Properties

Label 1014.2.b.g
Level $1014$
Weight $2$
Character orbit 1014.b
Analytic conductor $8.097$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(337,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} + q^{3} - q^{4} + ( - \beta_{5} + \beta_{3} + \beta_1) q^{5} + \beta_{5} q^{6} + (\beta_{3} - 2 \beta_1) q^{7} - \beta_{5} q^{8} + q^{9} + ( - 2 \beta_{4} - \beta_{2} + 2) q^{10}+ \cdots + (2 \beta_{3} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{3} - 6 q^{4} + 6 q^{9} + 6 q^{10} - 6 q^{12} + 6 q^{14} + 6 q^{16} - 24 q^{17} + 2 q^{22} - 32 q^{23} - 4 q^{25} + 6 q^{27} + 26 q^{29} + 6 q^{30} + 8 q^{35} - 6 q^{36} - 8 q^{38} - 6 q^{40}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
0.445042i
1.80194i
1.24698i
1.24698i
1.80194i
0.445042i
1.00000i 1.00000 −1.00000 0.692021i 1.00000i 0.356896i 1.00000i 1.00000 −0.692021
337.2 1.00000i 1.00000 −1.00000 0.356896i 1.00000i 4.04892i 1.00000i 1.00000 −0.356896
337.3 1.00000i 1.00000 −1.00000 4.04892i 1.00000i 0.692021i 1.00000i 1.00000 4.04892
337.4 1.00000i 1.00000 −1.00000 4.04892i 1.00000i 0.692021i 1.00000i 1.00000 4.04892
337.5 1.00000i 1.00000 −1.00000 0.356896i 1.00000i 4.04892i 1.00000i 1.00000 −0.356896
337.6 1.00000i 1.00000 −1.00000 0.692021i 1.00000i 0.356896i 1.00000i 1.00000 −0.692021
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.b.g 6
3.b odd 2 1 3042.2.b.r 6
13.b even 2 1 inner 1014.2.b.g 6
13.c even 3 2 1014.2.i.g 12
13.d odd 4 1 1014.2.a.m 3
13.d odd 4 1 1014.2.a.o yes 3
13.e even 6 2 1014.2.i.g 12
13.f odd 12 2 1014.2.e.k 6
13.f odd 12 2 1014.2.e.m 6
39.d odd 2 1 3042.2.b.r 6
39.f even 4 1 3042.2.a.bd 3
39.f even 4 1 3042.2.a.be 3
52.f even 4 1 8112.2.a.bz 3
52.f even 4 1 8112.2.a.ce 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1014.2.a.m 3 13.d odd 4 1
1014.2.a.o yes 3 13.d odd 4 1
1014.2.b.g 6 1.a even 1 1 trivial
1014.2.b.g 6 13.b even 2 1 inner
1014.2.e.k 6 13.f odd 12 2
1014.2.e.m 6 13.f odd 12 2
1014.2.i.g 12 13.c even 3 2
1014.2.i.g 12 13.e even 6 2
3042.2.a.bd 3 39.f even 4 1
3042.2.a.be 3 39.f even 4 1
3042.2.b.r 6 3.b odd 2 1
3042.2.b.r 6 39.d odd 2 1
8112.2.a.bz 3 52.f even 4 1
8112.2.a.ce 3 52.f even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 17T_{5}^{4} + 10T_{5}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 17 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{6} + 17 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{6} + 33 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} + 12 T^{2} + \cdots - 104)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 80 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$23$ \( (T^{3} + 16 T^{2} + \cdots + 104)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 13 T^{2} + \cdots + 223)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 125 T^{4} + \cdots + 841 \) Copy content Toggle raw display
$37$ \( T^{6} + 104 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( T^{6} + 84 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$43$ \( (T^{3} - 8 T^{2} + \cdots + 344)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 80 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$53$ \( (T^{3} - 15 T^{2} + \cdots + 1247)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 41 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$61$ \( (T^{3} + 10 T^{2} + 24 T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 404 T^{4} + \cdots + 1236544 \) Copy content Toggle raw display
$71$ \( T^{6} + 180 T^{4} + \cdots + 10816 \) Copy content Toggle raw display
$73$ \( T^{6} + 69 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$79$ \( (T^{3} + 5 T^{2} + \cdots - 1469)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 497 T^{4} + \cdots + 2181529 \) Copy content Toggle raw display
$89$ \( T^{6} + 52 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$97$ \( T^{6} + 77 T^{4} + \cdots + 49 \) Copy content Toggle raw display
show more
show less