Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1014,2,Mod(337,1014)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1014.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1014.b (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 6.0.153664.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
− | 1.00000i | 1.00000 | −1.00000 | − | 0.692021i | − | 1.00000i | − | 0.356896i | 1.00000i | 1.00000 | −0.692021 | ||||||||||||||||||||||||||||||||
337.2 | − | 1.00000i | 1.00000 | −1.00000 | − | 0.356896i | − | 1.00000i | 4.04892i | 1.00000i | 1.00000 | −0.356896 | ||||||||||||||||||||||||||||||||||
337.3 | − | 1.00000i | 1.00000 | −1.00000 | 4.04892i | − | 1.00000i | − | 0.692021i | 1.00000i | 1.00000 | 4.04892 | ||||||||||||||||||||||||||||||||||
337.4 | 1.00000i | 1.00000 | −1.00000 | − | 4.04892i | 1.00000i | 0.692021i | − | 1.00000i | 1.00000 | 4.04892 | |||||||||||||||||||||||||||||||||||
337.5 | 1.00000i | 1.00000 | −1.00000 | 0.356896i | 1.00000i | − | 4.04892i | − | 1.00000i | 1.00000 | −0.356896 | |||||||||||||||||||||||||||||||||||
337.6 | 1.00000i | 1.00000 | −1.00000 | 0.692021i | 1.00000i | 0.356896i | − | 1.00000i | 1.00000 | −0.692021 | ||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1014.2.b.g | 6 | |
3.b | odd | 2 | 1 | 3042.2.b.r | 6 | ||
13.b | even | 2 | 1 | inner | 1014.2.b.g | 6 | |
13.c | even | 3 | 2 | 1014.2.i.g | 12 | ||
13.d | odd | 4 | 1 | 1014.2.a.m | ✓ | 3 | |
13.d | odd | 4 | 1 | 1014.2.a.o | yes | 3 | |
13.e | even | 6 | 2 | 1014.2.i.g | 12 | ||
13.f | odd | 12 | 2 | 1014.2.e.k | 6 | ||
13.f | odd | 12 | 2 | 1014.2.e.m | 6 | ||
39.d | odd | 2 | 1 | 3042.2.b.r | 6 | ||
39.f | even | 4 | 1 | 3042.2.a.bd | 3 | ||
39.f | even | 4 | 1 | 3042.2.a.be | 3 | ||
52.f | even | 4 | 1 | 8112.2.a.bz | 3 | ||
52.f | even | 4 | 1 | 8112.2.a.ce | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1014.2.a.m | ✓ | 3 | 13.d | odd | 4 | 1 | |
1014.2.a.o | yes | 3 | 13.d | odd | 4 | 1 | |
1014.2.b.g | 6 | 1.a | even | 1 | 1 | trivial | |
1014.2.b.g | 6 | 13.b | even | 2 | 1 | inner | |
1014.2.e.k | 6 | 13.f | odd | 12 | 2 | ||
1014.2.e.m | 6 | 13.f | odd | 12 | 2 | ||
1014.2.i.g | 12 | 13.c | even | 3 | 2 | ||
1014.2.i.g | 12 | 13.e | even | 6 | 2 | ||
3042.2.a.bd | 3 | 39.f | even | 4 | 1 | ||
3042.2.a.be | 3 | 39.f | even | 4 | 1 | ||
3042.2.b.r | 6 | 3.b | odd | 2 | 1 | ||
3042.2.b.r | 6 | 39.d | odd | 2 | 1 | ||
8112.2.a.bz | 3 | 52.f | even | 4 | 1 | ||
8112.2.a.ce | 3 | 52.f | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .