Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1014,2,Mod(239,1014)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1014.239");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1014.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 12.0.58498535041007616.52 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 78) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
239.1 |
|
−0.707107 | − | 0.707107i | −1.64497 | + | 0.542278i | 1.00000i | −2.32634 | − | 2.32634i | 1.54662 | + | 0.779723i | 1.76690 | + | 1.76690i | 0.707107 | − | 0.707107i | 2.41187 | − | 1.78406i | 3.28995i | ||||||||||||||||||||||||||||||||||||||||
239.2 | −0.707107 | − | 0.707107i | 0.352860 | − | 1.69573i | 1.00000i | 0.499019 | + | 0.499019i | −1.44857 | + | 0.949550i | −1.39812 | − | 1.39812i | 0.707107 | − | 0.707107i | −2.75098 | − | 1.19671i | − | 0.705720i | ||||||||||||||||||||||||||||||||||||||||
239.3 | −0.707107 | − | 0.707107i | 1.29211 | + | 1.15345i | 1.00000i | 1.82732 | + | 1.82732i | −0.0980500 | − | 1.72927i | 2.63122 | + | 2.63122i | 0.707107 | − | 0.707107i | 0.339111 | + | 2.98077i | − | 2.58423i | ||||||||||||||||||||||||||||||||||||||||
239.4 | 0.707107 | + | 0.707107i | −1.64497 | − | 0.542278i | 1.00000i | 2.32634 | + | 2.32634i | −0.779723 | − | 1.54662i | 1.76690 | + | 1.76690i | −0.707107 | + | 0.707107i | 2.41187 | + | 1.78406i | 3.28995i | |||||||||||||||||||||||||||||||||||||||||
239.5 | 0.707107 | + | 0.707107i | 0.352860 | + | 1.69573i | 1.00000i | −0.499019 | − | 0.499019i | −0.949550 | + | 1.44857i | −1.39812 | − | 1.39812i | −0.707107 | + | 0.707107i | −2.75098 | + | 1.19671i | − | 0.705720i | ||||||||||||||||||||||||||||||||||||||||
239.6 | 0.707107 | + | 0.707107i | 1.29211 | − | 1.15345i | 1.00000i | −1.82732 | − | 1.82732i | 1.72927 | + | 0.0980500i | 2.63122 | + | 2.63122i | −0.707107 | + | 0.707107i | 0.339111 | − | 2.98077i | − | 2.58423i | ||||||||||||||||||||||||||||||||||||||||
437.1 | −0.707107 | + | 0.707107i | −1.64497 | − | 0.542278i | − | 1.00000i | −2.32634 | + | 2.32634i | 1.54662 | − | 0.779723i | 1.76690 | − | 1.76690i | 0.707107 | + | 0.707107i | 2.41187 | + | 1.78406i | − | 3.28995i | |||||||||||||||||||||||||||||||||||||||
437.2 | −0.707107 | + | 0.707107i | 0.352860 | + | 1.69573i | − | 1.00000i | 0.499019 | − | 0.499019i | −1.44857 | − | 0.949550i | −1.39812 | + | 1.39812i | 0.707107 | + | 0.707107i | −2.75098 | + | 1.19671i | 0.705720i | ||||||||||||||||||||||||||||||||||||||||
437.3 | −0.707107 | + | 0.707107i | 1.29211 | − | 1.15345i | − | 1.00000i | 1.82732 | − | 1.82732i | −0.0980500 | + | 1.72927i | 2.63122 | − | 2.63122i | 0.707107 | + | 0.707107i | 0.339111 | − | 2.98077i | 2.58423i | ||||||||||||||||||||||||||||||||||||||||
437.4 | 0.707107 | − | 0.707107i | −1.64497 | + | 0.542278i | − | 1.00000i | 2.32634 | − | 2.32634i | −0.779723 | + | 1.54662i | 1.76690 | − | 1.76690i | −0.707107 | − | 0.707107i | 2.41187 | − | 1.78406i | − | 3.28995i | |||||||||||||||||||||||||||||||||||||||
437.5 | 0.707107 | − | 0.707107i | 0.352860 | − | 1.69573i | − | 1.00000i | −0.499019 | + | 0.499019i | −0.949550 | − | 1.44857i | −1.39812 | + | 1.39812i | −0.707107 | − | 0.707107i | −2.75098 | − | 1.19671i | 0.705720i | ||||||||||||||||||||||||||||||||||||||||
437.6 | 0.707107 | − | 0.707107i | 1.29211 | + | 1.15345i | − | 1.00000i | −1.82732 | + | 1.82732i | 1.72927 | − | 0.0980500i | 2.63122 | − | 2.63122i | −0.707107 | − | 0.707107i | 0.339111 | + | 2.98077i | 2.58423i | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
39.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1014.2.g.b | 12 | |
3.b | odd | 2 | 1 | inner | 1014.2.g.b | 12 | |
13.b | even | 2 | 1 | 78.2.g.a | ✓ | 12 | |
13.d | odd | 4 | 1 | 78.2.g.a | ✓ | 12 | |
13.d | odd | 4 | 1 | inner | 1014.2.g.b | 12 | |
39.d | odd | 2 | 1 | 78.2.g.a | ✓ | 12 | |
39.f | even | 4 | 1 | 78.2.g.a | ✓ | 12 | |
39.f | even | 4 | 1 | inner | 1014.2.g.b | 12 | |
52.b | odd | 2 | 1 | 624.2.bf.f | 12 | ||
52.f | even | 4 | 1 | 624.2.bf.f | 12 | ||
156.h | even | 2 | 1 | 624.2.bf.f | 12 | ||
156.l | odd | 4 | 1 | 624.2.bf.f | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
78.2.g.a | ✓ | 12 | 13.b | even | 2 | 1 | |
78.2.g.a | ✓ | 12 | 13.d | odd | 4 | 1 | |
78.2.g.a | ✓ | 12 | 39.d | odd | 2 | 1 | |
78.2.g.a | ✓ | 12 | 39.f | even | 4 | 1 | |
624.2.bf.f | 12 | 52.b | odd | 2 | 1 | ||
624.2.bf.f | 12 | 52.f | even | 4 | 1 | ||
624.2.bf.f | 12 | 156.h | even | 2 | 1 | ||
624.2.bf.f | 12 | 156.l | odd | 4 | 1 | ||
1014.2.g.b | 12 | 1.a | even | 1 | 1 | trivial | |
1014.2.g.b | 12 | 3.b | odd | 2 | 1 | inner | |
1014.2.g.b | 12 | 13.d | odd | 4 | 1 | inner | |
1014.2.g.b | 12 | 39.f | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|