Properties

Label 102.12.a.e
Level $102$
Weight $12$
Character orbit 102.a
Self dual yes
Analytic conductor $78.371$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,12,Mod(1,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 102.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.3710044171\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1088583x^{2} + 474043012x - 51746504200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{5}\cdot 3^{2}\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 32 q^{2} + 243 q^{3} + 1024 q^{4} + ( - \beta_1 + 715) q^{5} - 7776 q^{6} + (\beta_{2} + \beta_1 + 33567) q^{7} - 32768 q^{8} + 59049 q^{9} + (32 \beta_1 - 22880) q^{10} + ( - 11 \beta_{3} + 14 \beta_{2} + \cdots + 83239) q^{11}+ \cdots + ( - 649539 \beta_{3} + \cdots + 4915179711) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 128 q^{2} + 972 q^{3} + 4096 q^{4} + 2862 q^{5} - 31104 q^{6} + 134264 q^{7} - 131072 q^{8} + 236196 q^{9} - 91584 q^{10} + 332862 q^{11} + 995328 q^{12} + 2509514 q^{13} - 4296448 q^{14} + 695466 q^{15}+ \cdots + 19655168238 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 1088583x^{2} + 474043012x - 51746504200 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} - 246\nu^{2} + 1060546\nu - 221087525 ) / 4675 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -13\nu^{3} - 5068\nu^{2} + 11874088\nu - 1855815300 ) / 23375 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 2\nu^{3} + 322\nu^{2} - 2040002\nu + 534679700 ) / 2125 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_{2} + 7\beta _1 + 33 ) / 120 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -341\beta_{3} - 159\beta_{2} - 1087\beta _1 + 21771047 ) / 40 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 328051\beta_{3} - 235801\beta_{2} + 1916257\beta _1 - 10640634417 ) / 30 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
307.515
734.910
186.474
−1227.90
−32.0000 243.000 1024.00 −10558.4 −7776.00 84983.4 −32768.0 59049.0 337868.
1.2 −32.0000 243.000 1024.00 −5388.92 −7776.00 −4246.77 −32768.0 59049.0 172446.
1.3 −32.0000 243.000 1024.00 8920.72 −7776.00 29548.2 −32768.0 59049.0 −285463.
1.4 −32.0000 243.000 1024.00 9888.56 −7776.00 23979.2 −32768.0 59049.0 −316434.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 102.12.a.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.12.a.e 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 2862T_{5}^{3} - 154845699T_{5}^{2} + 336545425260T_{5} + 5019166992381300 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(102))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 32)^{4} \) Copy content Toggle raw display
$3$ \( (T - 243)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 50\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots - 25\!\cdots\!52 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 26\!\cdots\!72 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 30\!\cdots\!40 \) Copy content Toggle raw display
$17$ \( (T - 1419857)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 11\!\cdots\!20 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 41\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 31\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 54\!\cdots\!16 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 45\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 94\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 51\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 58\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 70\!\cdots\!28 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 26\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 78\!\cdots\!52 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 29\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 22\!\cdots\!28 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 23\!\cdots\!40 \) Copy content Toggle raw display
show more
show less