Properties

Label 102.3.e.a.89.1
Level $102$
Weight $3$
Character 102.89
Analytic conductor $2.779$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,3,Mod(47,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.47");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 102.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.77929869648\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 89.1
Root \(0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 102.89
Dual form 102.3.e.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +(2.12132 + 2.12132i) q^{3} +2.00000 q^{4} +(4.94975 + 4.94975i) q^{5} +(-3.00000 - 3.00000i) q^{6} +(-5.00000 - 5.00000i) q^{7} -2.82843 q^{8} +9.00000i q^{9} +(-7.00000 - 7.00000i) q^{10} +(-3.53553 + 3.53553i) q^{11} +(4.24264 + 4.24264i) q^{12} +15.0000 q^{13} +(7.07107 + 7.07107i) q^{14} +21.0000i q^{15} +4.00000 q^{16} +(-4.94975 + 16.2635i) q^{17} -12.7279i q^{18} -5.00000i q^{19} +(9.89949 + 9.89949i) q^{20} -21.2132i q^{21} +(5.00000 - 5.00000i) q^{22} +(14.8492 - 14.8492i) q^{23} +(-6.00000 - 6.00000i) q^{24} +24.0000i q^{25} -21.2132 q^{26} +(-19.0919 + 19.0919i) q^{27} +(-10.0000 - 10.0000i) q^{28} +(-28.2843 - 28.2843i) q^{29} -29.6985i q^{30} +(24.0000 - 24.0000i) q^{31} -5.65685 q^{32} -15.0000 q^{33} +(7.00000 - 23.0000i) q^{34} -49.4975i q^{35} +18.0000i q^{36} +(-15.0000 + 15.0000i) q^{37} +7.07107i q^{38} +(31.8198 + 31.8198i) q^{39} +(-14.0000 - 14.0000i) q^{40} +(38.8909 - 38.8909i) q^{41} +30.0000i q^{42} -75.0000i q^{43} +(-7.07107 + 7.07107i) q^{44} +(-44.5477 + 44.5477i) q^{45} +(-21.0000 + 21.0000i) q^{46} +11.3137i q^{47} +(8.48528 + 8.48528i) q^{48} +1.00000i q^{49} -33.9411i q^{50} +(-45.0000 + 24.0000i) q^{51} +30.0000 q^{52} -67.8823 q^{53} +(27.0000 - 27.0000i) q^{54} -35.0000 q^{55} +(14.1421 + 14.1421i) q^{56} +(10.6066 - 10.6066i) q^{57} +(40.0000 + 40.0000i) q^{58} +63.6396 q^{59} +42.0000i q^{60} +(71.0000 + 71.0000i) q^{61} +(-33.9411 + 33.9411i) q^{62} +(45.0000 - 45.0000i) q^{63} +8.00000 q^{64} +(74.2462 + 74.2462i) q^{65} +21.2132 q^{66} -80.0000 q^{67} +(-9.89949 + 32.5269i) q^{68} +63.0000 q^{69} +70.0000i q^{70} +(28.2843 + 28.2843i) q^{71} -25.4558i q^{72} +(80.0000 - 80.0000i) q^{73} +(21.2132 - 21.2132i) q^{74} +(-50.9117 + 50.9117i) q^{75} -10.0000i q^{76} +35.3553 q^{77} +(-45.0000 - 45.0000i) q^{78} +(-11.0000 - 11.0000i) q^{79} +(19.7990 + 19.7990i) q^{80} -81.0000 q^{81} +(-55.0000 + 55.0000i) q^{82} -124.451 q^{83} -42.4264i q^{84} +(-105.000 + 56.0000i) q^{85} +106.066i q^{86} -120.000i q^{87} +(10.0000 - 10.0000i) q^{88} +21.2132i q^{89} +(63.0000 - 63.0000i) q^{90} +(-75.0000 - 75.0000i) q^{91} +(29.6985 - 29.6985i) q^{92} +101.823 q^{93} -16.0000i q^{94} +(24.7487 - 24.7487i) q^{95} +(-12.0000 - 12.0000i) q^{96} +(-80.0000 + 80.0000i) q^{97} -1.41421i q^{98} +(-31.8198 - 31.8198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{6} - 20 q^{7} - 28 q^{10} + 60 q^{13} + 16 q^{16} + 20 q^{22} - 24 q^{24} - 40 q^{28} + 96 q^{31} - 60 q^{33} + 28 q^{34} - 60 q^{37} - 56 q^{40} - 84 q^{46} - 180 q^{51} + 120 q^{52}+ \cdots - 320 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 2.12132 + 2.12132i 0.707107 + 0.707107i
\(4\) 2.00000 0.500000
\(5\) 4.94975 + 4.94975i 0.989949 + 0.989949i 0.999950 0.0100005i \(-0.00318331\pi\)
−0.0100005 + 0.999950i \(0.503183\pi\)
\(6\) −3.00000 3.00000i −0.500000 0.500000i
\(7\) −5.00000 5.00000i −0.714286 0.714286i 0.253143 0.967429i \(-0.418536\pi\)
−0.967429 + 0.253143i \(0.918536\pi\)
\(8\) −2.82843 −0.353553
\(9\) 9.00000i 1.00000i
\(10\) −7.00000 7.00000i −0.700000 0.700000i
\(11\) −3.53553 + 3.53553i −0.321412 + 0.321412i −0.849309 0.527897i \(-0.822981\pi\)
0.527897 + 0.849309i \(0.322981\pi\)
\(12\) 4.24264 + 4.24264i 0.353553 + 0.353553i
\(13\) 15.0000 1.15385 0.576923 0.816798i \(-0.304253\pi\)
0.576923 + 0.816798i \(0.304253\pi\)
\(14\) 7.07107 + 7.07107i 0.505076 + 0.505076i
\(15\) 21.0000i 1.40000i
\(16\) 4.00000 0.250000
\(17\) −4.94975 + 16.2635i −0.291162 + 0.956674i
\(18\) 12.7279i 0.707107i
\(19\) 5.00000i 0.263158i −0.991306 0.131579i \(-0.957995\pi\)
0.991306 0.131579i \(-0.0420047\pi\)
\(20\) 9.89949 + 9.89949i 0.494975 + 0.494975i
\(21\) 21.2132i 1.01015i
\(22\) 5.00000 5.00000i 0.227273 0.227273i
\(23\) 14.8492 14.8492i 0.645619 0.645619i −0.306312 0.951931i \(-0.599095\pi\)
0.951931 + 0.306312i \(0.0990951\pi\)
\(24\) −6.00000 6.00000i −0.250000 0.250000i
\(25\) 24.0000i 0.960000i
\(26\) −21.2132 −0.815892
\(27\) −19.0919 + 19.0919i −0.707107 + 0.707107i
\(28\) −10.0000 10.0000i −0.357143 0.357143i
\(29\) −28.2843 28.2843i −0.975320 0.975320i 0.0243830 0.999703i \(-0.492238\pi\)
−0.999703 + 0.0243830i \(0.992238\pi\)
\(30\) 29.6985i 0.989949i
\(31\) 24.0000 24.0000i 0.774194 0.774194i −0.204643 0.978837i \(-0.565603\pi\)
0.978837 + 0.204643i \(0.0656034\pi\)
\(32\) −5.65685 −0.176777
\(33\) −15.0000 −0.454545
\(34\) 7.00000 23.0000i 0.205882 0.676471i
\(35\) 49.4975i 1.41421i
\(36\) 18.0000i 0.500000i
\(37\) −15.0000 + 15.0000i −0.405405 + 0.405405i −0.880133 0.474727i \(-0.842547\pi\)
0.474727 + 0.880133i \(0.342547\pi\)
\(38\) 7.07107i 0.186081i
\(39\) 31.8198 + 31.8198i 0.815892 + 0.815892i
\(40\) −14.0000 14.0000i −0.350000 0.350000i
\(41\) 38.8909 38.8909i 0.948558 0.948558i −0.0501822 0.998740i \(-0.515980\pi\)
0.998740 + 0.0501822i \(0.0159802\pi\)
\(42\) 30.0000i 0.714286i
\(43\) 75.0000i 1.74419i −0.489340 0.872093i \(-0.662762\pi\)
0.489340 0.872093i \(-0.337238\pi\)
\(44\) −7.07107 + 7.07107i −0.160706 + 0.160706i
\(45\) −44.5477 + 44.5477i −0.989949 + 0.989949i
\(46\) −21.0000 + 21.0000i −0.456522 + 0.456522i
\(47\) 11.3137i 0.240717i 0.992730 + 0.120359i \(0.0384044\pi\)
−0.992730 + 0.120359i \(0.961596\pi\)
\(48\) 8.48528 + 8.48528i 0.176777 + 0.176777i
\(49\) 1.00000i 0.0204082i
\(50\) 33.9411i 0.678823i
\(51\) −45.0000 + 24.0000i −0.882353 + 0.470588i
\(52\) 30.0000 0.576923
\(53\) −67.8823 −1.28080 −0.640399 0.768043i \(-0.721231\pi\)
−0.640399 + 0.768043i \(0.721231\pi\)
\(54\) 27.0000 27.0000i 0.500000 0.500000i
\(55\) −35.0000 −0.636364
\(56\) 14.1421 + 14.1421i 0.252538 + 0.252538i
\(57\) 10.6066 10.6066i 0.186081 0.186081i
\(58\) 40.0000 + 40.0000i 0.689655 + 0.689655i
\(59\) 63.6396 1.07864 0.539319 0.842102i \(-0.318682\pi\)
0.539319 + 0.842102i \(0.318682\pi\)
\(60\) 42.0000i 0.700000i
\(61\) 71.0000 + 71.0000i 1.16393 + 1.16393i 0.983607 + 0.180328i \(0.0577159\pi\)
0.180328 + 0.983607i \(0.442284\pi\)
\(62\) −33.9411 + 33.9411i −0.547438 + 0.547438i
\(63\) 45.0000 45.0000i 0.714286 0.714286i
\(64\) 8.00000 0.125000
\(65\) 74.2462 + 74.2462i 1.14225 + 1.14225i
\(66\) 21.2132 0.321412
\(67\) −80.0000 −1.19403 −0.597015 0.802230i \(-0.703647\pi\)
−0.597015 + 0.802230i \(0.703647\pi\)
\(68\) −9.89949 + 32.5269i −0.145581 + 0.478337i
\(69\) 63.0000 0.913043
\(70\) 70.0000i 1.00000i
\(71\) 28.2843 + 28.2843i 0.398370 + 0.398370i 0.877658 0.479288i \(-0.159105\pi\)
−0.479288 + 0.877658i \(0.659105\pi\)
\(72\) 25.4558i 0.353553i
\(73\) 80.0000 80.0000i 1.09589 1.09589i 0.101004 0.994886i \(-0.467794\pi\)
0.994886 0.101004i \(-0.0322056\pi\)
\(74\) 21.2132 21.2132i 0.286665 0.286665i
\(75\) −50.9117 + 50.9117i −0.678823 + 0.678823i
\(76\) 10.0000i 0.131579i
\(77\) 35.3553 0.459160
\(78\) −45.0000 45.0000i −0.576923 0.576923i
\(79\) −11.0000 11.0000i −0.139241 0.139241i 0.634051 0.773291i \(-0.281391\pi\)
−0.773291 + 0.634051i \(0.781391\pi\)
\(80\) 19.7990 + 19.7990i 0.247487 + 0.247487i
\(81\) −81.0000 −1.00000
\(82\) −55.0000 + 55.0000i −0.670732 + 0.670732i
\(83\) −124.451 −1.49941 −0.749704 0.661774i \(-0.769804\pi\)
−0.749704 + 0.661774i \(0.769804\pi\)
\(84\) 42.4264i 0.505076i
\(85\) −105.000 + 56.0000i −1.23529 + 0.658824i
\(86\) 106.066i 1.23333i
\(87\) 120.000i 1.37931i
\(88\) 10.0000 10.0000i 0.113636 0.113636i
\(89\) 21.2132i 0.238351i 0.992873 + 0.119175i \(0.0380251\pi\)
−0.992873 + 0.119175i \(0.961975\pi\)
\(90\) 63.0000 63.0000i 0.700000 0.700000i
\(91\) −75.0000 75.0000i −0.824176 0.824176i
\(92\) 29.6985 29.6985i 0.322810 0.322810i
\(93\) 101.823 1.09488
\(94\) 16.0000i 0.170213i
\(95\) 24.7487 24.7487i 0.260513 0.260513i
\(96\) −12.0000 12.0000i −0.125000 0.125000i
\(97\) −80.0000 + 80.0000i −0.824742 + 0.824742i −0.986784 0.162042i \(-0.948192\pi\)
0.162042 + 0.986784i \(0.448192\pi\)
\(98\) 1.41421i 0.0144308i
\(99\) −31.8198 31.8198i −0.321412 0.321412i
\(100\) 48.0000i 0.480000i
\(101\) 56.5685i 0.560085i −0.959988 0.280042i \(-0.909652\pi\)
0.959988 0.280042i \(-0.0903485\pi\)
\(102\) 63.6396 33.9411i 0.623918 0.332756i
\(103\) −5.00000 −0.0485437 −0.0242718 0.999705i \(-0.507727\pi\)
−0.0242718 + 0.999705i \(0.507727\pi\)
\(104\) −42.4264 −0.407946
\(105\) 105.000 105.000i 1.00000 1.00000i
\(106\) 96.0000 0.905660
\(107\) −144.957 144.957i −1.35474 1.35474i −0.880277 0.474460i \(-0.842643\pi\)
−0.474460 0.880277i \(-0.657357\pi\)
\(108\) −38.1838 + 38.1838i −0.353553 + 0.353553i
\(109\) 104.000 + 104.000i 0.954128 + 0.954128i 0.998993 0.0448646i \(-0.0142857\pi\)
−0.0448646 + 0.998993i \(0.514286\pi\)
\(110\) 49.4975 0.449977
\(111\) −63.6396 −0.573330
\(112\) −20.0000 20.0000i −0.178571 0.178571i
\(113\) −45.9619 + 45.9619i −0.406743 + 0.406743i −0.880601 0.473858i \(-0.842861\pi\)
0.473858 + 0.880601i \(0.342861\pi\)
\(114\) −15.0000 + 15.0000i −0.131579 + 0.131579i
\(115\) 147.000 1.27826
\(116\) −56.5685 56.5685i −0.487660 0.487660i
\(117\) 135.000i 1.15385i
\(118\) −90.0000 −0.762712
\(119\) 106.066 56.5685i 0.891311 0.475366i
\(120\) 59.3970i 0.494975i
\(121\) 96.0000i 0.793388i
\(122\) −100.409 100.409i −0.823026 0.823026i
\(123\) 165.000 1.34146
\(124\) 48.0000 48.0000i 0.387097 0.387097i
\(125\) 4.94975 4.94975i 0.0395980 0.0395980i
\(126\) −63.6396 + 63.6396i −0.505076 + 0.505076i
\(127\) 125.000i 0.984252i 0.870524 + 0.492126i \(0.163780\pi\)
−0.870524 + 0.492126i \(0.836220\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 159.099 159.099i 1.23333 1.23333i
\(130\) −105.000 105.000i −0.807692 0.807692i
\(131\) 3.53553 + 3.53553i 0.0269888 + 0.0269888i 0.720472 0.693484i \(-0.243925\pi\)
−0.693484 + 0.720472i \(0.743925\pi\)
\(132\) −30.0000 −0.227273
\(133\) −25.0000 + 25.0000i −0.187970 + 0.187970i
\(134\) 113.137 0.844307
\(135\) −189.000 −1.40000
\(136\) 14.0000 46.0000i 0.102941 0.338235i
\(137\) 123.037i 0.898077i 0.893512 + 0.449039i \(0.148233\pi\)
−0.893512 + 0.449039i \(0.851767\pi\)
\(138\) −89.0955 −0.645619
\(139\) −19.0000 + 19.0000i −0.136691 + 0.136691i −0.772141 0.635451i \(-0.780814\pi\)
0.635451 + 0.772141i \(0.280814\pi\)
\(140\) 98.9949i 0.707107i
\(141\) −24.0000 + 24.0000i −0.170213 + 0.170213i
\(142\) −40.0000 40.0000i −0.281690 0.281690i
\(143\) −53.0330 + 53.0330i −0.370860 + 0.370860i
\(144\) 36.0000i 0.250000i
\(145\) 280.000i 1.93103i
\(146\) −113.137 + 113.137i −0.774912 + 0.774912i
\(147\) −2.12132 + 2.12132i −0.0144308 + 0.0144308i
\(148\) −30.0000 + 30.0000i −0.202703 + 0.202703i
\(149\) 77.7817i 0.522025i 0.965335 + 0.261013i \(0.0840564\pi\)
−0.965335 + 0.261013i \(0.915944\pi\)
\(150\) 72.0000 72.0000i 0.480000 0.480000i
\(151\) 248.000i 1.64238i 0.570652 + 0.821192i \(0.306691\pi\)
−0.570652 + 0.821192i \(0.693309\pi\)
\(152\) 14.1421i 0.0930404i
\(153\) −146.371 44.5477i −0.956674 0.291162i
\(154\) −50.0000 −0.324675
\(155\) 237.588 1.53283
\(156\) 63.6396 + 63.6396i 0.407946 + 0.407946i
\(157\) −55.0000 −0.350318 −0.175159 0.984540i \(-0.556044\pi\)
−0.175159 + 0.984540i \(0.556044\pi\)
\(158\) 15.5563 + 15.5563i 0.0984579 + 0.0984579i
\(159\) −144.000 144.000i −0.905660 0.905660i
\(160\) −28.0000 28.0000i −0.175000 0.175000i
\(161\) −148.492 −0.922313
\(162\) 114.551 0.707107
\(163\) 120.000 + 120.000i 0.736196 + 0.736196i 0.971840 0.235643i \(-0.0757197\pi\)
−0.235643 + 0.971840i \(0.575720\pi\)
\(164\) 77.7817 77.7817i 0.474279 0.474279i
\(165\) −74.2462 74.2462i −0.449977 0.449977i
\(166\) 176.000 1.06024
\(167\) 81.3173 + 81.3173i 0.486930 + 0.486930i 0.907336 0.420406i \(-0.138112\pi\)
−0.420406 + 0.907336i \(0.638112\pi\)
\(168\) 60.0000i 0.357143i
\(169\) 56.0000 0.331361
\(170\) 148.492 79.1960i 0.873485 0.465859i
\(171\) 45.0000 0.263158
\(172\) 150.000i 0.872093i
\(173\) 17.6777 + 17.6777i 0.102183 + 0.102183i 0.756350 0.654167i \(-0.226981\pi\)
−0.654167 + 0.756350i \(0.726981\pi\)
\(174\) 169.706i 0.975320i
\(175\) 120.000 120.000i 0.685714 0.685714i
\(176\) −14.1421 + 14.1421i −0.0803530 + 0.0803530i
\(177\) 135.000 + 135.000i 0.762712 + 0.762712i
\(178\) 30.0000i 0.168539i
\(179\) −56.5685 −0.316025 −0.158013 0.987437i \(-0.550509\pi\)
−0.158013 + 0.987437i \(0.550509\pi\)
\(180\) −89.0955 + 89.0955i −0.494975 + 0.494975i
\(181\) −79.0000 79.0000i −0.436464 0.436464i 0.454356 0.890820i \(-0.349869\pi\)
−0.890820 + 0.454356i \(0.849869\pi\)
\(182\) 106.066 + 106.066i 0.582780 + 0.582780i
\(183\) 301.227i 1.64605i
\(184\) −42.0000 + 42.0000i −0.228261 + 0.228261i
\(185\) −148.492 −0.802662
\(186\) −144.000 −0.774194
\(187\) −40.0000 75.0000i −0.213904 0.401070i
\(188\) 22.6274i 0.120359i
\(189\) 190.919 1.01015
\(190\) −35.0000 + 35.0000i −0.184211 + 0.184211i
\(191\) 63.6396i 0.333192i −0.986025 0.166596i \(-0.946722\pi\)
0.986025 0.166596i \(-0.0532775\pi\)
\(192\) 16.9706 + 16.9706i 0.0883883 + 0.0883883i
\(193\) −240.000 240.000i −1.24352 1.24352i −0.958529 0.284994i \(-0.908008\pi\)
−0.284994 0.958529i \(-0.591992\pi\)
\(194\) 113.137 113.137i 0.583181 0.583181i
\(195\) 315.000i 1.61538i
\(196\) 2.00000i 0.0102041i
\(197\) −57.2756 + 57.2756i −0.290739 + 0.290739i −0.837372 0.546633i \(-0.815909\pi\)
0.546633 + 0.837372i \(0.315909\pi\)
\(198\) 45.0000 + 45.0000i 0.227273 + 0.227273i
\(199\) 104.000 104.000i 0.522613 0.522613i −0.395747 0.918360i \(-0.629514\pi\)
0.918360 + 0.395747i \(0.129514\pi\)
\(200\) 67.8823i 0.339411i
\(201\) −169.706 169.706i −0.844307 0.844307i
\(202\) 80.0000i 0.396040i
\(203\) 282.843i 1.39331i
\(204\) −90.0000 + 48.0000i −0.441176 + 0.235294i
\(205\) 385.000 1.87805
\(206\) 7.07107 0.0343256
\(207\) 133.643 + 133.643i 0.645619 + 0.645619i
\(208\) 60.0000 0.288462
\(209\) 17.6777 + 17.6777i 0.0845822 + 0.0845822i
\(210\) −148.492 + 148.492i −0.707107 + 0.707107i
\(211\) −216.000 216.000i −1.02370 1.02370i −0.999712 0.0239843i \(-0.992365\pi\)
−0.0239843 0.999712i \(-0.507635\pi\)
\(212\) −135.765 −0.640399
\(213\) 120.000i 0.563380i
\(214\) 205.000 + 205.000i 0.957944 + 0.957944i
\(215\) 371.231 371.231i 1.72666 1.72666i
\(216\) 54.0000 54.0000i 0.250000 0.250000i
\(217\) −240.000 −1.10599
\(218\) −147.078 147.078i −0.674671 0.674671i
\(219\) 339.411 1.54982
\(220\) −70.0000 −0.318182
\(221\) −74.2462 + 243.952i −0.335956 + 1.10385i
\(222\) 90.0000 0.405405
\(223\) 155.000i 0.695067i 0.937668 + 0.347534i \(0.112981\pi\)
−0.937668 + 0.347534i \(0.887019\pi\)
\(224\) 28.2843 + 28.2843i 0.126269 + 0.126269i
\(225\) −216.000 −0.960000
\(226\) 65.0000 65.0000i 0.287611 0.287611i
\(227\) −109.602 + 109.602i −0.482826 + 0.482826i −0.906033 0.423207i \(-0.860904\pi\)
0.423207 + 0.906033i \(0.360904\pi\)
\(228\) 21.2132 21.2132i 0.0930404 0.0930404i
\(229\) 40.0000i 0.174672i −0.996179 0.0873362i \(-0.972165\pi\)
0.996179 0.0873362i \(-0.0278355\pi\)
\(230\) −207.889 −0.903867
\(231\) 75.0000 + 75.0000i 0.324675 + 0.324675i
\(232\) 80.0000 + 80.0000i 0.344828 + 0.344828i
\(233\) −112.430 112.430i −0.482532 0.482532i 0.423407 0.905939i \(-0.360834\pi\)
−0.905939 + 0.423407i \(0.860834\pi\)
\(234\) 190.919i 0.815892i
\(235\) −56.0000 + 56.0000i −0.238298 + 0.238298i
\(236\) 127.279 0.539319
\(237\) 46.6690i 0.196916i
\(238\) −150.000 + 80.0000i −0.630252 + 0.336134i
\(239\) 282.843i 1.18344i −0.806143 0.591721i \(-0.798449\pi\)
0.806143 0.591721i \(-0.201551\pi\)
\(240\) 84.0000i 0.350000i
\(241\) 279.000 279.000i 1.15768 1.15768i 0.172702 0.984974i \(-0.444750\pi\)
0.984974 0.172702i \(-0.0552498\pi\)
\(242\) 135.765i 0.561010i
\(243\) −171.827 171.827i −0.707107 0.707107i
\(244\) 142.000 + 142.000i 0.581967 + 0.581967i
\(245\) −4.94975 + 4.94975i −0.0202031 + 0.0202031i
\(246\) −233.345 −0.948558
\(247\) 75.0000i 0.303644i
\(248\) −67.8823 + 67.8823i −0.273719 + 0.273719i
\(249\) −264.000 264.000i −1.06024 1.06024i
\(250\) −7.00000 + 7.00000i −0.0280000 + 0.0280000i
\(251\) 63.6396i 0.253544i 0.991932 + 0.126772i \(0.0404617\pi\)
−0.991932 + 0.126772i \(0.959538\pi\)
\(252\) 90.0000 90.0000i 0.357143 0.357143i
\(253\) 105.000i 0.415020i
\(254\) 176.777i 0.695971i
\(255\) −341.533 103.945i −1.33934 0.407626i
\(256\) 16.0000 0.0625000
\(257\) 159.806 0.621814 0.310907 0.950440i \(-0.399367\pi\)
0.310907 + 0.950440i \(0.399367\pi\)
\(258\) −225.000 + 225.000i −0.872093 + 0.872093i
\(259\) 150.000 0.579151
\(260\) 148.492 + 148.492i 0.571125 + 0.571125i
\(261\) 254.558 254.558i 0.975320 0.975320i
\(262\) −5.00000 5.00000i −0.0190840 0.0190840i
\(263\) −391.737 −1.48949 −0.744747 0.667346i \(-0.767430\pi\)
−0.744747 + 0.667346i \(0.767430\pi\)
\(264\) 42.4264 0.160706
\(265\) −336.000 336.000i −1.26792 1.26792i
\(266\) 35.3553 35.3553i 0.132915 0.132915i
\(267\) −45.0000 + 45.0000i −0.168539 + 0.168539i
\(268\) −160.000 −0.597015
\(269\) 130.815 + 130.815i 0.486300 + 0.486300i 0.907137 0.420836i \(-0.138263\pi\)
−0.420836 + 0.907137i \(0.638263\pi\)
\(270\) 267.286 0.989949
\(271\) −115.000 −0.424354 −0.212177 0.977231i \(-0.568055\pi\)
−0.212177 + 0.977231i \(0.568055\pi\)
\(272\) −19.7990 + 65.0538i −0.0727904 + 0.239168i
\(273\) 318.198i 1.16556i
\(274\) 174.000i 0.635036i
\(275\) −84.8528 84.8528i −0.308556 0.308556i
\(276\) 126.000 0.456522
\(277\) 280.000 280.000i 1.01083 1.01083i 0.0108896 0.999941i \(-0.496534\pi\)
0.999941 0.0108896i \(-0.00346634\pi\)
\(278\) 26.8701 26.8701i 0.0966549 0.0966549i
\(279\) 216.000 + 216.000i 0.774194 + 0.774194i
\(280\) 140.000i 0.500000i
\(281\) 35.3553 0.125820 0.0629099 0.998019i \(-0.479962\pi\)
0.0629099 + 0.998019i \(0.479962\pi\)
\(282\) 33.9411 33.9411i 0.120359 0.120359i
\(283\) 155.000 + 155.000i 0.547703 + 0.547703i 0.925776 0.378073i \(-0.123413\pi\)
−0.378073 + 0.925776i \(0.623413\pi\)
\(284\) 56.5685 + 56.5685i 0.199185 + 0.199185i
\(285\) 105.000 0.368421
\(286\) 75.0000 75.0000i 0.262238 0.262238i
\(287\) −388.909 −1.35508
\(288\) 50.9117i 0.176777i
\(289\) −240.000 161.000i −0.830450 0.557093i
\(290\) 395.980i 1.36545i
\(291\) −339.411 −1.16636
\(292\) 160.000 160.000i 0.547945 0.547945i
\(293\) 46.6690i 0.159280i 0.996824 + 0.0796400i \(0.0253771\pi\)
−0.996824 + 0.0796400i \(0.974623\pi\)
\(294\) 3.00000 3.00000i 0.0102041 0.0102041i
\(295\) 315.000 + 315.000i 1.06780 + 1.06780i
\(296\) 42.4264 42.4264i 0.143332 0.143332i
\(297\) 135.000i 0.454545i
\(298\) 110.000i 0.369128i
\(299\) 222.739 222.739i 0.744945 0.744945i
\(300\) −101.823 + 101.823i −0.339411 + 0.339411i
\(301\) −375.000 + 375.000i −1.24585 + 1.24585i
\(302\) 350.725i 1.16134i
\(303\) 120.000 120.000i 0.396040 0.396040i
\(304\) 20.0000i 0.0657895i
\(305\) 702.864i 2.30447i
\(306\) 207.000 + 63.0000i 0.676471 + 0.205882i
\(307\) −320.000 −1.04235 −0.521173 0.853451i \(-0.674505\pi\)
−0.521173 + 0.853451i \(0.674505\pi\)
\(308\) 70.7107 0.229580
\(309\) −10.6066 10.6066i −0.0343256 0.0343256i
\(310\) −336.000 −1.08387
\(311\) 84.8528 + 84.8528i 0.272839 + 0.272839i 0.830242 0.557403i \(-0.188202\pi\)
−0.557403 + 0.830242i \(0.688202\pi\)
\(312\) −90.0000 90.0000i −0.288462 0.288462i
\(313\) 160.000 + 160.000i 0.511182 + 0.511182i 0.914889 0.403706i \(-0.132278\pi\)
−0.403706 + 0.914889i \(0.632278\pi\)
\(314\) 77.7817 0.247713
\(315\) 445.477 1.41421
\(316\) −22.0000 22.0000i −0.0696203 0.0696203i
\(317\) 141.421 141.421i 0.446124 0.446124i −0.447940 0.894064i \(-0.647842\pi\)
0.894064 + 0.447940i \(0.147842\pi\)
\(318\) 203.647 + 203.647i 0.640399 + 0.640399i
\(319\) 200.000 0.626959
\(320\) 39.5980 + 39.5980i 0.123744 + 0.123744i
\(321\) 615.000i 1.91589i
\(322\) 210.000 0.652174
\(323\) 81.3173 + 24.7487i 0.251756 + 0.0766215i
\(324\) −162.000 −0.500000
\(325\) 360.000i 1.10769i
\(326\) −169.706 169.706i −0.520569 0.520569i
\(327\) 441.235i 1.34934i
\(328\) −110.000 + 110.000i −0.335366 + 0.335366i
\(329\) 56.5685 56.5685i 0.171941 0.171941i
\(330\) 105.000 + 105.000i 0.318182 + 0.318182i
\(331\) 45.0000i 0.135952i −0.997687 0.0679758i \(-0.978346\pi\)
0.997687 0.0679758i \(-0.0216541\pi\)
\(332\) −248.902 −0.749704
\(333\) −135.000 135.000i −0.405405 0.405405i
\(334\) −115.000 115.000i −0.344311 0.344311i
\(335\) −395.980 395.980i −1.18203 1.18203i
\(336\) 84.8528i 0.252538i
\(337\) −95.0000 + 95.0000i −0.281899 + 0.281899i −0.833866 0.551967i \(-0.813877\pi\)
0.551967 + 0.833866i \(0.313877\pi\)
\(338\) −79.1960 −0.234308
\(339\) −195.000 −0.575221
\(340\) −210.000 + 112.000i −0.617647 + 0.329412i
\(341\) 169.706i 0.497670i
\(342\) −63.6396 −0.186081
\(343\) −240.000 + 240.000i −0.699708 + 0.699708i
\(344\) 212.132i 0.616663i
\(345\) 311.834 + 311.834i 0.903867 + 0.903867i
\(346\) −25.0000 25.0000i −0.0722543 0.0722543i
\(347\) 113.137 113.137i 0.326043 0.326043i −0.525036 0.851080i \(-0.675948\pi\)
0.851080 + 0.525036i \(0.175948\pi\)
\(348\) 240.000i 0.689655i
\(349\) 473.000i 1.35530i 0.735384 + 0.677650i \(0.237002\pi\)
−0.735384 + 0.677650i \(0.762998\pi\)
\(350\) −169.706 + 169.706i −0.484873 + 0.484873i
\(351\) −286.378 + 286.378i −0.815892 + 0.815892i
\(352\) 20.0000 20.0000i 0.0568182 0.0568182i
\(353\) 9.89949i 0.0280439i 0.999902 + 0.0140219i \(0.00446347\pi\)
−0.999902 + 0.0140219i \(0.995537\pi\)
\(354\) −190.919 190.919i −0.539319 0.539319i
\(355\) 280.000i 0.788732i
\(356\) 42.4264i 0.119175i
\(357\) 345.000 + 105.000i 0.966387 + 0.294118i
\(358\) 80.0000 0.223464
\(359\) 120.208 0.334842 0.167421 0.985886i \(-0.446456\pi\)
0.167421 + 0.985886i \(0.446456\pi\)
\(360\) 126.000 126.000i 0.350000 0.350000i
\(361\) 336.000 0.930748
\(362\) 111.723 + 111.723i 0.308627 + 0.308627i
\(363\) −203.647 + 203.647i −0.561010 + 0.561010i
\(364\) −150.000 150.000i −0.412088 0.412088i
\(365\) 791.960 2.16975
\(366\) 426.000i 1.16393i
\(367\) −75.0000 75.0000i −0.204360 0.204360i 0.597505 0.801865i \(-0.296159\pi\)
−0.801865 + 0.597505i \(0.796159\pi\)
\(368\) 59.3970 59.3970i 0.161405 0.161405i
\(369\) 350.018 + 350.018i 0.948558 + 0.948558i
\(370\) 210.000 0.567568
\(371\) 339.411 + 339.411i 0.914855 + 0.914855i
\(372\) 203.647 0.547438
\(373\) 440.000 1.17962 0.589812 0.807540i \(-0.299202\pi\)
0.589812 + 0.807540i \(0.299202\pi\)
\(374\) 56.5685 + 106.066i 0.151253 + 0.283599i
\(375\) 21.0000 0.0560000
\(376\) 32.0000i 0.0851064i
\(377\) −424.264 424.264i −1.12537 1.12537i
\(378\) −270.000 −0.714286
\(379\) −171.000 + 171.000i −0.451187 + 0.451187i −0.895748 0.444561i \(-0.853360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(380\) 49.4975 49.4975i 0.130257 0.130257i
\(381\) −265.165 + 265.165i −0.695971 + 0.695971i
\(382\) 90.0000i 0.235602i
\(383\) 497.803 1.29975 0.649874 0.760042i \(-0.274822\pi\)
0.649874 + 0.760042i \(0.274822\pi\)
\(384\) −24.0000 24.0000i −0.0625000 0.0625000i
\(385\) 175.000 + 175.000i 0.454545 + 0.454545i
\(386\) 339.411 + 339.411i 0.879304 + 0.879304i
\(387\) 675.000 1.74419
\(388\) −160.000 + 160.000i −0.412371 + 0.412371i
\(389\) −700.036 −1.79958 −0.899789 0.436326i \(-0.856280\pi\)
−0.899789 + 0.436326i \(0.856280\pi\)
\(390\) 445.477i 1.14225i
\(391\) 168.000 + 315.000i 0.429668 + 0.805627i
\(392\) 2.82843i 0.00721538i
\(393\) 15.0000i 0.0381679i
\(394\) 81.0000 81.0000i 0.205584 0.205584i
\(395\) 108.894i 0.275682i
\(396\) −63.6396 63.6396i −0.160706 0.160706i
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) −147.078 + 147.078i −0.369543 + 0.369543i
\(399\) −106.066 −0.265830
\(400\) 96.0000i 0.240000i
\(401\) 321.734 321.734i 0.802328 0.802328i −0.181131 0.983459i \(-0.557976\pi\)
0.983459 + 0.181131i \(0.0579758\pi\)
\(402\) 240.000 + 240.000i 0.597015 + 0.597015i
\(403\) 360.000 360.000i 0.893300 0.893300i
\(404\) 113.137i 0.280042i
\(405\) −400.930 400.930i −0.989949 0.989949i
\(406\) 400.000i 0.985222i
\(407\) 106.066i 0.260604i
\(408\) 127.279 67.8823i 0.311959 0.166378i
\(409\) −345.000 −0.843521 −0.421760 0.906707i \(-0.638588\pi\)
−0.421760 + 0.906707i \(0.638588\pi\)
\(410\) −544.472 −1.32798
\(411\) −261.000 + 261.000i −0.635036 + 0.635036i
\(412\) −10.0000 −0.0242718
\(413\) −318.198 318.198i −0.770455 0.770455i
\(414\) −189.000 189.000i −0.456522 0.456522i
\(415\) −616.000 616.000i −1.48434 1.48434i
\(416\) −84.8528 −0.203973
\(417\) −80.6102 −0.193310
\(418\) −25.0000 25.0000i −0.0598086 0.0598086i
\(419\) −226.274 + 226.274i −0.540034 + 0.540034i −0.923539 0.383505i \(-0.874717\pi\)
0.383505 + 0.923539i \(0.374717\pi\)
\(420\) 210.000 210.000i 0.500000 0.500000i
\(421\) −695.000 −1.65083 −0.825416 0.564525i \(-0.809059\pi\)
−0.825416 + 0.564525i \(0.809059\pi\)
\(422\) 305.470 + 305.470i 0.723863 + 0.723863i
\(423\) −101.823 −0.240717
\(424\) 192.000 0.452830
\(425\) −390.323 118.794i −0.918407 0.279515i
\(426\) 169.706i 0.398370i
\(427\) 710.000i 1.66276i
\(428\) −289.914 289.914i −0.677369 0.677369i
\(429\) −225.000 −0.524476
\(430\) −525.000 + 525.000i −1.22093 + 1.22093i
\(431\) 197.990 197.990i 0.459373 0.459373i −0.439076 0.898450i \(-0.644694\pi\)
0.898450 + 0.439076i \(0.144694\pi\)
\(432\) −76.3675 + 76.3675i −0.176777 + 0.176777i
\(433\) 305.000i 0.704388i −0.935927 0.352194i \(-0.885436\pi\)
0.935927 0.352194i \(-0.114564\pi\)
\(434\) 339.411 0.782054
\(435\) 593.970 593.970i 1.36545 1.36545i
\(436\) 208.000 + 208.000i 0.477064 + 0.477064i
\(437\) −74.2462 74.2462i −0.169900 0.169900i
\(438\) −480.000 −1.09589
\(439\) −64.0000 + 64.0000i −0.145786 + 0.145786i −0.776233 0.630447i \(-0.782872\pi\)
0.630447 + 0.776233i \(0.282872\pi\)
\(440\) 98.9949 0.224989
\(441\) −9.00000 −0.0204082
\(442\) 105.000 345.000i 0.237557 0.780543i
\(443\) 441.235i 0.996015i 0.867173 + 0.498007i \(0.165935\pi\)
−0.867173 + 0.498007i \(0.834065\pi\)
\(444\) −127.279 −0.286665
\(445\) −105.000 + 105.000i −0.235955 + 0.235955i
\(446\) 219.203i 0.491487i
\(447\) −165.000 + 165.000i −0.369128 + 0.369128i
\(448\) −40.0000 40.0000i −0.0892857 0.0892857i
\(449\) 360.624 360.624i 0.803173 0.803173i −0.180418 0.983590i \(-0.557745\pi\)
0.983590 + 0.180418i \(0.0577449\pi\)
\(450\) 305.470 0.678823
\(451\) 275.000i 0.609756i
\(452\) −91.9239 + 91.9239i −0.203371 + 0.203371i
\(453\) −526.087 + 526.087i −1.16134 + 1.16134i
\(454\) 155.000 155.000i 0.341410 0.341410i
\(455\) 742.462i 1.63178i
\(456\) −30.0000 + 30.0000i −0.0657895 + 0.0657895i
\(457\) 265.000i 0.579869i −0.957047 0.289934i \(-0.906367\pi\)
0.957047 0.289934i \(-0.0936335\pi\)
\(458\) 56.5685i 0.123512i
\(459\) −216.000 405.000i −0.470588 0.882353i
\(460\) 294.000 0.639130
\(461\) −148.492 −0.322109 −0.161055 0.986945i \(-0.551490\pi\)
−0.161055 + 0.986945i \(0.551490\pi\)
\(462\) −106.066 106.066i −0.229580 0.229580i
\(463\) 360.000 0.777538 0.388769 0.921335i \(-0.372900\pi\)
0.388769 + 0.921335i \(0.372900\pi\)
\(464\) −113.137 113.137i −0.243830 0.243830i
\(465\) 504.000 + 504.000i 1.08387 + 1.08387i
\(466\) 159.000 + 159.000i 0.341202 + 0.341202i
\(467\) 490.732 1.05082 0.525409 0.850850i \(-0.323912\pi\)
0.525409 + 0.850850i \(0.323912\pi\)
\(468\) 270.000i 0.576923i
\(469\) 400.000 + 400.000i 0.852878 + 0.852878i
\(470\) 79.1960 79.1960i 0.168502 0.168502i
\(471\) −116.673 116.673i −0.247713 0.247713i
\(472\) −180.000 −0.381356
\(473\) 265.165 + 265.165i 0.560603 + 0.560603i
\(474\) 66.0000i 0.139241i
\(475\) 120.000 0.252632
\(476\) 212.132 113.137i 0.445656 0.237683i
\(477\) 610.940i 1.28080i
\(478\) 400.000i 0.836820i
\(479\) 166.170 + 166.170i 0.346910 + 0.346910i 0.858957 0.512047i \(-0.171113\pi\)
−0.512047 + 0.858957i \(0.671113\pi\)
\(480\) 118.794i 0.247487i
\(481\) −225.000 + 225.000i −0.467775 + 0.467775i
\(482\) −394.566 + 394.566i −0.818601 + 0.818601i
\(483\) −315.000 315.000i −0.652174 0.652174i
\(484\) 192.000i 0.396694i
\(485\) −791.960 −1.63291
\(486\) 243.000 + 243.000i 0.500000 + 0.500000i
\(487\) 195.000 + 195.000i 0.400411 + 0.400411i 0.878378 0.477967i \(-0.158626\pi\)
−0.477967 + 0.878378i \(0.658626\pi\)
\(488\) −200.818 200.818i −0.411513 0.411513i
\(489\) 509.117i 1.04114i
\(490\) 7.00000 7.00000i 0.0142857 0.0142857i
\(491\) −565.685 −1.15211 −0.576054 0.817411i \(-0.695408\pi\)
−0.576054 + 0.817411i \(0.695408\pi\)
\(492\) 330.000 0.670732
\(493\) 600.000 320.000i 1.21704 0.649087i
\(494\) 106.066i 0.214709i
\(495\) 315.000i 0.636364i
\(496\) 96.0000 96.0000i 0.193548 0.193548i
\(497\) 282.843i 0.569100i
\(498\) 373.352 + 373.352i 0.749704 + 0.749704i
\(499\) 336.000 + 336.000i 0.673347 + 0.673347i 0.958486 0.285139i \(-0.0920399\pi\)
−0.285139 + 0.958486i \(0.592040\pi\)
\(500\) 9.89949 9.89949i 0.0197990 0.0197990i
\(501\) 345.000i 0.688623i
\(502\) 90.0000i 0.179283i
\(503\) −477.297 + 477.297i −0.948901 + 0.948901i −0.998756 0.0498557i \(-0.984124\pi\)
0.0498557 + 0.998756i \(0.484124\pi\)
\(504\) −127.279 + 127.279i −0.252538 + 0.252538i
\(505\) 280.000 280.000i 0.554455 0.554455i
\(506\) 148.492i 0.293463i
\(507\) 118.794 + 118.794i 0.234308 + 0.234308i
\(508\) 250.000i 0.492126i
\(509\) 226.274i 0.444547i −0.974984 0.222273i \(-0.928652\pi\)
0.974984 0.222273i \(-0.0713477\pi\)
\(510\) 483.000 + 147.000i 0.947059 + 0.288235i
\(511\) −800.000 −1.56556
\(512\) −22.6274 −0.0441942
\(513\) 95.4594 + 95.4594i 0.186081 + 0.186081i
\(514\) −226.000 −0.439689
\(515\) −24.7487 24.7487i −0.0480558 0.0480558i
\(516\) 318.198 318.198i 0.616663 0.616663i
\(517\) −40.0000 40.0000i −0.0773694 0.0773694i
\(518\) −212.132 −0.409521
\(519\) 75.0000i 0.144509i
\(520\) −210.000 210.000i −0.403846 0.403846i
\(521\) 441.942 441.942i 0.848257 0.848257i −0.141659 0.989916i \(-0.545244\pi\)
0.989916 + 0.141659i \(0.0452436\pi\)
\(522\) −360.000 + 360.000i −0.689655 + 0.689655i
\(523\) −240.000 −0.458891 −0.229446 0.973322i \(-0.573691\pi\)
−0.229446 + 0.973322i \(0.573691\pi\)
\(524\) 7.07107 + 7.07107i 0.0134944 + 0.0134944i
\(525\) 509.117 0.969746
\(526\) 554.000 1.05323
\(527\) 271.529 + 509.117i 0.515235 + 0.966066i
\(528\) −60.0000 −0.113636
\(529\) 88.0000i 0.166352i
\(530\) 475.176 + 475.176i 0.896558 + 0.896558i
\(531\) 572.756i 1.07864i
\(532\) −50.0000 + 50.0000i −0.0939850 + 0.0939850i
\(533\) 583.363 583.363i 1.09449 1.09449i
\(534\) 63.6396 63.6396i 0.119175 0.119175i
\(535\) 1435.00i 2.68224i
\(536\) 226.274 0.422153
\(537\) −120.000 120.000i −0.223464 0.223464i
\(538\) −185.000 185.000i −0.343866 0.343866i
\(539\) −3.53553 3.53553i −0.00655943 0.00655943i
\(540\) −378.000 −0.700000
\(541\) 321.000 321.000i 0.593346 0.593346i −0.345188 0.938534i \(-0.612185\pi\)
0.938534 + 0.345188i \(0.112185\pi\)
\(542\) 162.635 0.300064
\(543\) 335.169i 0.617253i
\(544\) 28.0000 92.0000i 0.0514706 0.169118i
\(545\) 1029.55i 1.88908i
\(546\) 450.000i 0.824176i
\(547\) −395.000 + 395.000i −0.722121 + 0.722121i −0.969037 0.246916i \(-0.920583\pi\)
0.246916 + 0.969037i \(0.420583\pi\)
\(548\) 246.073i 0.449039i
\(549\) −639.000 + 639.000i −1.16393 + 1.16393i
\(550\) 120.000 + 120.000i 0.218182 + 0.218182i
\(551\) −141.421 + 141.421i −0.256663 + 0.256663i
\(552\) −178.191 −0.322810
\(553\) 110.000i 0.198915i
\(554\) −395.980 + 395.980i −0.714765 + 0.714765i
\(555\) −315.000 315.000i −0.567568 0.567568i
\(556\) −38.0000 + 38.0000i −0.0683453 + 0.0683453i
\(557\) 929.138i 1.66811i 0.551680 + 0.834056i \(0.313987\pi\)
−0.551680 + 0.834056i \(0.686013\pi\)
\(558\) −305.470 305.470i −0.547438 0.547438i
\(559\) 1125.00i 2.01252i
\(560\) 197.990i 0.353553i
\(561\) 74.2462 243.952i 0.132346 0.434852i
\(562\) −50.0000 −0.0889680
\(563\) 101.823 0.180859 0.0904293 0.995903i \(-0.471176\pi\)
0.0904293 + 0.995903i \(0.471176\pi\)
\(564\) −48.0000 + 48.0000i −0.0851064 + 0.0851064i
\(565\) −455.000 −0.805310
\(566\) −219.203 219.203i −0.387285 0.387285i
\(567\) 405.000 + 405.000i 0.714286 + 0.714286i
\(568\) −80.0000 80.0000i −0.140845 0.140845i
\(569\) −395.980 −0.695922 −0.347961 0.937509i \(-0.613126\pi\)
−0.347961 + 0.937509i \(0.613126\pi\)
\(570\) −148.492 −0.260513
\(571\) −104.000 104.000i −0.182137 0.182137i 0.610150 0.792286i \(-0.291109\pi\)
−0.792286 + 0.610150i \(0.791109\pi\)
\(572\) −106.066 + 106.066i −0.185430 + 0.185430i
\(573\) 135.000 135.000i 0.235602 0.235602i
\(574\) 550.000 0.958188
\(575\) 356.382 + 356.382i 0.619794 + 0.619794i
\(576\) 72.0000i 0.125000i
\(577\) −185.000 −0.320624 −0.160312 0.987066i \(-0.551250\pi\)
−0.160312 + 0.987066i \(0.551250\pi\)
\(578\) 339.411 + 227.688i 0.587217 + 0.393925i
\(579\) 1018.23i 1.75861i
\(580\) 560.000i 0.965517i
\(581\) 622.254 + 622.254i 1.07101 + 1.07101i
\(582\) 480.000 0.824742
\(583\) 240.000 240.000i 0.411664 0.411664i
\(584\) −226.274 + 226.274i −0.387456 + 0.387456i
\(585\) −668.216 + 668.216i −1.14225 + 1.14225i
\(586\) 66.0000i 0.112628i
\(587\) −497.803 −0.848046 −0.424023 0.905651i \(-0.639382\pi\)
−0.424023 + 0.905651i \(0.639382\pi\)
\(588\) −4.24264 + 4.24264i −0.00721538 + 0.00721538i
\(589\) −120.000 120.000i −0.203735 0.203735i
\(590\) −445.477 445.477i −0.755046 0.755046i
\(591\) −243.000 −0.411168
\(592\) −60.0000 + 60.0000i −0.101351 + 0.101351i
\(593\) 916.410 1.54538 0.772690 0.634784i \(-0.218911\pi\)
0.772690 + 0.634784i \(0.218911\pi\)
\(594\) 190.919i 0.321412i
\(595\) 805.000 + 245.000i 1.35294 + 0.411765i
\(596\) 155.563i 0.261013i
\(597\) 441.235 0.739086
\(598\) −315.000 + 315.000i −0.526756 + 0.526756i
\(599\) 615.183i 1.02702i −0.858085 0.513508i \(-0.828346\pi\)
0.858085 0.513508i \(-0.171654\pi\)
\(600\) 144.000 144.000i 0.240000 0.240000i
\(601\) −56.0000 56.0000i −0.0931780 0.0931780i 0.658981 0.752159i \(-0.270988\pi\)
−0.752159 + 0.658981i \(0.770988\pi\)
\(602\) 530.330 530.330i 0.880947 0.880947i
\(603\) 720.000i 1.19403i
\(604\) 496.000i 0.821192i
\(605\) −475.176 + 475.176i −0.785414 + 0.785414i
\(606\) −169.706 + 169.706i −0.280042 + 0.280042i
\(607\) −645.000 + 645.000i −1.06260 + 1.06260i −0.0646981 + 0.997905i \(0.520608\pi\)
−0.997905 + 0.0646981i \(0.979392\pi\)
\(608\) 28.2843i 0.0465202i
\(609\) −600.000 + 600.000i −0.985222 + 0.985222i
\(610\) 994.000i 1.62951i
\(611\) 169.706i 0.277751i
\(612\) −292.742 89.0955i −0.478337 0.145581i
\(613\) 495.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(614\) 452.548 0.737049
\(615\) 816.708 + 816.708i 1.32798 + 1.32798i
\(616\) −100.000 −0.162338
\(617\) −56.5685 56.5685i −0.0916832 0.0916832i 0.659778 0.751461i \(-0.270650\pi\)
−0.751461 + 0.659778i \(0.770650\pi\)
\(618\) 15.0000 + 15.0000i 0.0242718 + 0.0242718i
\(619\) 261.000 + 261.000i 0.421648 + 0.421648i 0.885771 0.464123i \(-0.153630\pi\)
−0.464123 + 0.885771i \(0.653630\pi\)
\(620\) 475.176 0.766413
\(621\) 567.000i 0.913043i
\(622\) −120.000 120.000i −0.192926 0.192926i
\(623\) 106.066 106.066i 0.170250 0.170250i
\(624\) 127.279 + 127.279i 0.203973 + 0.203973i
\(625\) 649.000 1.03840
\(626\) −226.274 226.274i −0.361460 0.361460i
\(627\) 75.0000i 0.119617i
\(628\) −110.000 −0.175159
\(629\) −169.706 318.198i −0.269802 0.505879i
\(630\) −630.000 −1.00000
\(631\) 213.000i 0.337559i 0.985654 + 0.168780i \(0.0539826\pi\)
−0.985654 + 0.168780i \(0.946017\pi\)
\(632\) 31.1127 + 31.1127i 0.0492290 + 0.0492290i
\(633\) 916.410i 1.44773i
\(634\) −200.000 + 200.000i −0.315457 + 0.315457i
\(635\) −618.718 + 618.718i −0.974360 + 0.974360i
\(636\) −288.000 288.000i −0.452830 0.452830i
\(637\) 15.0000i 0.0235479i
\(638\) −282.843 −0.443327
\(639\) −254.558 + 254.558i −0.398370 + 0.398370i
\(640\) −56.0000 56.0000i −0.0875000 0.0875000i
\(641\) −236.881 236.881i −0.369549 0.369549i 0.497764 0.867313i \(-0.334155\pi\)
−0.867313 + 0.497764i \(0.834155\pi\)
\(642\) 869.741i 1.35474i
\(643\) 520.000 520.000i 0.808709 0.808709i −0.175729 0.984439i \(-0.556228\pi\)
0.984439 + 0.175729i \(0.0562284\pi\)
\(644\) −296.985 −0.461157
\(645\) 1575.00 2.44186
\(646\) −115.000 35.0000i −0.178019 0.0541796i
\(647\) 1056.42i 1.63279i −0.577491 0.816397i \(-0.695968\pi\)
0.577491 0.816397i \(-0.304032\pi\)
\(648\) 229.103 0.353553
\(649\) −225.000 + 225.000i −0.346687 + 0.346687i
\(650\) 509.117i 0.783257i
\(651\) −509.117 509.117i −0.782054 0.782054i
\(652\) 240.000 + 240.000i 0.368098 + 0.368098i
\(653\) 894.490 894.490i 1.36982 1.36982i 0.509122 0.860694i \(-0.329970\pi\)
0.860694 0.509122i \(-0.170030\pi\)
\(654\) 624.000i 0.954128i
\(655\) 35.0000i 0.0534351i
\(656\) 155.563 155.563i 0.237139 0.237139i
\(657\) 720.000 + 720.000i 1.09589 + 1.09589i
\(658\) −80.0000 + 80.0000i −0.121581 + 0.121581i
\(659\) 7.07107i 0.0107300i −0.999986 0.00536500i \(-0.998292\pi\)
0.999986 0.00536500i \(-0.00170774\pi\)
\(660\) −148.492 148.492i −0.224989 0.224989i
\(661\) 535.000i 0.809380i 0.914454 + 0.404690i \(0.132621\pi\)
−0.914454 + 0.404690i \(0.867379\pi\)
\(662\) 63.6396i 0.0961323i
\(663\) −675.000 + 360.000i −1.01810 + 0.542986i
\(664\) 352.000 0.530120
\(665\) −247.487 −0.372161
\(666\) 190.919 + 190.919i 0.286665 + 0.286665i
\(667\) −840.000 −1.25937
\(668\) 162.635 + 162.635i 0.243465 + 0.243465i
\(669\) −328.805 + 328.805i −0.491487 + 0.491487i
\(670\) 560.000 + 560.000i 0.835821 + 0.835821i
\(671\) −502.046 −0.748205
\(672\) 120.000i 0.178571i
\(673\) −480.000 480.000i −0.713224 0.713224i 0.253984 0.967208i \(-0.418259\pi\)
−0.967208 + 0.253984i \(0.918259\pi\)
\(674\) 134.350 134.350i 0.199333 0.199333i
\(675\) −458.205 458.205i −0.678823 0.678823i
\(676\) 112.000 0.165680
\(677\) −333.047 333.047i −0.491946 0.491946i 0.416973 0.908919i \(-0.363091\pi\)
−0.908919 + 0.416973i \(0.863091\pi\)
\(678\) 275.772 0.406743
\(679\) 800.000 1.17820
\(680\) 296.985 158.392i 0.436742 0.232929i
\(681\) −465.000 −0.682819
\(682\) 240.000i 0.351906i
\(683\) −533.866 533.866i −0.781648 0.781648i 0.198461 0.980109i \(-0.436406\pi\)
−0.980109 + 0.198461i \(0.936406\pi\)
\(684\) 90.0000 0.131579
\(685\) −609.000 + 609.000i −0.889051 + 0.889051i
\(686\) 339.411 339.411i 0.494769 0.494769i
\(687\) 84.8528 84.8528i 0.123512 0.123512i
\(688\) 300.000i 0.436047i
\(689\) −1018.23 −1.47784
\(690\) −441.000 441.000i −0.639130 0.639130i
\(691\) 304.000 + 304.000i 0.439942 + 0.439942i 0.891992 0.452050i \(-0.149307\pi\)
−0.452050 + 0.891992i \(0.649307\pi\)
\(692\) 35.3553 + 35.3553i 0.0510915 + 0.0510915i
\(693\) 318.198i 0.459160i
\(694\) −160.000 + 160.000i −0.230548 + 0.230548i
\(695\) −188.090 −0.270634
\(696\) 339.411i 0.487660i
\(697\) 440.000 + 825.000i 0.631277 + 1.18364i
\(698\) 668.923i 0.958342i
\(699\) 477.000i 0.682403i
\(700\) 240.000 240.000i 0.342857 0.342857i
\(701\) 169.706i 0.242091i −0.992647 0.121045i \(-0.961375\pi\)
0.992647 0.121045i \(-0.0386247\pi\)
\(702\) 405.000 405.000i 0.576923 0.576923i
\(703\) 75.0000 + 75.0000i 0.106686 + 0.106686i
\(704\) −28.2843 + 28.2843i −0.0401765 + 0.0401765i
\(705\) −237.588 −0.337004
\(706\) 14.0000i 0.0198300i
\(707\) −282.843 + 282.843i −0.400060 + 0.400060i
\(708\) 270.000 + 270.000i 0.381356 + 0.381356i
\(709\) 344.000 344.000i 0.485190 0.485190i −0.421594 0.906785i \(-0.638529\pi\)
0.906785 + 0.421594i \(0.138529\pi\)
\(710\) 395.980i 0.557718i
\(711\) 99.0000 99.0000i 0.139241 0.139241i
\(712\) 60.0000i 0.0842697i
\(713\) 712.764i 0.999668i
\(714\) −487.904 148.492i −0.683338 0.207973i
\(715\) −525.000 −0.734266
\(716\) −113.137 −0.158013
\(717\) 600.000 600.000i 0.836820 0.836820i
\(718\) −170.000 −0.236769
\(719\) 194.454 + 194.454i 0.270451 + 0.270451i 0.829282 0.558831i \(-0.188750\pi\)
−0.558831 + 0.829282i \(0.688750\pi\)
\(720\) −178.191 + 178.191i −0.247487 + 0.247487i
\(721\) 25.0000 + 25.0000i 0.0346741 + 0.0346741i
\(722\) −475.176 −0.658138
\(723\) 1183.70 1.63720
\(724\) −158.000 158.000i −0.218232 0.218232i
\(725\) 678.823 678.823i 0.936307 0.936307i
\(726\) 288.000 288.000i 0.396694 0.396694i
\(727\) −1310.00 −1.80193 −0.900963 0.433896i \(-0.857138\pi\)
−0.900963 + 0.433896i \(0.857138\pi\)
\(728\) 212.132 + 212.132i 0.291390 + 0.291390i
\(729\) 729.000i 1.00000i
\(730\) −1120.00 −1.53425
\(731\) 1219.76 + 371.231i 1.66862 + 0.507840i
\(732\) 602.455i 0.823026i
\(733\) 520.000i 0.709413i 0.934978 + 0.354707i \(0.115419\pi\)
−0.934978 + 0.354707i \(0.884581\pi\)
\(734\) 106.066 + 106.066i 0.144504 + 0.144504i
\(735\) −21.0000 −0.0285714
\(736\) −84.0000 + 84.0000i −0.114130 + 0.114130i
\(737\) 282.843 282.843i 0.383776 0.383776i
\(738\) −495.000 495.000i −0.670732 0.670732i
\(739\) 1197.00i 1.61976i 0.586598 + 0.809878i \(0.300467\pi\)
−0.586598 + 0.809878i \(0.699533\pi\)
\(740\) −296.985 −0.401331
\(741\) 159.099 159.099i 0.214709 0.214709i
\(742\) −480.000 480.000i −0.646900 0.646900i
\(743\) 318.198 + 318.198i 0.428261 + 0.428261i 0.888036 0.459775i \(-0.152070\pi\)
−0.459775 + 0.888036i \(0.652070\pi\)
\(744\) −288.000 −0.387097
\(745\) −385.000 + 385.000i −0.516779 + 0.516779i
\(746\) −622.254 −0.834121
\(747\) 1120.06i 1.49941i
\(748\) −80.0000 150.000i −0.106952 0.200535i
\(749\) 1449.57i 1.93534i
\(750\) −29.6985 −0.0395980
\(751\) 216.000 216.000i 0.287617 0.287617i −0.548521 0.836137i \(-0.684809\pi\)
0.836137 + 0.548521i \(0.184809\pi\)
\(752\) 45.2548i 0.0601793i
\(753\) −135.000 + 135.000i −0.179283 + 0.179283i
\(754\) 600.000 + 600.000i 0.795756 + 0.795756i
\(755\) −1227.54 + 1227.54i −1.62588 + 1.62588i
\(756\) 381.838 0.505076
\(757\) 1105.00i 1.45971i −0.683602 0.729855i \(-0.739588\pi\)
0.683602 0.729855i \(-0.260412\pi\)
\(758\) 241.831 241.831i 0.319038 0.319038i
\(759\) −222.739 + 222.739i −0.293463 + 0.293463i
\(760\) −70.0000 + 70.0000i −0.0921053 + 0.0921053i
\(761\) 1074.80i 1.41236i 0.708035 + 0.706178i \(0.249582\pi\)
−0.708035 + 0.706178i \(0.750418\pi\)
\(762\) 375.000 375.000i 0.492126 0.492126i
\(763\) 1040.00i 1.36304i
\(764\) 127.279i 0.166596i
\(765\) −504.000 945.000i −0.658824 1.23529i
\(766\) −704.000 −0.919060
\(767\) 954.594 1.24458
\(768\) 33.9411 + 33.9411i 0.0441942 + 0.0441942i
\(769\) 287.000 0.373212 0.186606 0.982435i \(-0.440251\pi\)
0.186606 + 0.982435i \(0.440251\pi\)
\(770\) −247.487 247.487i −0.321412 0.321412i
\(771\) 339.000 + 339.000i 0.439689 + 0.439689i
\(772\) −480.000 480.000i −0.621762 0.621762i
\(773\) 520.431 0.673261 0.336630 0.941637i \(-0.390713\pi\)
0.336630 + 0.941637i \(0.390713\pi\)
\(774\) −954.594 −1.23333
\(775\) 576.000 + 576.000i 0.743226 + 0.743226i
\(776\) 226.274 226.274i 0.291590 0.291590i
\(777\) 318.198 + 318.198i 0.409521 + 0.409521i
\(778\) 990.000 1.27249
\(779\) −194.454 194.454i −0.249620 0.249620i
\(780\) 630.000i 0.807692i
\(781\) −200.000 −0.256082
\(782\) −237.588 445.477i −0.303821 0.569664i
\(783\) 1080.00 1.37931
\(784\) 4.00000i 0.00510204i
\(785\) −272.236 272.236i −0.346798 0.346798i
\(786\) 21.2132i 0.0269888i
\(787\) −720.000 + 720.000i −0.914867 + 0.914867i −0.996650 0.0817835i \(-0.973938\pi\)
0.0817835 + 0.996650i \(0.473938\pi\)
\(788\) −114.551 + 114.551i −0.145370 + 0.145370i
\(789\) −831.000 831.000i −1.05323 1.05323i
\(790\) 154.000i 0.194937i
\(791\) 459.619 0.581061
\(792\) 90.0000 + 90.0000i 0.113636 + 0.113636i
\(793\) 1065.00 + 1065.00i 1.34300 + 1.34300i
\(794\) 0 0
\(795\) 1425.53i 1.79312i
\(796\) 208.000 208.000i 0.261307 0.261307i
\(797\) 237.588 0.298103 0.149051 0.988829i \(-0.452378\pi\)
0.149051 + 0.988829i \(0.452378\pi\)
\(798\) 150.000 0.187970
\(799\) −184.000 56.0000i −0.230288 0.0700876i
\(800\) 135.765i 0.169706i
\(801\) −190.919 −0.238351
\(802\) −455.000 + 455.000i −0.567332 + 0.567332i
\(803\) 565.685i 0.704465i
\(804\) −339.411 339.411i −0.422153 0.422153i
\(805\) −735.000 735.000i −0.913043 0.913043i
\(806\) −509.117 + 509.117i −0.631659 + 0.631659i
\(807\) 555.000i 0.687732i
\(808\) 160.000i 0.198020i
\(809\) −123.744 + 123.744i −0.152959 + 0.152959i −0.779438 0.626479i \(-0.784495\pi\)
0.626479 + 0.779438i \(0.284495\pi\)
\(810\) 567.000 + 567.000i 0.700000 + 0.700000i
\(811\) 824.000 824.000i 1.01603 1.01603i 0.0161602 0.999869i \(-0.494856\pi\)
0.999869 0.0161602i \(-0.00514417\pi\)
\(812\) 565.685i 0.696657i
\(813\) −243.952 243.952i −0.300064 0.300064i
\(814\) 150.000i 0.184275i
\(815\) 1187.94i 1.45759i
\(816\) −180.000 + 96.0000i −0.220588 + 0.117647i
\(817\) −375.000 −0.458996
\(818\) 487.904 0.596459
\(819\) 675.000 675.000i 0.824176 0.824176i
\(820\) 770.000 0.939024
\(821\) −300.520 300.520i −0.366042 0.366042i 0.499990 0.866031i \(-0.333337\pi\)
−0.866031 + 0.499990i \(0.833337\pi\)
\(822\) 369.110 369.110i 0.449039 0.449039i
\(823\) 1005.00 + 1005.00i 1.22114 + 1.22114i 0.967226 + 0.253916i \(0.0817186\pi\)
0.253916 + 0.967226i \(0.418281\pi\)
\(824\) 14.1421 0.0171628
\(825\) 360.000i 0.436364i
\(826\) 450.000 + 450.000i 0.544794 + 0.544794i
\(827\) −586.192 + 586.192i −0.708817 + 0.708817i −0.966286 0.257470i \(-0.917111\pi\)
0.257470 + 0.966286i \(0.417111\pi\)
\(828\) 267.286 + 267.286i 0.322810 + 0.322810i
\(829\) 8.00000 0.00965018 0.00482509 0.999988i \(-0.498464\pi\)
0.00482509 + 0.999988i \(0.498464\pi\)
\(830\) 871.156 + 871.156i 1.04959 + 1.04959i
\(831\) 1187.94 1.42953
\(832\) 120.000 0.144231
\(833\) −16.2635 4.94975i −0.0195240 0.00594207i
\(834\) 114.000 0.136691
\(835\) 805.000i 0.964072i
\(836\) 35.3553 + 35.3553i 0.0422911 + 0.0422911i
\(837\) 916.410i 1.09488i
\(838\) 320.000 320.000i 0.381862 0.381862i
\(839\) −512.652 + 512.652i −0.611028 + 0.611028i −0.943214 0.332186i \(-0.892214\pi\)
0.332186 + 0.943214i \(0.392214\pi\)
\(840\) −296.985 + 296.985i −0.353553 + 0.353553i
\(841\) 759.000i 0.902497i
\(842\) 982.878 1.16731
\(843\) 75.0000 + 75.0000i 0.0889680 + 0.0889680i
\(844\) −432.000 432.000i −0.511848 0.511848i
\(845\) 277.186 + 277.186i 0.328031 + 0.328031i
\(846\) 144.000 0.170213
\(847\) 480.000 480.000i 0.566706 0.566706i
\(848\) −271.529 −0.320199
\(849\) 657.609i 0.774569i
\(850\) 552.000 + 168.000i 0.649412 + 0.197647i
\(851\) 445.477i 0.523475i
\(852\) 240.000i 0.281690i
\(853\) −905.000 + 905.000i −1.06096 + 1.06096i −0.0629443 + 0.998017i \(0.520049\pi\)
−0.998017 + 0.0629443i \(0.979951\pi\)
\(854\) 1004.09i 1.17575i
\(855\) 222.739 + 222.739i 0.260513 + 0.260513i
\(856\) 410.000 + 410.000i 0.478972 + 0.478972i
\(857\) 610.940 610.940i 0.712882 0.712882i −0.254255 0.967137i \(-0.581830\pi\)
0.967137 + 0.254255i \(0.0818302\pi\)
\(858\) 318.198 0.370860
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 742.462 742.462i 0.863328 0.863328i
\(861\) −825.000 825.000i −0.958188 0.958188i
\(862\) −280.000 + 280.000i −0.324826 + 0.324826i
\(863\) 230.517i 0.267111i −0.991041 0.133556i \(-0.957361\pi\)
0.991041 0.133556i \(-0.0426394\pi\)
\(864\) 108.000 108.000i 0.125000 0.125000i
\(865\) 175.000i 0.202312i
\(866\) 431.335i 0.498078i
\(867\) −167.584 850.649i −0.193292 0.981141i
\(868\) −480.000 −0.552995
\(869\) 77.7817 0.0895072
\(870\) −840.000 + 840.000i −0.965517 + 0.965517i
\(871\) −1200.00 −1.37773
\(872\) −294.156 294.156i −0.337335 0.337335i
\(873\) −720.000 720.000i −0.824742 0.824742i
\(874\) 105.000 + 105.000i 0.120137 + 0.120137i
\(875\) −49.4975 −0.0565685
\(876\) 678.823 0.774912
\(877\) −815.000 815.000i −0.929304 0.929304i 0.0683565 0.997661i \(-0.478224\pi\)
−0.997661 + 0.0683565i \(0.978224\pi\)
\(878\) 90.5097 90.5097i 0.103086 0.103086i
\(879\) −99.0000 + 99.0000i −0.112628 + 0.112628i
\(880\) −140.000 −0.159091
\(881\) −883.883 883.883i −1.00327 1.00327i −0.999995 0.00327833i \(-0.998956\pi\)
−0.00327833 0.999995i \(-0.501044\pi\)
\(882\) 12.7279 0.0144308
\(883\) −645.000 −0.730464 −0.365232 0.930916i \(-0.619010\pi\)
−0.365232 + 0.930916i \(0.619010\pi\)
\(884\) −148.492 + 487.904i −0.167978 + 0.551927i
\(885\) 1336.43i 1.51009i
\(886\) 624.000i 0.704289i
\(887\) −529.623 529.623i −0.597095 0.597095i 0.342444 0.939538i \(-0.388745\pi\)
−0.939538 + 0.342444i \(0.888745\pi\)
\(888\) 180.000 0.202703
\(889\) 625.000 625.000i 0.703037 0.703037i
\(890\) 148.492 148.492i 0.166845 0.166845i
\(891\) 286.378 286.378i 0.321412 0.321412i
\(892\) 310.000i 0.347534i
\(893\) 56.5685 0.0633466
\(894\) 233.345 233.345i 0.261013 0.261013i
\(895\) −280.000 280.000i −0.312849 0.312849i
\(896\) 56.5685 + 56.5685i 0.0631345 + 0.0631345i
\(897\) 945.000 1.05351
\(898\) −510.000 + 510.000i −0.567929 + 0.567929i
\(899\) −1357.65 −1.51017
\(900\) −432.000 −0.480000
\(901\) 336.000 1104.00i 0.372919 1.22531i
\(902\) 388.909i 0.431163i
\(903\) −1590.99 −1.76189
\(904\) 130.000 130.000i 0.143805 0.143805i
\(905\) 782.060i 0.864155i
\(906\) 744.000 744.000i 0.821192 0.821192i
\(907\) −685.000 685.000i −0.755237 0.755237i 0.220214 0.975451i \(-0.429324\pi\)
−0.975451 + 0.220214i \(0.929324\pi\)
\(908\) −219.203 + 219.203i −0.241413 + 0.241413i
\(909\) 509.117 0.560085
\(910\) 1050.00i 1.15385i
\(911\) 936.916 936.916i 1.02845 1.02845i 0.0288651 0.999583i \(-0.490811\pi\)
0.999583 0.0288651i \(-0.00918932\pi\)
\(912\) 42.4264 42.4264i 0.0465202 0.0465202i
\(913\) 440.000 440.000i 0.481928 0.481928i
\(914\) 374.767i 0.410029i
\(915\) −1491.00 + 1491.00i −1.62951 + 1.62951i
\(916\) 80.0000i 0.0873362i
\(917\) 35.3553i 0.0385554i
\(918\) 305.470 + 572.756i 0.332756 + 0.623918i
\(919\) 1235.00 1.34385 0.671926 0.740618i \(-0.265467\pi\)
0.671926 + 0.740618i \(0.265467\pi\)
\(920\) −415.779 −0.451933
\(921\) −678.823 678.823i −0.737049 0.737049i
\(922\) 210.000 0.227766
\(923\) 424.264 + 424.264i 0.459658 + 0.459658i
\(924\) 150.000 + 150.000i 0.162338 + 0.162338i
\(925\) −360.000 360.000i −0.389189 0.389189i
\(926\) −509.117 −0.549802
\(927\) 45.0000i 0.0485437i
\(928\) 160.000 + 160.000i 0.172414 + 0.172414i
\(929\) −979.343 + 979.343i −1.05419 + 1.05419i −0.0557454 + 0.998445i \(0.517754\pi\)
−0.998445 + 0.0557454i \(0.982246\pi\)
\(930\) −712.764 712.764i −0.766413 0.766413i
\(931\) 5.00000 0.00537057
\(932\) −224.860 224.860i −0.241266 0.241266i
\(933\) 360.000i 0.385852i
\(934\) −694.000 −0.743041
\(935\) 173.241 569.221i 0.185285 0.608792i
\(936\) 381.838i 0.407946i
\(937\) 530.000i 0.565635i 0.959174 + 0.282818i \(0.0912691\pi\)
−0.959174 + 0.282818i \(0.908731\pi\)
\(938\) −565.685 565.685i −0.603076 0.603076i
\(939\) 678.823i 0.722921i
\(940\) −112.000 + 112.000i −0.119149 + 0.119149i
\(941\) 593.970 593.970i 0.631211 0.631211i −0.317161 0.948372i \(-0.602729\pi\)
0.948372 + 0.317161i \(0.102729\pi\)
\(942\) 165.000 + 165.000i 0.175159 + 0.175159i
\(943\) 1155.00i 1.22481i
\(944\) 254.558 0.269659
\(945\) 945.000 + 945.000i 1.00000 + 1.00000i
\(946\) −375.000 375.000i −0.396406 0.396406i
\(947\) 950.352 + 950.352i 1.00354 + 1.00354i 0.999994 + 0.00354537i \(0.00112853\pi\)
0.00354537 + 0.999994i \(0.498871\pi\)
\(948\) 93.3381i 0.0984579i
\(949\) 1200.00 1200.00i 1.26449 1.26449i
\(950\) −169.706 −0.178638
\(951\) 600.000 0.630915
\(952\) −300.000 + 160.000i −0.315126 + 0.168067i
\(953\) 45.2548i 0.0474867i 0.999718 + 0.0237434i \(0.00755845\pi\)
−0.999718 + 0.0237434i \(0.992442\pi\)
\(954\) 864.000i 0.905660i
\(955\) 315.000 315.000i 0.329843 0.329843i
\(956\) 565.685i 0.591721i
\(957\) 424.264 + 424.264i 0.443327 + 0.443327i
\(958\) −235.000 235.000i −0.245303 0.245303i
\(959\) 615.183 615.183i 0.641484 0.641484i
\(960\) 168.000i 0.175000i
\(961\) 191.000i 0.198751i
\(962\) 318.198 318.198i 0.330767 0.330767i
\(963\) 1304.61 1304.61i 1.35474 1.35474i
\(964\) 558.000 558.000i 0.578838 0.578838i
\(965\) 2375.88i 2.46205i
\(966\) 445.477 + 445.477i 0.461157 + 0.461157i
\(967\) 1115.00i 1.15305i 0.817079 + 0.576525i \(0.195592\pi\)
−0.817079 + 0.576525i \(0.804408\pi\)
\(968\) 271.529i 0.280505i
\(969\) 120.000 + 225.000i 0.123839 + 0.232198i
\(970\) 1120.00 1.15464
\(971\) −1866.76 −1.92251 −0.961257 0.275652i \(-0.911106\pi\)
−0.961257 + 0.275652i \(0.911106\pi\)
\(972\) −343.654 343.654i −0.353553 0.353553i
\(973\) 190.000 0.195272
\(974\) −275.772 275.772i −0.283133 0.283133i
\(975\) −763.675 + 763.675i −0.783257 + 0.783257i
\(976\) 284.000 + 284.000i 0.290984 + 0.290984i
\(977\) 612.354 0.626770 0.313385 0.949626i \(-0.398537\pi\)
0.313385 + 0.949626i \(0.398537\pi\)
\(978\) 720.000i 0.736196i
\(979\) −75.0000 75.0000i −0.0766088 0.0766088i
\(980\) −9.89949 + 9.89949i −0.0101015 + 0.0101015i
\(981\) −936.000 + 936.000i −0.954128 + 0.954128i
\(982\) 800.000 0.814664
\(983\) 823.779 + 823.779i 0.838026 + 0.838026i 0.988599 0.150573i \(-0.0481119\pi\)
−0.150573 + 0.988599i \(0.548112\pi\)
\(984\) −466.690 −0.474279
\(985\) −567.000 −0.575635
\(986\) −848.528 + 452.548i −0.860576 + 0.458974i
\(987\) 240.000 0.243161
\(988\) 150.000i 0.151822i
\(989\) −1113.69 1113.69i −1.12608 1.12608i
\(990\) 445.477i 0.449977i
\(991\) 1024.00 1024.00i 1.03330 1.03330i 0.0338736 0.999426i \(-0.489216\pi\)
0.999426 0.0338736i \(-0.0107844\pi\)
\(992\) −135.765 + 135.765i −0.136859 + 0.136859i
\(993\) 95.4594 95.4594i 0.0961323 0.0961323i
\(994\) 400.000i 0.402414i
\(995\) 1029.55 1.03472
\(996\) −528.000 528.000i −0.530120 0.530120i
\(997\) −1065.00 1065.00i −1.06820 1.06820i −0.997497 0.0707075i \(-0.977474\pi\)
−0.0707075 0.997497i \(-0.522526\pi\)
\(998\) −475.176 475.176i −0.476128 0.476128i
\(999\) 572.756i 0.573330i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.3.e.a.89.1 yes 4
3.2 odd 2 inner 102.3.e.a.89.2 yes 4
17.13 even 4 inner 102.3.e.a.47.2 yes 4
51.47 odd 4 inner 102.3.e.a.47.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.3.e.a.47.1 4 51.47 odd 4 inner
102.3.e.a.47.2 yes 4 17.13 even 4 inner
102.3.e.a.89.1 yes 4 1.1 even 1 trivial
102.3.e.a.89.2 yes 4 3.2 odd 2 inner