Properties

Label 1014.6.a.o.1.3
Level $1014$
Weight $6$
Character 1014.1
Self dual yes
Analytic conductor $162.629$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,6,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(162.629193290\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 727x - 6617 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-18.9385\) of defining polynomial
Character \(\chi\) \(=\) 1014.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} +86.8538 q^{5} +36.0000 q^{6} +98.7774 q^{7} -64.0000 q^{8} +81.0000 q^{9} -347.415 q^{10} +610.754 q^{11} -144.000 q^{12} -395.109 q^{14} -781.684 q^{15} +256.000 q^{16} +1148.60 q^{17} -324.000 q^{18} -2267.14 q^{19} +1389.66 q^{20} -888.996 q^{21} -2443.02 q^{22} -433.224 q^{23} +576.000 q^{24} +4418.59 q^{25} -729.000 q^{27} +1580.44 q^{28} +7669.59 q^{29} +3126.74 q^{30} -7367.13 q^{31} -1024.00 q^{32} -5496.79 q^{33} -4594.42 q^{34} +8579.19 q^{35} +1296.00 q^{36} +10575.0 q^{37} +9068.57 q^{38} -5558.65 q^{40} +3699.17 q^{41} +3555.98 q^{42} +6061.57 q^{43} +9772.07 q^{44} +7035.16 q^{45} +1732.89 q^{46} +8740.69 q^{47} -2304.00 q^{48} -7050.03 q^{49} -17674.4 q^{50} -10337.4 q^{51} +34784.8 q^{53} +2916.00 q^{54} +53046.3 q^{55} -6321.75 q^{56} +20404.3 q^{57} -30678.4 q^{58} -11949.6 q^{59} -12507.0 q^{60} -45400.2 q^{61} +29468.5 q^{62} +8000.97 q^{63} +4096.00 q^{64} +21987.2 q^{66} +45698.1 q^{67} +18377.7 q^{68} +3899.01 q^{69} -34316.8 q^{70} +23826.9 q^{71} -5184.00 q^{72} +37759.1 q^{73} -42299.9 q^{74} -39767.3 q^{75} -36274.3 q^{76} +60328.7 q^{77} -35307.0 q^{79} +22234.6 q^{80} +6561.00 q^{81} -14796.7 q^{82} -31484.4 q^{83} -14223.9 q^{84} +99760.7 q^{85} -24246.3 q^{86} -69026.3 q^{87} -39088.3 q^{88} +59051.5 q^{89} -28140.6 q^{90} -6931.58 q^{92} +66304.2 q^{93} -34962.7 q^{94} -196910. q^{95} +9216.00 q^{96} -4965.78 q^{97} +28200.1 q^{98} +49471.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 12 q^{2} - 27 q^{3} + 48 q^{4} + 40 q^{5} + 108 q^{6} + 170 q^{7} - 192 q^{8} + 243 q^{9} - 160 q^{10} + 162 q^{11} - 432 q^{12} - 680 q^{14} - 360 q^{15} + 768 q^{16} + 418 q^{17} - 972 q^{18} + 66 q^{19}+ \cdots + 13122 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 86.8538 1.55369 0.776844 0.629693i \(-0.216819\pi\)
0.776844 + 0.629693i \(0.216819\pi\)
\(6\) 36.0000 0.408248
\(7\) 98.7774 0.761925 0.380963 0.924590i \(-0.375593\pi\)
0.380963 + 0.924590i \(0.375593\pi\)
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) −347.415 −1.09862
\(11\) 610.754 1.52190 0.760948 0.648813i \(-0.224734\pi\)
0.760948 + 0.648813i \(0.224734\pi\)
\(12\) −144.000 −0.288675
\(13\) 0 0
\(14\) −395.109 −0.538762
\(15\) −781.684 −0.897023
\(16\) 256.000 0.250000
\(17\) 1148.60 0.963936 0.481968 0.876189i \(-0.339922\pi\)
0.481968 + 0.876189i \(0.339922\pi\)
\(18\) −324.000 −0.235702
\(19\) −2267.14 −1.44077 −0.720386 0.693574i \(-0.756035\pi\)
−0.720386 + 0.693574i \(0.756035\pi\)
\(20\) 1389.66 0.776844
\(21\) −888.996 −0.439898
\(22\) −2443.02 −1.07614
\(23\) −433.224 −0.170763 −0.0853813 0.996348i \(-0.527211\pi\)
−0.0853813 + 0.996348i \(0.527211\pi\)
\(24\) 576.000 0.204124
\(25\) 4418.59 1.41395
\(26\) 0 0
\(27\) −729.000 −0.192450
\(28\) 1580.44 0.380963
\(29\) 7669.59 1.69347 0.846734 0.532016i \(-0.178566\pi\)
0.846734 + 0.532016i \(0.178566\pi\)
\(30\) 3126.74 0.634291
\(31\) −7367.13 −1.37687 −0.688437 0.725296i \(-0.741703\pi\)
−0.688437 + 0.725296i \(0.741703\pi\)
\(32\) −1024.00 −0.176777
\(33\) −5496.79 −0.878667
\(34\) −4594.42 −0.681606
\(35\) 8579.19 1.18379
\(36\) 1296.00 0.166667
\(37\) 10575.0 1.26991 0.634957 0.772547i \(-0.281018\pi\)
0.634957 + 0.772547i \(0.281018\pi\)
\(38\) 9068.57 1.01878
\(39\) 0 0
\(40\) −5558.65 −0.549312
\(41\) 3699.17 0.343672 0.171836 0.985126i \(-0.445030\pi\)
0.171836 + 0.985126i \(0.445030\pi\)
\(42\) 3555.98 0.311055
\(43\) 6061.57 0.499936 0.249968 0.968254i \(-0.419580\pi\)
0.249968 + 0.968254i \(0.419580\pi\)
\(44\) 9772.07 0.760948
\(45\) 7035.16 0.517896
\(46\) 1732.89 0.120747
\(47\) 8740.69 0.577166 0.288583 0.957455i \(-0.406816\pi\)
0.288583 + 0.957455i \(0.406816\pi\)
\(48\) −2304.00 −0.144338
\(49\) −7050.03 −0.419470
\(50\) −17674.4 −0.999812
\(51\) −10337.4 −0.556529
\(52\) 0 0
\(53\) 34784.8 1.70098 0.850491 0.525990i \(-0.176305\pi\)
0.850491 + 0.525990i \(0.176305\pi\)
\(54\) 2916.00 0.136083
\(55\) 53046.3 2.36455
\(56\) −6321.75 −0.269381
\(57\) 20404.3 0.831830
\(58\) −30678.4 −1.19746
\(59\) −11949.6 −0.446915 −0.223457 0.974714i \(-0.571734\pi\)
−0.223457 + 0.974714i \(0.571734\pi\)
\(60\) −12507.0 −0.448511
\(61\) −45400.2 −1.56219 −0.781094 0.624414i \(-0.785338\pi\)
−0.781094 + 0.624414i \(0.785338\pi\)
\(62\) 29468.5 0.973597
\(63\) 8000.97 0.253975
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 21987.2 0.621311
\(67\) 45698.1 1.24369 0.621844 0.783141i \(-0.286384\pi\)
0.621844 + 0.783141i \(0.286384\pi\)
\(68\) 18377.7 0.481968
\(69\) 3899.01 0.0985898
\(70\) −34316.8 −0.837069
\(71\) 23826.9 0.560946 0.280473 0.959862i \(-0.409509\pi\)
0.280473 + 0.959862i \(0.409509\pi\)
\(72\) −5184.00 −0.117851
\(73\) 37759.1 0.829305 0.414653 0.909980i \(-0.363903\pi\)
0.414653 + 0.909980i \(0.363903\pi\)
\(74\) −42299.9 −0.897965
\(75\) −39767.3 −0.816343
\(76\) −36274.3 −0.720386
\(77\) 60328.7 1.15957
\(78\) 0 0
\(79\) −35307.0 −0.636492 −0.318246 0.948008i \(-0.603094\pi\)
−0.318246 + 0.948008i \(0.603094\pi\)
\(80\) 22234.6 0.388422
\(81\) 6561.00 0.111111
\(82\) −14796.7 −0.243013
\(83\) −31484.4 −0.501649 −0.250824 0.968033i \(-0.580702\pi\)
−0.250824 + 0.968033i \(0.580702\pi\)
\(84\) −14223.9 −0.219949
\(85\) 99760.7 1.49766
\(86\) −24246.3 −0.353508
\(87\) −69026.3 −0.977724
\(88\) −39088.3 −0.538071
\(89\) 59051.5 0.790235 0.395117 0.918631i \(-0.370704\pi\)
0.395117 + 0.918631i \(0.370704\pi\)
\(90\) −28140.6 −0.366208
\(91\) 0 0
\(92\) −6931.58 −0.0853813
\(93\) 66304.2 0.794938
\(94\) −34962.7 −0.408118
\(95\) −196910. −2.23851
\(96\) 9216.00 0.102062
\(97\) −4965.78 −0.0535868 −0.0267934 0.999641i \(-0.508530\pi\)
−0.0267934 + 0.999641i \(0.508530\pi\)
\(98\) 28200.1 0.296610
\(99\) 49471.1 0.507298
\(100\) 70697.4 0.706974
\(101\) 125605. 1.22519 0.612596 0.790396i \(-0.290125\pi\)
0.612596 + 0.790396i \(0.290125\pi\)
\(102\) 41349.8 0.393525
\(103\) 126352. 1.17351 0.586756 0.809764i \(-0.300405\pi\)
0.586756 + 0.809764i \(0.300405\pi\)
\(104\) 0 0
\(105\) −77212.7 −0.683464
\(106\) −139139. −1.20278
\(107\) 33067.8 0.279219 0.139610 0.990207i \(-0.455415\pi\)
0.139610 + 0.990207i \(0.455415\pi\)
\(108\) −11664.0 −0.0962250
\(109\) −147666. −1.19046 −0.595230 0.803555i \(-0.702939\pi\)
−0.595230 + 0.803555i \(0.702939\pi\)
\(110\) −212185. −1.67199
\(111\) −95174.7 −0.733186
\(112\) 25287.0 0.190481
\(113\) 118111. 0.870152 0.435076 0.900394i \(-0.356722\pi\)
0.435076 + 0.900394i \(0.356722\pi\)
\(114\) −81617.2 −0.588192
\(115\) −37627.1 −0.265312
\(116\) 122713. 0.846734
\(117\) 0 0
\(118\) 47798.6 0.316016
\(119\) 113456. 0.734447
\(120\) 50027.8 0.317145
\(121\) 211970. 1.31616
\(122\) 181601. 1.10463
\(123\) −33292.5 −0.198419
\(124\) −117874. −0.688437
\(125\) 112353. 0.643147
\(126\) −32003.9 −0.179587
\(127\) −322666. −1.77518 −0.887592 0.460631i \(-0.847623\pi\)
−0.887592 + 0.460631i \(0.847623\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −54554.2 −0.288638
\(130\) 0 0
\(131\) −357874. −1.82202 −0.911008 0.412390i \(-0.864694\pi\)
−0.911008 + 0.412390i \(0.864694\pi\)
\(132\) −87948.6 −0.439333
\(133\) −223942. −1.09776
\(134\) −182792. −0.879420
\(135\) −63316.4 −0.299008
\(136\) −73510.7 −0.340803
\(137\) −347064. −1.57982 −0.789912 0.613221i \(-0.789874\pi\)
−0.789912 + 0.613221i \(0.789874\pi\)
\(138\) −15596.1 −0.0697135
\(139\) −103030. −0.452299 −0.226149 0.974093i \(-0.572614\pi\)
−0.226149 + 0.974093i \(0.572614\pi\)
\(140\) 137267. 0.591897
\(141\) −78666.2 −0.333227
\(142\) −95307.4 −0.396649
\(143\) 0 0
\(144\) 20736.0 0.0833333
\(145\) 666133. 2.63112
\(146\) −151036. −0.586407
\(147\) 63450.3 0.242181
\(148\) 169199. 0.634957
\(149\) −90695.3 −0.334672 −0.167336 0.985900i \(-0.553516\pi\)
−0.167336 + 0.985900i \(0.553516\pi\)
\(150\) 159069. 0.577242
\(151\) −104288. −0.372215 −0.186107 0.982529i \(-0.559587\pi\)
−0.186107 + 0.982529i \(0.559587\pi\)
\(152\) 145097. 0.509390
\(153\) 93036.9 0.321312
\(154\) −241315. −0.819940
\(155\) −639863. −2.13923
\(156\) 0 0
\(157\) −314419. −1.01803 −0.509014 0.860758i \(-0.669990\pi\)
−0.509014 + 0.860758i \(0.669990\pi\)
\(158\) 141228. 0.450068
\(159\) −313063. −0.982062
\(160\) −88938.3 −0.274656
\(161\) −42792.7 −0.130108
\(162\) −26244.0 −0.0785674
\(163\) 140732. 0.414881 0.207441 0.978248i \(-0.433487\pi\)
0.207441 + 0.978248i \(0.433487\pi\)
\(164\) 59186.7 0.171836
\(165\) −477417. −1.36517
\(166\) 125937. 0.354719
\(167\) 108944. 0.302281 0.151141 0.988512i \(-0.451705\pi\)
0.151141 + 0.988512i \(0.451705\pi\)
\(168\) 56895.8 0.155527
\(169\) 0 0
\(170\) −399043. −1.05900
\(171\) −183639. −0.480257
\(172\) 96985.2 0.249968
\(173\) −401188. −1.01914 −0.509569 0.860430i \(-0.670195\pi\)
−0.509569 + 0.860430i \(0.670195\pi\)
\(174\) 276105. 0.691355
\(175\) 436456. 1.07732
\(176\) 156353. 0.380474
\(177\) 107547. 0.258026
\(178\) −236206. −0.558780
\(179\) 209535. 0.488792 0.244396 0.969676i \(-0.421410\pi\)
0.244396 + 0.969676i \(0.421410\pi\)
\(180\) 112563. 0.258948
\(181\) −236277. −0.536075 −0.268038 0.963408i \(-0.586375\pi\)
−0.268038 + 0.963408i \(0.586375\pi\)
\(182\) 0 0
\(183\) 408602. 0.901929
\(184\) 27726.3 0.0603737
\(185\) 918476. 1.97305
\(186\) −265217. −0.562106
\(187\) 701515. 1.46701
\(188\) 139851. 0.288583
\(189\) −72008.7 −0.146633
\(190\) 787640. 1.58287
\(191\) 509719. 1.01099 0.505496 0.862829i \(-0.331310\pi\)
0.505496 + 0.862829i \(0.331310\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −58146.8 −0.112365 −0.0561827 0.998421i \(-0.517893\pi\)
−0.0561827 + 0.998421i \(0.517893\pi\)
\(194\) 19863.1 0.0378916
\(195\) 0 0
\(196\) −112801. −0.209735
\(197\) −91830.0 −0.168585 −0.0842925 0.996441i \(-0.526863\pi\)
−0.0842925 + 0.996441i \(0.526863\pi\)
\(198\) −197884. −0.358714
\(199\) −562291. −1.00653 −0.503267 0.864131i \(-0.667869\pi\)
−0.503267 + 0.864131i \(0.667869\pi\)
\(200\) −282790. −0.499906
\(201\) −411283. −0.718043
\(202\) −502421. −0.866341
\(203\) 757582. 1.29030
\(204\) −165399. −0.278264
\(205\) 321287. 0.533960
\(206\) −505406. −0.829798
\(207\) −35091.1 −0.0569208
\(208\) 0 0
\(209\) −1.38467e6 −2.19270
\(210\) 308851. 0.483282
\(211\) 650662. 1.00612 0.503059 0.864252i \(-0.332208\pi\)
0.503059 + 0.864252i \(0.332208\pi\)
\(212\) 556557. 0.850491
\(213\) −214442. −0.323862
\(214\) −132271. −0.197438
\(215\) 526471. 0.776745
\(216\) 46656.0 0.0680414
\(217\) −727706. −1.04907
\(218\) 590665. 0.841782
\(219\) −339832. −0.478800
\(220\) 848741. 1.18228
\(221\) 0 0
\(222\) 380699. 0.518441
\(223\) −302795. −0.407743 −0.203871 0.978998i \(-0.565352\pi\)
−0.203871 + 0.978998i \(0.565352\pi\)
\(224\) −101148. −0.134691
\(225\) 357906. 0.471316
\(226\) −472445. −0.615290
\(227\) −723191. −0.931512 −0.465756 0.884913i \(-0.654218\pi\)
−0.465756 + 0.884913i \(0.654218\pi\)
\(228\) 326469. 0.415915
\(229\) 1.39378e6 1.75633 0.878166 0.478356i \(-0.158767\pi\)
0.878166 + 0.478356i \(0.158767\pi\)
\(230\) 150509. 0.187604
\(231\) −542958. −0.669478
\(232\) −490854. −0.598731
\(233\) 319385. 0.385411 0.192706 0.981257i \(-0.438274\pi\)
0.192706 + 0.981257i \(0.438274\pi\)
\(234\) 0 0
\(235\) 759162. 0.896736
\(236\) −191194. −0.223457
\(237\) 317763. 0.367479
\(238\) −453824. −0.519332
\(239\) 1.52265e6 1.72427 0.862133 0.506682i \(-0.169128\pi\)
0.862133 + 0.506682i \(0.169128\pi\)
\(240\) −200111. −0.224256
\(241\) 607839. 0.674134 0.337067 0.941481i \(-0.390565\pi\)
0.337067 + 0.941481i \(0.390565\pi\)
\(242\) −847879. −0.930669
\(243\) −59049.0 −0.0641500
\(244\) −726403. −0.781094
\(245\) −612323. −0.651726
\(246\) 133170. 0.140304
\(247\) 0 0
\(248\) 471496. 0.486798
\(249\) 283359. 0.289627
\(250\) −449412. −0.454773
\(251\) 1.05049e6 1.05247 0.526234 0.850340i \(-0.323604\pi\)
0.526234 + 0.850340i \(0.323604\pi\)
\(252\) 128015. 0.126988
\(253\) −264593. −0.259883
\(254\) 1.29066e6 1.25524
\(255\) −897846. −0.864672
\(256\) 65536.0 0.0625000
\(257\) −236240. −0.223111 −0.111555 0.993758i \(-0.535583\pi\)
−0.111555 + 0.993758i \(0.535583\pi\)
\(258\) 218217. 0.204098
\(259\) 1.04457e6 0.967580
\(260\) 0 0
\(261\) 621237. 0.564489
\(262\) 1.43150e6 1.28836
\(263\) 928964. 0.828151 0.414076 0.910242i \(-0.364105\pi\)
0.414076 + 0.910242i \(0.364105\pi\)
\(264\) 351794. 0.310656
\(265\) 3.02119e6 2.64280
\(266\) 895770. 0.776233
\(267\) −531464. −0.456242
\(268\) 731170. 0.621844
\(269\) 827650. 0.697374 0.348687 0.937239i \(-0.386628\pi\)
0.348687 + 0.937239i \(0.386628\pi\)
\(270\) 253266. 0.211430
\(271\) 660781. 0.546555 0.273278 0.961935i \(-0.411892\pi\)
0.273278 + 0.961935i \(0.411892\pi\)
\(272\) 294043. 0.240984
\(273\) 0 0
\(274\) 1.38826e6 1.11710
\(275\) 2.69867e6 2.15188
\(276\) 62384.2 0.0492949
\(277\) 1.38275e6 1.08279 0.541395 0.840769i \(-0.317896\pi\)
0.541395 + 0.840769i \(0.317896\pi\)
\(278\) 412119. 0.319823
\(279\) −596738. −0.458958
\(280\) −549068. −0.418534
\(281\) 1.44893e6 1.09467 0.547333 0.836915i \(-0.315643\pi\)
0.547333 + 0.836915i \(0.315643\pi\)
\(282\) 314665. 0.235627
\(283\) −1.22044e6 −0.905841 −0.452921 0.891551i \(-0.649618\pi\)
−0.452921 + 0.891551i \(0.649618\pi\)
\(284\) 381230. 0.280473
\(285\) 1.77219e6 1.29240
\(286\) 0 0
\(287\) 365394. 0.261853
\(288\) −82944.0 −0.0589256
\(289\) −100565. −0.0708279
\(290\) −2.66453e6 −1.86048
\(291\) 44692.0 0.0309384
\(292\) 604146. 0.414653
\(293\) −2.19465e6 −1.49347 −0.746734 0.665123i \(-0.768379\pi\)
−0.746734 + 0.665123i \(0.768379\pi\)
\(294\) −253801. −0.171248
\(295\) −1.03787e6 −0.694366
\(296\) −676798. −0.448983
\(297\) −445240. −0.292889
\(298\) 362781. 0.236649
\(299\) 0 0
\(300\) −636277. −0.408172
\(301\) 598746. 0.380914
\(302\) 417154. 0.263196
\(303\) −1.13045e6 −0.707365
\(304\) −580389. −0.360193
\(305\) −3.94318e6 −2.42715
\(306\) −372148. −0.227202
\(307\) −83619.1 −0.0506360 −0.0253180 0.999679i \(-0.508060\pi\)
−0.0253180 + 0.999679i \(0.508060\pi\)
\(308\) 965259. 0.579785
\(309\) −1.13716e6 −0.677528
\(310\) 2.55945e6 1.51267
\(311\) −491767. −0.288309 −0.144155 0.989555i \(-0.546046\pi\)
−0.144155 + 0.989555i \(0.546046\pi\)
\(312\) 0 0
\(313\) 896969. 0.517508 0.258754 0.965943i \(-0.416688\pi\)
0.258754 + 0.965943i \(0.416688\pi\)
\(314\) 1.25768e6 0.719854
\(315\) 694915. 0.394598
\(316\) −564912. −0.318246
\(317\) 3.15449e6 1.76312 0.881559 0.472074i \(-0.156494\pi\)
0.881559 + 0.472074i \(0.156494\pi\)
\(318\) 1.25225e6 0.694423
\(319\) 4.68423e6 2.57728
\(320\) 355753. 0.194211
\(321\) −297610. −0.161207
\(322\) 171171. 0.0920004
\(323\) −2.60405e6 −1.38881
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) −562928. −0.293365
\(327\) 1.32900e6 0.687312
\(328\) −236747. −0.121507
\(329\) 863382. 0.439757
\(330\) 1.90967e6 0.965324
\(331\) 597196. 0.299604 0.149802 0.988716i \(-0.452136\pi\)
0.149802 + 0.988716i \(0.452136\pi\)
\(332\) −503750. −0.250824
\(333\) 856572. 0.423305
\(334\) −435775. −0.213745
\(335\) 3.96906e6 1.93230
\(336\) −227583. −0.109974
\(337\) −3.61808e6 −1.73541 −0.867707 0.497077i \(-0.834407\pi\)
−0.867707 + 0.497077i \(0.834407\pi\)
\(338\) 0 0
\(339\) −1.06300e6 −0.502382
\(340\) 1.59617e6 0.748828
\(341\) −4.49951e6 −2.09546
\(342\) 734555. 0.339593
\(343\) −2.35653e6 −1.08153
\(344\) −387941. −0.176754
\(345\) 338644. 0.153178
\(346\) 1.60475e6 0.720639
\(347\) −1.62893e6 −0.726236 −0.363118 0.931743i \(-0.618288\pi\)
−0.363118 + 0.931743i \(0.618288\pi\)
\(348\) −1.10442e6 −0.488862
\(349\) −2.60140e6 −1.14326 −0.571628 0.820513i \(-0.693688\pi\)
−0.571628 + 0.820513i \(0.693688\pi\)
\(350\) −1.74583e6 −0.761782
\(351\) 0 0
\(352\) −625412. −0.269036
\(353\) −1.30441e6 −0.557155 −0.278578 0.960414i \(-0.589863\pi\)
−0.278578 + 0.960414i \(0.589863\pi\)
\(354\) −430187. −0.182452
\(355\) 2.06945e6 0.871535
\(356\) 944824. 0.395117
\(357\) −1.02110e6 −0.424033
\(358\) −838140. −0.345628
\(359\) 213674. 0.0875013 0.0437507 0.999042i \(-0.486069\pi\)
0.0437507 + 0.999042i \(0.486069\pi\)
\(360\) −450250. −0.183104
\(361\) 2.66384e6 1.07582
\(362\) 945110. 0.379062
\(363\) −1.90773e6 −0.759888
\(364\) 0 0
\(365\) 3.27952e6 1.28848
\(366\) −1.63441e6 −0.637760
\(367\) 1.15670e6 0.448285 0.224142 0.974556i \(-0.428042\pi\)
0.224142 + 0.974556i \(0.428042\pi\)
\(368\) −110905. −0.0426906
\(369\) 299633. 0.114557
\(370\) −3.67390e6 −1.39516
\(371\) 3.43595e6 1.29602
\(372\) 1.06087e6 0.397469
\(373\) 1.97983e6 0.736810 0.368405 0.929665i \(-0.379904\pi\)
0.368405 + 0.929665i \(0.379904\pi\)
\(374\) −2.80606e6 −1.03733
\(375\) −1.01118e6 −0.371321
\(376\) −559404. −0.204059
\(377\) 0 0
\(378\) 288035. 0.103685
\(379\) 3.86155e6 1.38090 0.690451 0.723379i \(-0.257412\pi\)
0.690451 + 0.723379i \(0.257412\pi\)
\(380\) −3.15056e6 −1.11925
\(381\) 2.90399e6 1.02490
\(382\) −2.03888e6 −0.714879
\(383\) 1.55518e6 0.541731 0.270866 0.962617i \(-0.412690\pi\)
0.270866 + 0.962617i \(0.412690\pi\)
\(384\) 147456. 0.0510310
\(385\) 5.23978e6 1.80161
\(386\) 232587. 0.0794544
\(387\) 490988. 0.166645
\(388\) −79452.4 −0.0267934
\(389\) −2.85249e6 −0.955763 −0.477881 0.878424i \(-0.658595\pi\)
−0.477881 + 0.878424i \(0.658595\pi\)
\(390\) 0 0
\(391\) −497603. −0.164604
\(392\) 451202. 0.148305
\(393\) 3.22087e6 1.05194
\(394\) 367320. 0.119208
\(395\) −3.06655e6 −0.988911
\(396\) 791537. 0.253649
\(397\) −1.25222e6 −0.398752 −0.199376 0.979923i \(-0.563891\pi\)
−0.199376 + 0.979923i \(0.563891\pi\)
\(398\) 2.24917e6 0.711727
\(399\) 2.01548e6 0.633792
\(400\) 1.13116e6 0.353487
\(401\) 4.20050e6 1.30449 0.652244 0.758009i \(-0.273828\pi\)
0.652244 + 0.758009i \(0.273828\pi\)
\(402\) 1.64513e6 0.507733
\(403\) 0 0
\(404\) 2.00968e6 0.612596
\(405\) 569848. 0.172632
\(406\) −3.03033e6 −0.912377
\(407\) 6.45870e6 1.93268
\(408\) 661596. 0.196763
\(409\) 650694. 0.192340 0.0961698 0.995365i \(-0.469341\pi\)
0.0961698 + 0.995365i \(0.469341\pi\)
\(410\) −1.28515e6 −0.377567
\(411\) 3.12358e6 0.912111
\(412\) 2.02163e6 0.586756
\(413\) −1.18035e6 −0.340516
\(414\) 140364. 0.0402491
\(415\) −2.73454e6 −0.779406
\(416\) 0 0
\(417\) 927267. 0.261135
\(418\) 5.53867e6 1.55047
\(419\) −6.82010e6 −1.89782 −0.948912 0.315541i \(-0.897814\pi\)
−0.948912 + 0.315541i \(0.897814\pi\)
\(420\) −1.23540e6 −0.341732
\(421\) 3.11659e6 0.856988 0.428494 0.903545i \(-0.359044\pi\)
0.428494 + 0.903545i \(0.359044\pi\)
\(422\) −2.60265e6 −0.711433
\(423\) 707996. 0.192389
\(424\) −2.22623e6 −0.601388
\(425\) 5.07521e6 1.36296
\(426\) 857767. 0.229005
\(427\) −4.48451e6 −1.19027
\(428\) 529084. 0.139610
\(429\) 0 0
\(430\) −2.10588e6 −0.549241
\(431\) 4.88213e6 1.26595 0.632974 0.774173i \(-0.281834\pi\)
0.632974 + 0.774173i \(0.281834\pi\)
\(432\) −186624. −0.0481125
\(433\) −3.64275e6 −0.933705 −0.466852 0.884335i \(-0.654612\pi\)
−0.466852 + 0.884335i \(0.654612\pi\)
\(434\) 2.91082e6 0.741808
\(435\) −5.99520e6 −1.51908
\(436\) −2.36266e6 −0.595230
\(437\) 982180. 0.246030
\(438\) 1.35933e6 0.338562
\(439\) 1.70122e6 0.421308 0.210654 0.977561i \(-0.432441\pi\)
0.210654 + 0.977561i \(0.432441\pi\)
\(440\) −3.39497e6 −0.835995
\(441\) −571053. −0.139823
\(442\) 0 0
\(443\) −5.85057e6 −1.41641 −0.708205 0.706007i \(-0.750495\pi\)
−0.708205 + 0.706007i \(0.750495\pi\)
\(444\) −1.52279e6 −0.366593
\(445\) 5.12885e6 1.22778
\(446\) 1.21118e6 0.288318
\(447\) 816258. 0.193223
\(448\) 404592. 0.0952406
\(449\) −1.56399e6 −0.366115 −0.183058 0.983102i \(-0.558599\pi\)
−0.183058 + 0.983102i \(0.558599\pi\)
\(450\) −1.43162e6 −0.333271
\(451\) 2.25928e6 0.523033
\(452\) 1.88978e6 0.435076
\(453\) 938596. 0.214898
\(454\) 2.89276e6 0.658678
\(455\) 0 0
\(456\) −1.30587e6 −0.294096
\(457\) −336948. −0.0754697 −0.0377349 0.999288i \(-0.512014\pi\)
−0.0377349 + 0.999288i \(0.512014\pi\)
\(458\) −5.57513e6 −1.24191
\(459\) −837332. −0.185510
\(460\) −602034. −0.132656
\(461\) −3.89174e6 −0.852887 −0.426444 0.904514i \(-0.640234\pi\)
−0.426444 + 0.904514i \(0.640234\pi\)
\(462\) 2.17183e6 0.473393
\(463\) −6.34214e6 −1.37494 −0.687470 0.726213i \(-0.741279\pi\)
−0.687470 + 0.726213i \(0.741279\pi\)
\(464\) 1.96341e6 0.423367
\(465\) 5.75877e6 1.23509
\(466\) −1.27754e6 −0.272527
\(467\) −2.48691e6 −0.527677 −0.263839 0.964567i \(-0.584989\pi\)
−0.263839 + 0.964567i \(0.584989\pi\)
\(468\) 0 0
\(469\) 4.51394e6 0.947597
\(470\) −3.03665e6 −0.634088
\(471\) 2.82977e6 0.587759
\(472\) 764777. 0.158008
\(473\) 3.70213e6 0.760850
\(474\) −1.27105e6 −0.259847
\(475\) −1.00176e7 −2.03718
\(476\) 1.81530e6 0.367223
\(477\) 2.81757e6 0.566994
\(478\) −6.09058e6 −1.21924
\(479\) −5.31079e6 −1.05760 −0.528798 0.848747i \(-0.677357\pi\)
−0.528798 + 0.848747i \(0.677357\pi\)
\(480\) 800445. 0.158573
\(481\) 0 0
\(482\) −2.43136e6 −0.476685
\(483\) 385134. 0.0751180
\(484\) 3.39151e6 0.658082
\(485\) −431297. −0.0832572
\(486\) 236196. 0.0453609
\(487\) 7.73506e6 1.47789 0.738944 0.673767i \(-0.235325\pi\)
0.738944 + 0.673767i \(0.235325\pi\)
\(488\) 2.90561e6 0.552317
\(489\) −1.26659e6 −0.239532
\(490\) 2.44929e6 0.460840
\(491\) 322490. 0.0603689 0.0301844 0.999544i \(-0.490391\pi\)
0.0301844 + 0.999544i \(0.490391\pi\)
\(492\) −532680. −0.0992097
\(493\) 8.80932e6 1.63239
\(494\) 0 0
\(495\) 4.29675e6 0.788184
\(496\) −1.88599e6 −0.344218
\(497\) 2.35355e6 0.427399
\(498\) −1.13344e6 −0.204797
\(499\) −414653. −0.0745476 −0.0372738 0.999305i \(-0.511867\pi\)
−0.0372738 + 0.999305i \(0.511867\pi\)
\(500\) 1.79765e6 0.321573
\(501\) −980493. −0.174522
\(502\) −4.20197e6 −0.744207
\(503\) −1.11227e7 −1.96016 −0.980080 0.198604i \(-0.936359\pi\)
−0.980080 + 0.198604i \(0.936359\pi\)
\(504\) −512062. −0.0897937
\(505\) 1.09093e7 1.90357
\(506\) 1.05837e6 0.183765
\(507\) 0 0
\(508\) −5.16265e6 −0.887592
\(509\) 754143. 0.129021 0.0645103 0.997917i \(-0.479451\pi\)
0.0645103 + 0.997917i \(0.479451\pi\)
\(510\) 3.59138e6 0.611415
\(511\) 3.72974e6 0.631869
\(512\) −262144. −0.0441942
\(513\) 1.65275e6 0.277277
\(514\) 944959. 0.157763
\(515\) 1.09741e7 1.82327
\(516\) −872867. −0.144319
\(517\) 5.33841e6 0.878386
\(518\) −4.17827e6 −0.684182
\(519\) 3.61069e6 0.588399
\(520\) 0 0
\(521\) 6.34188e6 1.02358 0.511792 0.859109i \(-0.328982\pi\)
0.511792 + 0.859109i \(0.328982\pi\)
\(522\) −2.48495e6 −0.399154
\(523\) 7.64810e6 1.22264 0.611321 0.791382i \(-0.290638\pi\)
0.611321 + 0.791382i \(0.290638\pi\)
\(524\) −5.72599e6 −0.911008
\(525\) −3.92811e6 −0.621993
\(526\) −3.71586e6 −0.585591
\(527\) −8.46192e6 −1.32722
\(528\) −1.40718e6 −0.219667
\(529\) −6.24866e6 −0.970840
\(530\) −1.20848e7 −1.86874
\(531\) −967921. −0.148972
\(532\) −3.58308e6 −0.548880
\(533\) 0 0
\(534\) 2.12585e6 0.322612
\(535\) 2.87206e6 0.433820
\(536\) −2.92468e6 −0.439710
\(537\) −1.88581e6 −0.282204
\(538\) −3.31060e6 −0.493118
\(539\) −4.30584e6 −0.638390
\(540\) −1.01306e6 −0.149504
\(541\) 5.40473e6 0.793927 0.396964 0.917834i \(-0.370064\pi\)
0.396964 + 0.917834i \(0.370064\pi\)
\(542\) −2.64312e6 −0.386473
\(543\) 2.12650e6 0.309503
\(544\) −1.17617e6 −0.170401
\(545\) −1.28254e7 −1.84960
\(546\) 0 0
\(547\) 6.06535e6 0.866737 0.433368 0.901217i \(-0.357325\pi\)
0.433368 + 0.901217i \(0.357325\pi\)
\(548\) −5.55303e6 −0.789912
\(549\) −3.67742e6 −0.520729
\(550\) −1.07947e7 −1.52161
\(551\) −1.73881e7 −2.43990
\(552\) −249537. −0.0348568
\(553\) −3.48753e6 −0.484960
\(554\) −5.53100e6 −0.765648
\(555\) −8.26629e6 −1.13914
\(556\) −1.64847e6 −0.226149
\(557\) 6.81169e6 0.930287 0.465143 0.885235i \(-0.346003\pi\)
0.465143 + 0.885235i \(0.346003\pi\)
\(558\) 2.38695e6 0.324532
\(559\) 0 0
\(560\) 2.19627e6 0.295949
\(561\) −6.31363e6 −0.846978
\(562\) −5.79572e6 −0.774046
\(563\) −4.93741e6 −0.656491 −0.328245 0.944593i \(-0.606457\pi\)
−0.328245 + 0.944593i \(0.606457\pi\)
\(564\) −1.25866e6 −0.166614
\(565\) 1.02584e7 1.35194
\(566\) 4.88178e6 0.640526
\(567\) 648078. 0.0846583
\(568\) −1.52492e6 −0.198324
\(569\) −9.18371e6 −1.18915 −0.594576 0.804039i \(-0.702680\pi\)
−0.594576 + 0.804039i \(0.702680\pi\)
\(570\) −7.08876e6 −0.913868
\(571\) 1.11741e7 1.43424 0.717120 0.696949i \(-0.245460\pi\)
0.717120 + 0.696949i \(0.245460\pi\)
\(572\) 0 0
\(573\) −4.58748e6 −0.583697
\(574\) −1.46158e6 −0.185158
\(575\) −1.91424e6 −0.241449
\(576\) 331776. 0.0416667
\(577\) 8.62732e6 1.07879 0.539394 0.842053i \(-0.318653\pi\)
0.539394 + 0.842053i \(0.318653\pi\)
\(578\) 402262. 0.0500829
\(579\) 523322. 0.0648742
\(580\) 1.06581e7 1.31556
\(581\) −3.10994e6 −0.382219
\(582\) −178768. −0.0218767
\(583\) 2.12450e7 2.58872
\(584\) −2.41658e6 −0.293204
\(585\) 0 0
\(586\) 8.77859e6 1.05604
\(587\) −5.86783e6 −0.702882 −0.351441 0.936210i \(-0.614308\pi\)
−0.351441 + 0.936210i \(0.614308\pi\)
\(588\) 1.01520e6 0.121091
\(589\) 1.67023e7 1.98376
\(590\) 4.15149e6 0.490991
\(591\) 826470. 0.0973326
\(592\) 2.70719e6 0.317479
\(593\) −1.28187e7 −1.49694 −0.748472 0.663166i \(-0.769212\pi\)
−0.748472 + 0.663166i \(0.769212\pi\)
\(594\) 1.78096e6 0.207104
\(595\) 9.85410e6 1.14110
\(596\) −1.45112e6 −0.167336
\(597\) 5.06062e6 0.581123
\(598\) 0 0
\(599\) −8.82262e6 −1.00469 −0.502343 0.864668i \(-0.667529\pi\)
−0.502343 + 0.864668i \(0.667529\pi\)
\(600\) 2.54511e6 0.288621
\(601\) 8.16061e6 0.921587 0.460793 0.887507i \(-0.347565\pi\)
0.460793 + 0.887507i \(0.347565\pi\)
\(602\) −2.39499e6 −0.269347
\(603\) 3.70155e6 0.414563
\(604\) −1.66862e6 −0.186107
\(605\) 1.84104e7 2.04491
\(606\) 4.52179e6 0.500182
\(607\) 8.03055e6 0.884654 0.442327 0.896854i \(-0.354153\pi\)
0.442327 + 0.896854i \(0.354153\pi\)
\(608\) 2.32155e6 0.254695
\(609\) −6.81823e6 −0.744953
\(610\) 1.57727e7 1.71626
\(611\) 0 0
\(612\) 1.48859e6 0.160656
\(613\) 3.99383e6 0.429278 0.214639 0.976693i \(-0.431143\pi\)
0.214639 + 0.976693i \(0.431143\pi\)
\(614\) 334476. 0.0358051
\(615\) −2.89158e6 −0.308282
\(616\) −3.86104e6 −0.409970
\(617\) 1.20933e7 1.27888 0.639442 0.768840i \(-0.279166\pi\)
0.639442 + 0.768840i \(0.279166\pi\)
\(618\) 4.54866e6 0.479084
\(619\) −1.31953e7 −1.38418 −0.692088 0.721813i \(-0.743309\pi\)
−0.692088 + 0.721813i \(0.743309\pi\)
\(620\) −1.02378e7 −1.06962
\(621\) 315820. 0.0328633
\(622\) 1.96707e6 0.203865
\(623\) 5.83295e6 0.602100
\(624\) 0 0
\(625\) −4.04979e6 −0.414699
\(626\) −3.58788e6 −0.365933
\(627\) 1.24620e7 1.26596
\(628\) −5.03070e6 −0.509014
\(629\) 1.21464e7 1.22412
\(630\) −2.77966e6 −0.279023
\(631\) 1.16207e7 1.16188 0.580939 0.813947i \(-0.302686\pi\)
0.580939 + 0.813947i \(0.302686\pi\)
\(632\) 2.25965e6 0.225034
\(633\) −5.85595e6 −0.580883
\(634\) −1.26180e7 −1.24671
\(635\) −2.80247e7 −2.75808
\(636\) −5.00901e6 −0.491031
\(637\) 0 0
\(638\) −1.87369e7 −1.82241
\(639\) 1.92998e6 0.186982
\(640\) −1.42301e6 −0.137328
\(641\) 1.15298e7 1.10835 0.554173 0.832402i \(-0.313035\pi\)
0.554173 + 0.832402i \(0.313035\pi\)
\(642\) 1.19044e6 0.113991
\(643\) 2.90732e6 0.277310 0.138655 0.990341i \(-0.455722\pi\)
0.138655 + 0.990341i \(0.455722\pi\)
\(644\) −684683. −0.0650541
\(645\) −4.73824e6 −0.448454
\(646\) 1.04162e7 0.982038
\(647\) 4.58122e6 0.430249 0.215125 0.976587i \(-0.430984\pi\)
0.215125 + 0.976587i \(0.430984\pi\)
\(648\) −419904. −0.0392837
\(649\) −7.29829e6 −0.680157
\(650\) 0 0
\(651\) 6.54935e6 0.605684
\(652\) 2.25171e6 0.207441
\(653\) 1.95066e7 1.79019 0.895096 0.445874i \(-0.147107\pi\)
0.895096 + 0.445874i \(0.147107\pi\)
\(654\) −5.31598e6 −0.486003
\(655\) −3.10827e7 −2.83084
\(656\) 946987. 0.0859181
\(657\) 3.05849e6 0.276435
\(658\) −3.45353e6 −0.310955
\(659\) 8.41225e6 0.754568 0.377284 0.926098i \(-0.376858\pi\)
0.377284 + 0.926098i \(0.376858\pi\)
\(660\) −7.63867e6 −0.682587
\(661\) 1.64620e7 1.46548 0.732739 0.680510i \(-0.238242\pi\)
0.732739 + 0.680510i \(0.238242\pi\)
\(662\) −2.38879e6 −0.211852
\(663\) 0 0
\(664\) 2.01500e6 0.177360
\(665\) −1.94503e7 −1.70558
\(666\) −3.42629e6 −0.299322
\(667\) −3.32265e6 −0.289181
\(668\) 1.74310e6 0.151141
\(669\) 2.72515e6 0.235410
\(670\) −1.58762e7 −1.36634
\(671\) −2.77284e7 −2.37748
\(672\) 910332. 0.0777637
\(673\) −9.88194e6 −0.841016 −0.420508 0.907289i \(-0.638148\pi\)
−0.420508 + 0.907289i \(0.638148\pi\)
\(674\) 1.44723e7 1.22712
\(675\) −3.22115e6 −0.272114
\(676\) 0 0
\(677\) −731933. −0.0613761 −0.0306881 0.999529i \(-0.509770\pi\)
−0.0306881 + 0.999529i \(0.509770\pi\)
\(678\) 4.25200e6 0.355238
\(679\) −490506. −0.0408291
\(680\) −6.38468e6 −0.529501
\(681\) 6.50872e6 0.537809
\(682\) 1.79980e7 1.48171
\(683\) −6.46151e6 −0.530008 −0.265004 0.964247i \(-0.585373\pi\)
−0.265004 + 0.964247i \(0.585373\pi\)
\(684\) −2.93822e6 −0.240129
\(685\) −3.01439e7 −2.45455
\(686\) 9.42614e6 0.764757
\(687\) −1.25440e7 −1.01402
\(688\) 1.55176e6 0.124984
\(689\) 0 0
\(690\) −1.35458e6 −0.108313
\(691\) −1.16211e7 −0.925877 −0.462939 0.886390i \(-0.653205\pi\)
−0.462939 + 0.886390i \(0.653205\pi\)
\(692\) −6.41901e6 −0.509569
\(693\) 4.88662e6 0.386523
\(694\) 6.51570e6 0.513526
\(695\) −8.94852e6 −0.702731
\(696\) 4.41768e6 0.345678
\(697\) 4.24888e6 0.331278
\(698\) 1.04056e7 0.808404
\(699\) −2.87446e6 −0.222517
\(700\) 6.98330e6 0.538661
\(701\) 1.39904e6 0.107531 0.0537655 0.998554i \(-0.482878\pi\)
0.0537655 + 0.998554i \(0.482878\pi\)
\(702\) 0 0
\(703\) −2.39750e7 −1.82966
\(704\) 2.50165e6 0.190237
\(705\) −6.83246e6 −0.517731
\(706\) 5.21763e6 0.393968
\(707\) 1.24069e7 0.933504
\(708\) 1.72075e6 0.129013
\(709\) −1.84802e7 −1.38067 −0.690336 0.723489i \(-0.742537\pi\)
−0.690336 + 0.723489i \(0.742537\pi\)
\(710\) −8.27781e6 −0.616268
\(711\) −2.85987e6 −0.212164
\(712\) −3.77930e6 −0.279390
\(713\) 3.19162e6 0.235118
\(714\) 4.08442e6 0.299837
\(715\) 0 0
\(716\) 3.35256e6 0.244396
\(717\) −1.37038e7 −0.995505
\(718\) −854694. −0.0618728
\(719\) −7.61846e6 −0.549598 −0.274799 0.961502i \(-0.588611\pi\)
−0.274799 + 0.961502i \(0.588611\pi\)
\(720\) 1.80100e6 0.129474
\(721\) 1.24807e7 0.894128
\(722\) −1.06554e7 −0.760721
\(723\) −5.47055e6 −0.389211
\(724\) −3.78044e6 −0.268038
\(725\) 3.38888e7 2.39448
\(726\) 7.63091e6 0.537322
\(727\) −2.55002e7 −1.78940 −0.894699 0.446670i \(-0.852610\pi\)
−0.894699 + 0.446670i \(0.852610\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) −1.31181e7 −0.911094
\(731\) 6.96235e6 0.481906
\(732\) 6.53763e6 0.450965
\(733\) −1.27470e7 −0.876293 −0.438147 0.898903i \(-0.644365\pi\)
−0.438147 + 0.898903i \(0.644365\pi\)
\(734\) −4.62678e6 −0.316985
\(735\) 5.51090e6 0.376274
\(736\) 443621. 0.0301868
\(737\) 2.79103e7 1.89276
\(738\) −1.19853e6 −0.0810043
\(739\) 1.54752e7 1.04238 0.521190 0.853441i \(-0.325488\pi\)
0.521190 + 0.853441i \(0.325488\pi\)
\(740\) 1.46956e7 0.986526
\(741\) 0 0
\(742\) −1.37438e7 −0.916425
\(743\) −3.52596e6 −0.234318 −0.117159 0.993113i \(-0.537379\pi\)
−0.117159 + 0.993113i \(0.537379\pi\)
\(744\) −4.24347e6 −0.281053
\(745\) −7.87723e6 −0.519976
\(746\) −7.91931e6 −0.521003
\(747\) −2.55023e6 −0.167216
\(748\) 1.12242e7 0.733505
\(749\) 3.26635e6 0.212744
\(750\) 4.04471e6 0.262563
\(751\) −8.20700e6 −0.530988 −0.265494 0.964113i \(-0.585535\pi\)
−0.265494 + 0.964113i \(0.585535\pi\)
\(752\) 2.23762e6 0.144292
\(753\) −9.45443e6 −0.607642
\(754\) 0 0
\(755\) −9.05785e6 −0.578306
\(756\) −1.15214e6 −0.0733163
\(757\) −1.27038e7 −0.805736 −0.402868 0.915258i \(-0.631987\pi\)
−0.402868 + 0.915258i \(0.631987\pi\)
\(758\) −1.54462e7 −0.976446
\(759\) 2.38134e6 0.150043
\(760\) 1.26022e7 0.791433
\(761\) 1.41876e7 0.888073 0.444037 0.896009i \(-0.353546\pi\)
0.444037 + 0.896009i \(0.353546\pi\)
\(762\) −1.16160e7 −0.724716
\(763\) −1.45861e7 −0.907041
\(764\) 8.15551e6 0.505496
\(765\) 8.08061e6 0.499219
\(766\) −6.22072e6 −0.383062
\(767\) 0 0
\(768\) −589824. −0.0360844
\(769\) 1.10700e7 0.675045 0.337522 0.941318i \(-0.390411\pi\)
0.337522 + 0.941318i \(0.390411\pi\)
\(770\) −2.09591e7 −1.27393
\(771\) 2.12616e6 0.128813
\(772\) −930349. −0.0561827
\(773\) −5.17639e6 −0.311586 −0.155793 0.987790i \(-0.549793\pi\)
−0.155793 + 0.987790i \(0.549793\pi\)
\(774\) −1.96395e6 −0.117836
\(775\) −3.25523e7 −1.94683
\(776\) 317810. 0.0189458
\(777\) −9.40110e6 −0.558633
\(778\) 1.14100e7 0.675826
\(779\) −8.38655e6 −0.495153
\(780\) 0 0
\(781\) 1.45524e7 0.853701
\(782\) 1.99041e6 0.116393
\(783\) −5.59113e6 −0.325908
\(784\) −1.80481e6 −0.104868
\(785\) −2.73085e7 −1.58170
\(786\) −1.28835e7 −0.743835
\(787\) 1.43044e7 0.823252 0.411626 0.911353i \(-0.364961\pi\)
0.411626 + 0.911353i \(0.364961\pi\)
\(788\) −1.46928e6 −0.0842925
\(789\) −8.36068e6 −0.478133
\(790\) 1.22662e7 0.699266
\(791\) 1.16667e7 0.662990
\(792\) −3.16615e6 −0.179357
\(793\) 0 0
\(794\) 5.00886e6 0.281960
\(795\) −2.71907e7 −1.52582
\(796\) −8.99666e6 −0.503267
\(797\) 1.27192e7 0.709275 0.354638 0.935004i \(-0.384604\pi\)
0.354638 + 0.935004i \(0.384604\pi\)
\(798\) −8.06193e6 −0.448159
\(799\) 1.00396e7 0.556351
\(800\) −4.52463e6 −0.249953
\(801\) 4.78317e6 0.263412
\(802\) −1.68020e7 −0.922412
\(803\) 2.30615e7 1.26212
\(804\) −6.58053e6 −0.359022
\(805\) −3.71671e6 −0.202148
\(806\) 0 0
\(807\) −7.44885e6 −0.402629
\(808\) −8.03873e6 −0.433171
\(809\) 5.39790e6 0.289970 0.144985 0.989434i \(-0.453687\pi\)
0.144985 + 0.989434i \(0.453687\pi\)
\(810\) −2.27939e6 −0.122069
\(811\) −1.46019e7 −0.779576 −0.389788 0.920905i \(-0.627452\pi\)
−0.389788 + 0.920905i \(0.627452\pi\)
\(812\) 1.21213e7 0.645148
\(813\) −5.94703e6 −0.315554
\(814\) −2.58348e7 −1.36661
\(815\) 1.22231e7 0.644597
\(816\) −2.64638e6 −0.139132
\(817\) −1.37425e7 −0.720293
\(818\) −2.60278e6 −0.136005
\(819\) 0 0
\(820\) 5.14059e6 0.266980
\(821\) −2.73956e7 −1.41848 −0.709240 0.704967i \(-0.750962\pi\)
−0.709240 + 0.704967i \(0.750962\pi\)
\(822\) −1.24943e7 −0.644960
\(823\) −2.28175e7 −1.17427 −0.587136 0.809488i \(-0.699745\pi\)
−0.587136 + 0.809488i \(0.699745\pi\)
\(824\) −8.08650e6 −0.414899
\(825\) −2.42880e7 −1.24239
\(826\) 4.72141e6 0.240781
\(827\) 1.17556e7 0.597698 0.298849 0.954300i \(-0.403397\pi\)
0.298849 + 0.954300i \(0.403397\pi\)
\(828\) −561458. −0.0284604
\(829\) 2.04885e7 1.03544 0.517718 0.855551i \(-0.326781\pi\)
0.517718 + 0.855551i \(0.326781\pi\)
\(830\) 1.09382e7 0.551123
\(831\) −1.24447e7 −0.625149
\(832\) 0 0
\(833\) −8.09770e6 −0.404342
\(834\) −3.70907e6 −0.184650
\(835\) 9.46218e6 0.469651
\(836\) −2.21547e7 −1.09635
\(837\) 5.37064e6 0.264979
\(838\) 2.72804e7 1.34196
\(839\) 2.38084e7 1.16769 0.583843 0.811867i \(-0.301549\pi\)
0.583843 + 0.811867i \(0.301549\pi\)
\(840\) 4.94161e6 0.241641
\(841\) 3.83114e7 1.86783
\(842\) −1.24664e7 −0.605982
\(843\) −1.30404e7 −0.632006
\(844\) 1.04106e7 0.503059
\(845\) 0 0
\(846\) −2.83198e6 −0.136039
\(847\) 2.09378e7 1.00282
\(848\) 8.90491e6 0.425246
\(849\) 1.09840e7 0.522988
\(850\) −2.03008e7 −0.963755
\(851\) −4.58133e6 −0.216854
\(852\) −3.43107e6 −0.161931
\(853\) 9.87851e6 0.464857 0.232428 0.972614i \(-0.425333\pi\)
0.232428 + 0.972614i \(0.425333\pi\)
\(854\) 1.79380e7 0.841648
\(855\) −1.59497e7 −0.746170
\(856\) −2.11634e6 −0.0987189
\(857\) 1.97784e6 0.0919898 0.0459949 0.998942i \(-0.485354\pi\)
0.0459949 + 0.998942i \(0.485354\pi\)
\(858\) 0 0
\(859\) −5.87858e6 −0.271825 −0.135913 0.990721i \(-0.543397\pi\)
−0.135913 + 0.990721i \(0.543397\pi\)
\(860\) 8.42354e6 0.388372
\(861\) −3.28855e6 −0.151181
\(862\) −1.95285e7 −0.895160
\(863\) 1.96178e7 0.896651 0.448325 0.893870i \(-0.352021\pi\)
0.448325 + 0.893870i \(0.352021\pi\)
\(864\) 746496. 0.0340207
\(865\) −3.48447e7 −1.58342
\(866\) 1.45710e7 0.660229
\(867\) 905089. 0.0408925
\(868\) −1.16433e7 −0.524537
\(869\) −2.15639e7 −0.968675
\(870\) 2.39808e7 1.07415
\(871\) 0 0
\(872\) 9.45063e6 0.420891
\(873\) −402228. −0.0178623
\(874\) −3.92872e6 −0.173969
\(875\) 1.10979e7 0.490030
\(876\) −5.43731e6 −0.239400
\(877\) 1.90004e7 0.834189 0.417095 0.908863i \(-0.363048\pi\)
0.417095 + 0.908863i \(0.363048\pi\)
\(878\) −6.80489e6 −0.297910
\(879\) 1.97518e7 0.862254
\(880\) 1.35799e7 0.591138
\(881\) −6.81302e6 −0.295733 −0.147866 0.989007i \(-0.547241\pi\)
−0.147866 + 0.989007i \(0.547241\pi\)
\(882\) 2.28421e6 0.0988701
\(883\) −2.84750e7 −1.22903 −0.614513 0.788906i \(-0.710648\pi\)
−0.614513 + 0.788906i \(0.710648\pi\)
\(884\) 0 0
\(885\) 9.34085e6 0.400893
\(886\) 2.34023e7 1.00155
\(887\) 3.43992e7 1.46804 0.734022 0.679126i \(-0.237641\pi\)
0.734022 + 0.679126i \(0.237641\pi\)
\(888\) 6.09118e6 0.259220
\(889\) −3.18721e7 −1.35256
\(890\) −2.05154e7 −0.868170
\(891\) 4.00716e6 0.169099
\(892\) −4.84472e6 −0.203871
\(893\) −1.98164e7 −0.831564
\(894\) −3.26503e6 −0.136629
\(895\) 1.81989e7 0.759430
\(896\) −1.61837e6 −0.0673453
\(897\) 0 0
\(898\) 6.25596e6 0.258883
\(899\) −5.65029e7 −2.33169
\(900\) 5.72649e6 0.235658
\(901\) 3.99540e7 1.63964
\(902\) −9.03713e6 −0.369840
\(903\) −5.38872e6 −0.219921
\(904\) −7.55912e6 −0.307645
\(905\) −2.05216e7 −0.832894
\(906\) −3.75438e6 −0.151956
\(907\) −2.13493e7 −0.861719 −0.430859 0.902419i \(-0.641789\pi\)
−0.430859 + 0.902419i \(0.641789\pi\)
\(908\) −1.15711e7 −0.465756
\(909\) 1.01740e7 0.408397
\(910\) 0 0
\(911\) −7.55882e6 −0.301758 −0.150879 0.988552i \(-0.548210\pi\)
−0.150879 + 0.988552i \(0.548210\pi\)
\(912\) 5.22350e6 0.207957
\(913\) −1.92292e7 −0.763457
\(914\) 1.34779e6 0.0533651
\(915\) 3.54886e7 1.40132
\(916\) 2.23005e7 0.878166
\(917\) −3.53499e7 −1.38824
\(918\) 3.34933e6 0.131175
\(919\) −4.56027e7 −1.78115 −0.890577 0.454832i \(-0.849699\pi\)
−0.890577 + 0.454832i \(0.849699\pi\)
\(920\) 2.40814e6 0.0938019
\(921\) 752572. 0.0292347
\(922\) 1.55670e7 0.603082
\(923\) 0 0
\(924\) −8.68733e6 −0.334739
\(925\) 4.67264e7 1.79559
\(926\) 2.53686e7 0.972229
\(927\) 1.02345e7 0.391171
\(928\) −7.85366e6 −0.299366
\(929\) 4.74157e7 1.80253 0.901266 0.433267i \(-0.142639\pi\)
0.901266 + 0.433267i \(0.142639\pi\)
\(930\) −2.30351e7 −0.873338
\(931\) 1.59834e7 0.604360
\(932\) 5.11016e6 0.192706
\(933\) 4.42590e6 0.166455
\(934\) 9.94765e6 0.373124
\(935\) 6.09292e7 2.27928
\(936\) 0 0
\(937\) 4.02496e7 1.49766 0.748829 0.662764i \(-0.230617\pi\)
0.748829 + 0.662764i \(0.230617\pi\)
\(938\) −1.80558e7 −0.670052
\(939\) −8.07272e6 −0.298783
\(940\) 1.21466e7 0.448368
\(941\) −8.70389e6 −0.320434 −0.160217 0.987082i \(-0.551219\pi\)
−0.160217 + 0.987082i \(0.551219\pi\)
\(942\) −1.13191e7 −0.415608
\(943\) −1.60257e6 −0.0586864
\(944\) −3.05911e6 −0.111729
\(945\) −6.25423e6 −0.227821
\(946\) −1.48085e7 −0.538002
\(947\) −9.78178e6 −0.354440 −0.177220 0.984171i \(-0.556710\pi\)
−0.177220 + 0.984171i \(0.556710\pi\)
\(948\) 5.08421e6 0.183740
\(949\) 0 0
\(950\) 4.00703e7 1.44050
\(951\) −2.83904e7 −1.01794
\(952\) −7.26119e6 −0.259666
\(953\) 1.18962e7 0.424303 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(954\) −1.12703e7 −0.400925
\(955\) 4.42711e7 1.57077
\(956\) 2.43623e7 0.862133
\(957\) −4.21581e7 −1.48799
\(958\) 2.12431e7 0.747834
\(959\) −3.42821e7 −1.20371
\(960\) −3.20178e6 −0.112128
\(961\) 2.56455e7 0.895781
\(962\) 0 0
\(963\) 2.67849e6 0.0930731
\(964\) 9.72543e6 0.337067
\(965\) −5.05028e6 −0.174581
\(966\) −1.54054e6 −0.0531165
\(967\) −7.21381e6 −0.248084 −0.124042 0.992277i \(-0.539586\pi\)
−0.124042 + 0.992277i \(0.539586\pi\)
\(968\) −1.35661e7 −0.465335
\(969\) 2.34365e7 0.801830
\(970\) 1.72519e6 0.0588717
\(971\) 9.17081e6 0.312147 0.156074 0.987745i \(-0.450116\pi\)
0.156074 + 0.987745i \(0.450116\pi\)
\(972\) −944784. −0.0320750
\(973\) −1.01770e7 −0.344618
\(974\) −3.09402e7 −1.04502
\(975\) 0 0
\(976\) −1.16224e7 −0.390547
\(977\) −2.18053e7 −0.730845 −0.365423 0.930842i \(-0.619076\pi\)
−0.365423 + 0.930842i \(0.619076\pi\)
\(978\) 5.06635e6 0.169375
\(979\) 3.60660e7 1.20265
\(980\) −9.79716e6 −0.325863
\(981\) −1.19610e7 −0.396820
\(982\) −1.28996e6 −0.0426872
\(983\) −1.96569e7 −0.648831 −0.324415 0.945915i \(-0.605168\pi\)
−0.324415 + 0.945915i \(0.605168\pi\)
\(984\) 2.13072e6 0.0701518
\(985\) −7.97579e6 −0.261929
\(986\) −3.52373e7 −1.15428
\(987\) −7.77044e6 −0.253894
\(988\) 0 0
\(989\) −2.62602e6 −0.0853703
\(990\) −1.71870e7 −0.557330
\(991\) 2.15229e7 0.696173 0.348087 0.937462i \(-0.386832\pi\)
0.348087 + 0.937462i \(0.386832\pi\)
\(992\) 7.54394e6 0.243399
\(993\) −5.37477e6 −0.172976
\(994\) −9.41421e6 −0.302216
\(995\) −4.88372e7 −1.56384
\(996\) 4.53375e6 0.144814
\(997\) −1.16375e6 −0.0370783 −0.0185392 0.999828i \(-0.505902\pi\)
−0.0185392 + 0.999828i \(0.505902\pi\)
\(998\) 1.65861e6 0.0527131
\(999\) −7.70915e6 −0.244395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.6.a.o.1.3 3
13.5 odd 4 78.6.b.a.25.4 yes 6
13.8 odd 4 78.6.b.a.25.3 6
13.12 even 2 1014.6.a.q.1.1 3
39.5 even 4 234.6.b.c.181.3 6
39.8 even 4 234.6.b.c.181.4 6
52.31 even 4 624.6.c.d.337.1 6
52.47 even 4 624.6.c.d.337.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.6.b.a.25.3 6 13.8 odd 4
78.6.b.a.25.4 yes 6 13.5 odd 4
234.6.b.c.181.3 6 39.5 even 4
234.6.b.c.181.4 6 39.8 even 4
624.6.c.d.337.1 6 52.31 even 4
624.6.c.d.337.6 6 52.47 even 4
1014.6.a.o.1.3 3 1.1 even 1 trivial
1014.6.a.q.1.1 3 13.12 even 2