gp: [N,k,chi] = [1014,2,Mod(337,1014)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1014.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,6,-6,0,0,0,0,6,6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 + 5 x 4 + 6 x 2 + 1 x^{6} + 5x^{4} + 6x^{2} + 1 x 6 + 5 x 4 + 6 x 2 + 1
x^6 + 5*x^4 + 6*x^2 + 1
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 + 2 \nu^{2} + 2 ν 2 + 2
v^2 + 2
β 3 \beta_{3} β 3 = = =
ν 3 + 3 ν \nu^{3} + 3\nu ν 3 + 3 ν
v^3 + 3*v
β 4 \beta_{4} β 4 = = =
ν 4 + 3 ν 2 + 1 \nu^{4} + 3\nu^{2} + 1 ν 4 + 3 ν 2 + 1
v^4 + 3*v^2 + 1
β 5 \beta_{5} β 5 = = =
ν 5 + 4 ν 3 + 3 ν \nu^{5} + 4\nu^{3} + 3\nu ν 5 + 4 ν 3 + 3 ν
v^5 + 4*v^3 + 3*v
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 − 2 \beta_{2} - 2 β 2 − 2
b2 - 2
ν 3 \nu^{3} ν 3 = = =
β 3 − 3 β 1 \beta_{3} - 3\beta_1 β 3 − 3 β 1
b3 - 3*b1
ν 4 \nu^{4} ν 4 = = =
β 4 − 3 β 2 + 5 \beta_{4} - 3\beta_{2} + 5 β 4 − 3 β 2 + 5
b4 - 3*b2 + 5
ν 5 \nu^{5} ν 5 = = =
β 5 − 4 β 3 + 9 β 1 \beta_{5} - 4\beta_{3} + 9\beta_1 β 5 − 4 β 3 + 9 β 1
b5 - 4*b3 + 9*b1
Character values
We give the values of χ \chi χ on generators for ( Z / 1014 Z ) × \left(\mathbb{Z}/1014\mathbb{Z}\right)^\times ( Z / 1 0 1 4 Z ) × .
n n n
677 677 6 7 7
847 847 8 4 7
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 + 17 T 5 4 + 10 T 5 2 + 1 T_{5}^{6} + 17T_{5}^{4} + 10T_{5}^{2} + 1 T 5 6 + 1 7 T 5 4 + 1 0 T 5 2 + 1
T5^6 + 17*T5^4 + 10*T5^2 + 1
acting on S 2 n e w ( 1014 , [ χ ] ) S_{2}^{\mathrm{new}}(1014, [\chi]) S 2 n e w ( 1 0 1 4 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 + 1 ) 3 (T^{2} + 1)^{3} ( T 2 + 1 ) 3
(T^2 + 1)^3
3 3 3
( T − 1 ) 6 (T - 1)^{6} ( T − 1 ) 6
(T - 1)^6
5 5 5
T 6 + 17 T 4 + ⋯ + 1 T^{6} + 17 T^{4} + \cdots + 1 T 6 + 1 7 T 4 + ⋯ + 1
T^6 + 17*T^4 + 10*T^2 + 1
7 7 7
T 6 + 17 T 4 + ⋯ + 1 T^{6} + 17 T^{4} + \cdots + 1 T 6 + 1 7 T 4 + ⋯ + 1
T^6 + 17*T^4 + 10*T^2 + 1
11 11 1 1
T 6 + 33 T 4 + ⋯ + 169 T^{6} + 33 T^{4} + \cdots + 169 T 6 + 3 3 T 4 + ⋯ + 1 6 9
T^6 + 33*T^4 + 230*T^2 + 169
13 13 1 3
T 6 T^{6} T 6
T^6
17 17 1 7
( T 3 + 12 T 2 + ⋯ − 104 ) 2 (T^{3} + 12 T^{2} + \cdots - 104)^{2} ( T 3 + 1 2 T 2 + ⋯ − 1 0 4 ) 2
(T^3 + 12*T^2 + 20*T - 104)^2
19 19 1 9
T 6 + 80 T 4 + ⋯ + 4096 T^{6} + 80 T^{4} + \cdots + 4096 T 6 + 8 0 T 4 + ⋯ + 4 0 9 6
T^6 + 80*T^4 + 1536*T^2 + 4096
23 23 2 3
( T 3 + 16 T 2 + ⋯ + 104 ) 2 (T^{3} + 16 T^{2} + \cdots + 104)^{2} ( T 3 + 1 6 T 2 + ⋯ + 1 0 4 ) 2
(T^3 + 16*T^2 + 76*T + 104)^2
29 29 2 9
( T 3 − 13 T 2 + ⋯ + 223 ) 2 (T^{3} - 13 T^{2} + \cdots + 223)^{2} ( T 3 − 1 3 T 2 + ⋯ + 2 2 3 ) 2
(T^3 - 13*T^2 + 12*T + 223)^2
31 31 3 1
T 6 + 125 T 4 + ⋯ + 841 T^{6} + 125 T^{4} + \cdots + 841 T 6 + 1 2 5 T 4 + ⋯ + 8 4 1
T^6 + 125*T^4 + 1006*T^2 + 841
37 37 3 7
T 6 + 104 T 4 + ⋯ + 64 T^{6} + 104 T^{4} + \cdots + 64 T 6 + 1 0 4 T 4 + ⋯ + 6 4
T^6 + 104*T^4 + 208*T^2 + 64
41 41 4 1
T 6 + 84 T 4 + ⋯ + 3136 T^{6} + 84 T^{4} + \cdots + 3136 T 6 + 8 4 T 4 + ⋯ + 3 1 3 6
T^6 + 84*T^4 + 1568*T^2 + 3136
43 43 4 3
( T 3 − 8 T 2 + ⋯ + 344 ) 2 (T^{3} - 8 T^{2} + \cdots + 344)^{2} ( T 3 − 8 T 2 + ⋯ + 3 4 4 ) 2
(T^3 - 8*T^2 - 44*T + 344)^2
47 47 4 7
T 6 + 80 T 4 + ⋯ + 4096 T^{6} + 80 T^{4} + \cdots + 4096 T 6 + 8 0 T 4 + ⋯ + 4 0 9 6
T^6 + 80*T^4 + 1536*T^2 + 4096
53 53 5 3
( T 3 − 15 T 2 + ⋯ + 1247 ) 2 (T^{3} - 15 T^{2} + \cdots + 1247)^{2} ( T 3 − 1 5 T 2 + ⋯ + 1 2 4 7 ) 2
(T^3 - 15*T^2 - 72*T + 1247)^2
59 59 5 9
T 6 + 41 T 4 + ⋯ + 169 T^{6} + 41 T^{4} + \cdots + 169 T 6 + 4 1 T 4 + ⋯ + 1 6 9
T^6 + 41*T^4 + 166*T^2 + 169
61 61 6 1
( T 3 + 10 T 2 + 24 T + 8 ) 2 (T^{3} + 10 T^{2} + 24 T + 8)^{2} ( T 3 + 1 0 T 2 + 2 4 T + 8 ) 2
(T^3 + 10*T^2 + 24*T + 8)^2
67 67 6 7
T 6 + 404 T 4 + ⋯ + 1236544 T^{6} + 404 T^{4} + \cdots + 1236544 T 6 + 4 0 4 T 4 + ⋯ + 1 2 3 6 5 4 4
T^6 + 404*T^4 + 47200*T^2 + 1236544
71 71 7 1
T 6 + 180 T 4 + ⋯ + 10816 T^{6} + 180 T^{4} + \cdots + 10816 T 6 + 1 8 0 T 4 + ⋯ + 1 0 8 1 6
T^6 + 180*T^4 + 6432*T^2 + 10816
73 73 7 3
T 6 + 69 T 4 + ⋯ + 169 T^{6} + 69 T^{4} + \cdots + 169 T 6 + 6 9 T 4 + ⋯ + 1 6 9
T^6 + 69*T^4 + 614*T^2 + 169
79 79 7 9
( T 3 + 5 T 2 + ⋯ − 1469 ) 2 (T^{3} + 5 T^{2} + \cdots - 1469)^{2} ( T 3 + 5 T 2 + ⋯ − 1 4 6 9 ) 2
(T^3 + 5*T^2 - 204*T - 1469)^2
83 83 8 3
T 6 + 497 T 4 + ⋯ + 2181529 T^{6} + 497 T^{4} + \cdots + 2181529 T 6 + 4 9 7 T 4 + ⋯ + 2 1 8 1 5 2 9
T^6 + 497*T^4 + 70854*T^2 + 2181529
89 89 8 9
T 6 + 52 T 4 + ⋯ + 64 T^{6} + 52 T^{4} + \cdots + 64 T 6 + 5 2 T 4 + ⋯ + 6 4
T^6 + 52*T^4 + 416*T^2 + 64
97 97 9 7
T 6 + 77 T 4 + ⋯ + 49 T^{6} + 77 T^{4} + \cdots + 49 T 6 + 7 7 T 4 + ⋯ + 4 9
T^6 + 77*T^4 + 294*T^2 + 49
show more
show less