 3042.2.a.be 3
52.f even 4 1 8112.2.a.bz 3
52.f even 4 1 8112.2.a.ce 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.a.m 3 13.d odd 4 1
1014.2.a.o yes 3 13.d odd 4 1
1014.2.b.g 6 1.a even 1 1 trivial
1014.2.b.g 6 13.b even 2 1 inner
1014.2.e.k 6 13.f odd 12 2
1014.2.e.m 6 13.f odd 12 2
1014.2.i.g 12 13.c even 3 2
1014.2.i.g 12 13.e even 6 2
3042.2.a.bd 3 39.f even 4 1
3042.2.a.be 3 39.f even 4 1
3042.2.b.r 6 3.b odd 2 1
3042.2.b.r 6 39.d odd 2 1
8112.2.a.bz 3 52.f even 4 1
8112.2.a.ce 3 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56+17T54+10T52+1 T_{5}^{6} + 17T_{5}^{4} + 10T_{5}^{2} + 1 acting on S2new(1014,[χ])S_{2}^{\mathrm{new}}(1014, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)3 (T^{2} + 1)^{3} Copy content Toggle raw display
33 (T1)6 (T - 1)^{6} Copy content Toggle raw display
55 T6+17T4++1 T^{6} + 17 T^{4} + \cdots + 1 Copy content Toggle raw display
77 T6+17T4++1 T^{6} + 17 T^{4} + \cdots + 1 Copy content Toggle raw display
1111 T6+33T4++169 T^{6} + 33 T^{4} + \cdots + 169 Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 (T3+12T2+104)2 (T^{3} + 12 T^{2} + \cdots - 104)^{2} Copy content Toggle raw display
1919 T6+80T4++4096 T^{6} + 80 T^{4} + \cdots + 4096 Copy content Toggle raw display
2323 (T3+16T2++104)2 (T^{3} + 16 T^{2} + \cdots + 104)^{2} Copy content Toggle raw display
2929 (T313T2++223)2 (T^{3} - 13 T^{2} + \cdots + 223)^{2} Copy content Toggle raw display
3131 T6+125T4++841 T^{6} + 125 T^{4} + \cdots + 841 Copy content Toggle raw display
3737 T6+104T4++64 T^{6} + 104 T^{4} + \cdots + 64 Copy content Toggle raw display
4141 T6+84T4++3136 T^{6} + 84 T^{4} + \cdots + 3136 Copy content Toggle raw display
4343 (T38T2++344)2 (T^{3} - 8 T^{2} + \cdots + 344)^{2} Copy content Toggle raw display
4747 T6+80T4++4096 T^{6} + 80 T^{4} + \cdots + 4096 Copy content Toggle raw display
5353 (T315T2++1247)2 (T^{3} - 15 T^{2} + \cdots + 1247)^{2} Copy content Toggle raw display
5959 T6+41T4++169 T^{6} + 41 T^{4} + \cdots + 169 Copy content Toggle raw display
6161 (T3+10T2+24T+8)2 (T^{3} + 10 T^{2} + 24 T + 8)^{2} Copy content Toggle raw display
6767 T6+404T4++1236544 T^{6} + 404 T^{4} + \cdots + 1236544 Copy content Toggle raw display
7171 T6+180T4++10816 T^{6} + 180 T^{4} + \cdots + 10816 Copy content Toggle raw display
7373 T6+69T4++169 T^{6} + 69 T^{4} + \cdots + 169 Copy content Toggle raw display
7979 (T3+5T2+1469)2 (T^{3} + 5 T^{2} + \cdots - 1469)^{2} Copy content Toggle raw display
8383 T6+497T4++2181529 T^{6} + 497 T^{4} + \cdots + 2181529 Copy content Toggle raw display
8989 T6+52T4++64 T^{6} + 52 T^{4} + \cdots + 64 Copy content Toggle raw display
9797 T6+77T4++49 T^{6} + 77 T^{4} + \cdots + 49 Copy content Toggle raw display
show more
show less