Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [102,4,Mod(5,102)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(102, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 5]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("102.5");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 102 = 2 \cdot 3 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 102.i (of order \(16\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.01819482059\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(9\) over \(\Q(\zeta_{16})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −1.84776 | + | 0.765367i | −5.08778 | − | 1.05572i | 2.82843 | − | 2.82843i | −19.9741 | − | 3.97309i | 10.2090 | − | 1.94331i | 1.21959 | + | 6.13128i | −3.06147 | + | 7.39104i | 24.7709 | + | 10.7425i | 39.9481 | − | 7.94617i |
5.2 | −1.84776 | + | 0.765367i | −4.63677 | + | 2.34528i | 2.82843 | − | 2.82843i | 11.0539 | + | 2.19876i | 6.77265 | − | 7.88234i | −3.04002 | − | 15.2832i | −3.06147 | + | 7.39104i | 15.9994 | − | 21.7490i | −22.1079 | + | 4.39753i |
5.3 | −1.84776 | + | 0.765367i | −3.71611 | − | 3.63187i | 2.82843 | − | 2.82843i | 8.45257 | + | 1.68132i | 9.64620 | + | 3.86664i | −1.91006 | − | 9.60254i | −3.06147 | + | 7.39104i | 0.618995 | + | 26.9929i | −16.9051 | + | 3.36264i |
5.4 | −1.84776 | + | 0.765367i | −2.48392 | + | 4.56400i | 2.82843 | − | 2.82843i | −2.48835 | − | 0.494963i | 1.09655 | − | 10.3343i | 5.44526 | + | 27.3752i | −3.06147 | + | 7.39104i | −14.6603 | − | 22.6733i | 4.97669 | − | 0.989925i |
5.5 | −1.84776 | + | 0.765367i | 0.522718 | + | 5.16979i | 2.82843 | − | 2.82843i | −7.93672 | − | 1.57871i | −4.92265 | − | 9.15246i | −5.68524 | − | 28.5817i | −3.06147 | + | 7.39104i | −26.4535 | + | 5.40469i | 15.8734 | − | 3.15742i |
5.6 | −1.84776 | + | 0.765367i | 1.99426 | − | 4.79822i | 2.82843 | − | 2.82843i | 9.42218 | + | 1.87419i | −0.0125062 | + | 10.3923i | 5.91243 | + | 29.7238i | −3.06147 | + | 7.39104i | −19.0459 | − | 19.1378i | −18.8444 | + | 3.74837i |
5.7 | −1.84776 | + | 0.765367i | 2.36253 | − | 4.62801i | 2.82843 | − | 2.82843i | −9.91973 | − | 1.97316i | −0.823256 | + | 10.3596i | −1.76532 | − | 8.87488i | −3.06147 | + | 7.39104i | −15.8369 | − | 21.8676i | 19.8395 | − | 3.94631i |
5.8 | −1.84776 | + | 0.765367i | 4.54774 | + | 2.51358i | 2.82843 | − | 2.82843i | −6.58809 | − | 1.31045i | −10.3269 | − | 1.16380i | 3.74326 | + | 18.8187i | −3.06147 | + | 7.39104i | 14.3638 | + | 22.8622i | 13.1762 | − | 2.62091i |
5.9 | −1.84776 | + | 0.765367i | 5.14139 | − | 0.752393i | 2.82843 | − | 2.82843i | 15.6822 | + | 3.11937i | −8.92420 | + | 5.32529i | −3.91988 | − | 19.7066i | −3.06147 | + | 7.39104i | 25.8678 | − | 7.73669i | −31.3643 | + | 6.23875i |
11.1 | 0.765367 | − | 1.84776i | −4.89130 | − | 1.75362i | −2.82843 | − | 2.82843i | −3.44244 | + | 5.15198i | −6.98391 | + | 7.69578i | −3.12286 | + | 2.08663i | −7.39104 | + | 3.06147i | 20.8496 | + | 17.1550i | 6.88488 | + | 10.3040i |
11.2 | 0.765367 | − | 1.84776i | −3.85766 | + | 3.48115i | −2.82843 | − | 2.82843i | −2.26019 | + | 3.38262i | 3.47980 | + | 9.79239i | 23.3608 | − | 15.6092i | −7.39104 | + | 3.06147i | 2.76315 | − | 26.8582i | 4.52039 | + | 6.76524i |
11.3 | 0.765367 | − | 1.84776i | −2.62362 | − | 4.48516i | −2.82843 | − | 2.82843i | 8.13727 | − | 12.1783i | −10.2955 | + | 1.41502i | 6.46051 | − | 4.31678i | −7.39104 | + | 3.06147i | −13.2333 | + | 23.5347i | −16.2745 | − | 24.3566i |
11.4 | 0.765367 | − | 1.84776i | −1.05214 | + | 5.08852i | −2.82843 | − | 2.82843i | −0.312864 | + | 0.468234i | 8.59708 | + | 5.83868i | −19.0832 | + | 12.7510i | −7.39104 | + | 3.06147i | −24.7860 | − | 10.7076i | 0.625728 | + | 0.936468i |
11.5 | 0.765367 | − | 1.84776i | 0.943618 | − | 5.10975i | −2.82843 | − | 2.82843i | −9.01808 | + | 13.4965i | −8.71938 | − | 5.65442i | −29.1873 | + | 19.5024i | −7.39104 | + | 3.06147i | −25.2192 | − | 9.64332i | 18.0362 | + | 26.9930i |
11.6 | 0.765367 | − | 1.84776i | 3.26855 | − | 4.03937i | −2.82843 | − | 2.82843i | 6.25043 | − | 9.35443i | −4.96215 | − | 9.13111i | −0.311950 | + | 0.208438i | −7.39104 | + | 3.06147i | −5.63310 | − | 26.4058i | −12.5009 | − | 18.7089i |
11.7 | 0.765367 | − | 1.84776i | 3.55328 | + | 3.79133i | −2.82843 | − | 2.82843i | 8.81029 | − | 13.1855i | 9.72503 | − | 3.66385i | 3.44910 | − | 2.30462i | −7.39104 | + | 3.06147i | −1.74838 | + | 26.9433i | −17.6206 | − | 26.3711i |
11.8 | 0.765367 | − | 1.84776i | 3.78694 | + | 3.55796i | −2.82843 | − | 2.82843i | −11.1669 | + | 16.7125i | 9.47265 | − | 4.27421i | 3.40122 | − | 2.27262i | −7.39104 | + | 3.06147i | 1.68182 | + | 26.9476i | 22.3338 | + | 33.4249i |
11.9 | 0.765367 | − | 1.84776i | 4.84140 | − | 1.88701i | −2.82843 | − | 2.82843i | −2.54078 | + | 3.80255i | 0.218711 | − | 10.3900i | 15.0337 | − | 10.0452i | −7.39104 | + | 3.06147i | 19.8784 | − | 18.2716i | 5.08156 | + | 7.60510i |
23.1 | −0.765367 | + | 1.84776i | −4.91913 | + | 1.67397i | −2.82843 | − | 2.82843i | −10.4404 | − | 6.97608i | 0.671841 | − | 10.3706i | 7.64039 | + | 11.4346i | 7.39104 | − | 3.06147i | 21.3956 | − | 16.4690i | 20.8809 | − | 13.9522i |
23.2 | −0.765367 | + | 1.84776i | −4.35908 | − | 2.82816i | −2.82843 | − | 2.82843i | 0.344220 | + | 0.230000i | 8.56204 | − | 5.88994i | −2.37864 | − | 3.55988i | 7.39104 | − | 3.06147i | 11.0031 | + | 24.6563i | −0.688440 | + | 0.460001i |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
51.i | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 102.4.i.b | yes | 72 |
3.b | odd | 2 | 1 | 102.4.i.a | ✓ | 72 | |
17.e | odd | 16 | 1 | 102.4.i.a | ✓ | 72 | |
51.i | even | 16 | 1 | inner | 102.4.i.b | yes | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
102.4.i.a | ✓ | 72 | 3.b | odd | 2 | 1 | |
102.4.i.a | ✓ | 72 | 17.e | odd | 16 | 1 | |
102.4.i.b | yes | 72 | 1.a | even | 1 | 1 | trivial |
102.4.i.b | yes | 72 | 51.i | even | 16 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{72} + 312 T_{5}^{70} + 48 T_{5}^{69} + 41988 T_{5}^{68} + 3015360 T_{5}^{67} + \cdots + 65\!\cdots\!72 \)
acting on \(S_{4}^{\mathrm{new}}(102, [\chi])\).