Properties

Label 1014.2.g.b
Level $1014$
Weight $2$
Character orbit 1014.g
Analytic conductor $8.097$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(239,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.58498535041007616.52
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{6} q^{2} + \beta_{7} q^{3} - \beta_{8} q^{4} + ( - \beta_{9} + \beta_{5}) q^{5} + \beta_{9} q^{6} + ( - \beta_{11} - \beta_{8} + \beta_1 + 1) q^{7} + \beta_{2} q^{8} + ( - \beta_{11} + \beta_{5} + \beta_{4}) q^{9}+ \cdots + (3 \beta_{8} - 3 \beta_{7} + 3 \beta_{3} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{7} - 12 q^{16} + 12 q^{19} - 36 q^{27} - 12 q^{28} - 12 q^{31} - 36 q^{33} - 12 q^{37} + 36 q^{42} - 36 q^{45} + 36 q^{54} + 36 q^{57} + 36 q^{63} + 12 q^{67} + 12 q^{73} + 12 q^{76} + 72 q^{79}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 12x^{9} + 72x^{6} - 324x^{3} + 729 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{9} - 3\nu^{6} + 18\nu^{3} - 81 ) / 81 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{10} - 3\nu^{7} + 18\nu^{4} - 81\nu ) / 81 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{11} + 3\nu^{8} - 45\nu^{5} + 162\nu^{2} ) / 243 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{11} + 12\nu^{8} - 72\nu^{5} + 324\nu^{2} ) / 243 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -2\nu^{9} + 15\nu^{6} - 63\nu^{3} + 243 ) / 81 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{10} + 15\nu^{7} - 63\nu^{4} + 243\nu ) / 81 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2\nu^{9} - 15\nu^{6} + 90\nu^{3} - 324 ) / 81 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 2\nu^{10} - 15\nu^{7} + 90\nu^{4} - 324\nu ) / 81 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -\nu^{11} + 6\nu^{8} - 27\nu^{5} + 135\nu^{2} ) / 81 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 4\nu^{11} - 30\nu^{8} + 153\nu^{5} - 486\nu^{2} ) / 243 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} + \beta_{10} + \beta_{5} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{8} + 3\beta_{6} + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 3\beta_{9} + 3\beta_{7} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{11} + 6\beta_{10} - 6\beta_{4} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 9\beta_{8} + 18\beta_{6} + 18\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 9\beta_{9} + 18\beta_{7} + 18\beta_{3} \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -9\beta_{11} + 9\beta_{5} - 45\beta_{4} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( -27\beta_{8} + 135\beta_{2} + 27 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -27\beta_{9} + 135\beta_{3} + 27\beta_1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -108\beta_{10} + 189\beta_{5} - 108\beta_{4} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(-1\) \(\beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
239.1
−0.779723 + 1.54662i
−0.949550 1.44857i
1.72927 0.0980500i
1.54662 0.779723i
−1.44857 0.949550i
−0.0980500 + 1.72927i
−0.779723 1.54662i
−0.949550 + 1.44857i
1.72927 + 0.0980500i
1.54662 + 0.779723i
−1.44857 + 0.949550i
−0.0980500 1.72927i
−0.707107 0.707107i −1.64497 + 0.542278i 1.00000i −2.32634 2.32634i 1.54662 + 0.779723i 1.76690 + 1.76690i 0.707107 0.707107i 2.41187 1.78406i 3.28995i
239.2 −0.707107 0.707107i 0.352860 1.69573i 1.00000i 0.499019 + 0.499019i −1.44857 + 0.949550i −1.39812 1.39812i 0.707107 0.707107i −2.75098 1.19671i 0.705720i
239.3 −0.707107 0.707107i 1.29211 + 1.15345i 1.00000i 1.82732 + 1.82732i −0.0980500 1.72927i 2.63122 + 2.63122i 0.707107 0.707107i 0.339111 + 2.98077i 2.58423i
239.4 0.707107 + 0.707107i −1.64497 0.542278i 1.00000i 2.32634 + 2.32634i −0.779723 1.54662i 1.76690 + 1.76690i −0.707107 + 0.707107i 2.41187 + 1.78406i 3.28995i
239.5 0.707107 + 0.707107i 0.352860 + 1.69573i 1.00000i −0.499019 0.499019i −0.949550 + 1.44857i −1.39812 1.39812i −0.707107 + 0.707107i −2.75098 + 1.19671i 0.705720i
239.6 0.707107 + 0.707107i 1.29211 1.15345i 1.00000i −1.82732 1.82732i 1.72927 + 0.0980500i 2.63122 + 2.63122i −0.707107 + 0.707107i 0.339111 2.98077i 2.58423i
437.1 −0.707107 + 0.707107i −1.64497 0.542278i 1.00000i −2.32634 + 2.32634i 1.54662 0.779723i 1.76690 1.76690i 0.707107 + 0.707107i 2.41187 + 1.78406i 3.28995i
437.2 −0.707107 + 0.707107i 0.352860 + 1.69573i 1.00000i 0.499019 0.499019i −1.44857 0.949550i −1.39812 + 1.39812i 0.707107 + 0.707107i −2.75098 + 1.19671i 0.705720i
437.3 −0.707107 + 0.707107i 1.29211 1.15345i 1.00000i 1.82732 1.82732i −0.0980500 + 1.72927i 2.63122 2.63122i 0.707107 + 0.707107i 0.339111 2.98077i 2.58423i
437.4 0.707107 0.707107i −1.64497 + 0.542278i 1.00000i 2.32634 2.32634i −0.779723 + 1.54662i 1.76690 1.76690i −0.707107 0.707107i 2.41187 1.78406i 3.28995i
437.5 0.707107 0.707107i 0.352860 1.69573i 1.00000i −0.499019 + 0.499019i −0.949550 1.44857i −1.39812 + 1.39812i −0.707107 0.707107i −2.75098 1.19671i 0.705720i
437.6 0.707107 0.707107i 1.29211 + 1.15345i 1.00000i −1.82732 + 1.82732i 1.72927 0.0980500i 2.63122 2.63122i −0.707107 0.707107i 0.339111 + 2.98077i 2.58423i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 239.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.g.b 12
3.b odd 2 1 inner 1014.2.g.b 12
13.b even 2 1 78.2.g.a 12
13.d odd 4 1 78.2.g.a 12
13.d odd 4 1 inner 1014.2.g.b 12
39.d odd 2 1 78.2.g.a 12
39.f even 4 1 78.2.g.a 12
39.f even 4 1 inner 1014.2.g.b 12
52.b odd 2 1 624.2.bf.f 12
52.f even 4 1 624.2.bf.f 12
156.h even 2 1 624.2.bf.f 12
156.l odd 4 1 624.2.bf.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.g.a 12 13.b even 2 1
78.2.g.a 12 13.d odd 4 1
78.2.g.a 12 39.d odd 2 1
78.2.g.a 12 39.f even 4 1
624.2.bf.f 12 52.b odd 2 1
624.2.bf.f 12 52.f even 4 1
624.2.bf.f 12 156.h even 2 1
624.2.bf.f 12 156.l odd 4 1
1014.2.g.b 12 1.a even 1 1 trivial
1014.2.g.b 12 3.b odd 2 1 inner
1014.2.g.b 12 13.d odd 4 1 inner
1014.2.g.b 12 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1014, [\chi])\):

\( T_{5}^{12} + 162T_{5}^{8} + 5265T_{5}^{4} + 1296 \) Copy content Toggle raw display
\( T_{7}^{6} - 6T_{7}^{5} + 18T_{7}^{4} - 8T_{7}^{3} + 9T_{7}^{2} - 78T_{7} + 338 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T^{6} + 6 T^{3} + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{12} + 162 T^{8} + \cdots + 1296 \) Copy content Toggle raw display
$7$ \( (T^{6} - 6 T^{5} + \cdots + 338)^{2} \) Copy content Toggle raw display
$11$ \( T^{12} + 648 T^{8} + \cdots + 331776 \) Copy content Toggle raw display
$13$ \( T^{12} \) Copy content Toggle raw display
$17$ \( (T^{6} - 54 T^{4} + \cdots - 1152)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} - 6 T^{5} + \cdots + 1568)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} - 36 T^{4} + \cdots - 288)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 36 T^{4} + \cdots + 288)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 6 T^{5} + \cdots + 512)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} + 6 T^{5} + \cdots + 4802)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + 18576 T^{8} + \cdots + 5308416 \) Copy content Toggle raw display
$43$ \( (T^{6} + 162 T^{4} + \cdots + 324)^{2} \) Copy content Toggle raw display
$47$ \( T^{12} + 15714 T^{8} + \cdots + 1679616 \) Copy content Toggle raw display
$53$ \( (T^{6} + 324 T^{4} + \cdots + 1152)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + 2592 T^{8} + \cdots + 5308416 \) Copy content Toggle raw display
$61$ \( (T^{3} - 72 T + 192)^{4} \) Copy content Toggle raw display
$67$ \( (T^{6} - 6 T^{5} + \cdots + 392)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + 13986 T^{8} + \cdots + 20736 \) Copy content Toggle raw display
$73$ \( (T^{6} - 6 T^{5} + \cdots + 1568)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 18 T^{2} + \cdots + 12)^{4} \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 21743271936 \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 27710263296 \) Copy content Toggle raw display
$97$ \( (T^{6} - 30 T^{5} + \cdots + 392)^{2} \) Copy content Toggle raw display
show more
show less