Properties

Label 102.4.f.c
Level $102$
Weight $4$
Character orbit 102.f
Analytic conductor $6.018$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [102,4,Mod(13,102)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(102, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("102.13");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 102.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.01819482059\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_{3} q^{2} + \beta_{5} q^{3} - 4 q^{4} + ( - \beta_{7} - \beta_{5} + \beta_{3} + 1) q^{5} - 2 \beta_{4} q^{6} + ( - \beta_{9} + 2 \beta_{4} + \beta_{3} - 1) q^{7} + 8 \beta_{3} q^{8} + 9 \beta_{3} q^{9}+ \cdots + ( - 9 \beta_{10} - 9 \beta_{8} + \cdots - 27) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 48 q^{4} + 16 q^{5} - 12 q^{7} + 32 q^{10} - 32 q^{11} - 68 q^{13} + 24 q^{14} + 192 q^{16} + 64 q^{17} + 216 q^{18} - 64 q^{20} - 168 q^{21} + 64 q^{22} - 112 q^{23} + 48 q^{28} - 296 q^{29} - 168 q^{30}+ \cdots - 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} + 886x^{10} + 292945x^{8} + 42943904x^{6} + 2387634208x^{4} + 5944075264x^{2} + 2089586944 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 4620737 \nu^{10} + 3075587556 \nu^{8} + 680488574645 \nu^{6} + 51539422181486 \nu^{4} + \cdots + 21\!\cdots\!48 ) / 58311087831360 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 21456529 \nu^{10} - 14028236490 \nu^{8} - 2994446731273 \nu^{6} - 202782251169076 \nu^{4} + \cdots + 88\!\cdots\!48 ) / 233244351325440 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 26731 \nu^{11} - 28609134 \nu^{9} - 11077887571 \nu^{7} - 1852898922076 \nu^{5} + \cdots - 180688762446016 \nu ) / 86293387514880 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 17000529 \nu^{11} - 228959980 \nu^{10} + 15034390098 \nu^{9} - 141697829040 \nu^{8} + \cdots + 12\!\cdots\!40 ) / 38\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 17000529 \nu^{11} + 228959980 \nu^{10} + 15034390098 \nu^{9} + 141697829040 \nu^{8} + \cdots - 12\!\cdots\!40 ) / 38\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 245960509 \nu^{11} + 257038576 \nu^{10} - 156732219138 \nu^{9} + 129049981464 \nu^{8} + \cdots - 85\!\cdots\!64 ) / 11\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 245960509 \nu^{11} - 257038576 \nu^{10} - 156732219138 \nu^{9} - 129049981464 \nu^{8} + \cdots + 85\!\cdots\!64 ) / 11\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 21173180457 \nu^{11} + 128982830536 \nu^{10} - 18320856009378 \nu^{9} + \cdots + 10\!\cdots\!52 ) / 26\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 21173180457 \nu^{11} + 128982830536 \nu^{10} + 18320856009378 \nu^{9} + \cdots + 10\!\cdots\!52 ) / 26\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 29931261965 \nu^{11} + 25174910445162 \nu^{9} + \cdots + 97\!\cdots\!24 \nu ) / 13\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 60688217789 \nu^{11} + 51233528430450 \nu^{9} + \cdots + 19\!\cdots\!12 \nu ) / 26\!\cdots\!20 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{11} + \beta_{10} - \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -3\beta_{9} - 3\beta_{8} - 18\beta_{5} + 18\beta_{4} + 4\beta_{2} + 11\beta _1 - 443 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 227 \beta_{11} - 218 \beta_{10} + 12 \beta_{9} - 12 \beta_{8} + 51 \beta_{7} + 51 \beta_{6} + \cdots + 941 \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 303 \beta_{9} + 303 \beta_{8} - 14 \beta_{7} + 14 \beta_{6} + 2184 \beta_{5} - 2184 \beta_{4} + \cdots + 33175 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 53861 \beta_{11} + 47918 \beta_{10} - 2082 \beta_{9} + 2082 \beta_{8} - 22059 \beta_{7} + \cdots - 344447 \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 254049 \beta_{9} - 254049 \beta_{8} - 11316 \beta_{7} + 11316 \beta_{6} - 2037918 \beta_{5} + \cdots - 22852723 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 12960715 \beta_{11} - 10727686 \beta_{10} + 196488 \beta_{9} - 196488 \beta_{8} + \cdots + 106860325 \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 22861251 \beta_{9} + 22861251 \beta_{8} + 4482294 \beta_{7} - 4482294 \beta_{6} + 196166036 \beta_{5} + \cdots + 1778373551 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 3155425309 \beta_{11} + 2441548486 \beta_{10} + 45030834 \beta_{9} - 45030834 \beta_{8} + \cdots - 30827734399 \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 18147474453 \beta_{9} - 18147474453 \beta_{8} - 6815362680 \beta_{7} + 6815362680 \beta_{6} + \cdots - 1263469595483 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 775888742627 \beta_{11} - 563789280158 \beta_{10} - 36597869268 \beta_{9} + \cdots + 8559381040661 \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/102\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
13.1348i
0.650232i
14.8987i
16.1555i
1.47294i
15.0968i
13.1348i
0.650232i
14.8987i
16.1555i
1.47294i
15.0968i
2.00000i −2.12132 2.12132i −4.00000 −6.87346 6.87346i −4.24264 + 4.24264i 13.1106 13.1106i 8.00000i 9.00000i −13.7469 + 13.7469i
13.2 2.00000i −2.12132 2.12132i −4.00000 2.87400 + 2.87400i −4.24264 + 4.24264i −23.5451 + 23.5451i 8.00000i 9.00000i 5.74799 5.74799i
13.3 2.00000i −2.12132 2.12132i −4.00000 12.9492 + 12.9492i −4.24264 + 4.24264i 17.3340 17.3340i 8.00000i 9.00000i 25.8984 25.8984i
13.4 2.00000i 2.12132 + 2.12132i −4.00000 −11.8379 11.8379i 4.24264 4.24264i −13.2307 + 13.2307i 8.00000i 9.00000i −23.6758 + 23.6758i
13.5 2.00000i 2.12132 + 2.12132i −4.00000 0.627312 + 0.627312i 4.24264 4.24264i 13.3596 13.3596i 8.00000i 9.00000i 1.25462 1.25462i
13.6 2.00000i 2.12132 + 2.12132i −4.00000 10.2608 + 10.2608i 4.24264 4.24264i −13.0284 + 13.0284i 8.00000i 9.00000i 20.5217 20.5217i
55.1 2.00000i −2.12132 + 2.12132i −4.00000 −6.87346 + 6.87346i −4.24264 4.24264i 13.1106 + 13.1106i 8.00000i 9.00000i −13.7469 13.7469i
55.2 2.00000i −2.12132 + 2.12132i −4.00000 2.87400 2.87400i −4.24264 4.24264i −23.5451 23.5451i 8.00000i 9.00000i 5.74799 + 5.74799i
55.3 2.00000i −2.12132 + 2.12132i −4.00000 12.9492 12.9492i −4.24264 4.24264i 17.3340 + 17.3340i 8.00000i 9.00000i 25.8984 + 25.8984i
55.4 2.00000i 2.12132 2.12132i −4.00000 −11.8379 + 11.8379i 4.24264 + 4.24264i −13.2307 13.2307i 8.00000i 9.00000i −23.6758 23.6758i
55.5 2.00000i 2.12132 2.12132i −4.00000 0.627312 0.627312i 4.24264 + 4.24264i 13.3596 + 13.3596i 8.00000i 9.00000i 1.25462 + 1.25462i
55.6 2.00000i 2.12132 2.12132i −4.00000 10.2608 10.2608i 4.24264 + 4.24264i −13.0284 13.0284i 8.00000i 9.00000i 20.5217 + 20.5217i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.c even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 102.4.f.c 12
3.b odd 2 1 306.4.g.g 12
17.c even 4 1 inner 102.4.f.c 12
17.d even 8 1 1734.4.a.bd 6
17.d even 8 1 1734.4.a.be 6
51.f odd 4 1 306.4.g.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.4.f.c 12 1.a even 1 1 trivial
102.4.f.c 12 17.c even 4 1 inner
306.4.g.g 12 3.b odd 2 1
306.4.g.g 12 51.f odd 4 1
1734.4.a.bd 6 17.d even 8 1
1734.4.a.be 6 17.d even 8 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} - 16 T_{5}^{11} + 128 T_{5}^{10} + 1040 T_{5}^{9} + 97449 T_{5}^{8} - 1376384 T_{5}^{7} + \cdots + 24314788624 \) acting on \(S_{4}^{\mathrm{new}}(102, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4)^{6} \) Copy content Toggle raw display
$3$ \( (T^{4} + 81)^{3} \) Copy content Toggle raw display
$5$ \( T^{12} + \cdots + 24314788624 \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 97\!\cdots\!24 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 24\!\cdots\!76 \) Copy content Toggle raw display
$13$ \( (T^{6} + 34 T^{5} + \cdots - 1867227264)^{2} \) Copy content Toggle raw display
$17$ \( T^{12} + \cdots + 14\!\cdots\!09 \) Copy content Toggle raw display
$19$ \( T^{12} + \cdots + 72\!\cdots\!04 \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 20\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 63\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 57\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 74\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 23\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( (T^{6} + \cdots + 114689624134144)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 77\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 15\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 68\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( (T^{6} + \cdots + 10\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 16\!\cdots\!24 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 35\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 25\!\cdots\!24 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots + 46\!\cdots\!28)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 95\!\cdots\!36 \) Copy content Toggle raw display
show more
show less