gp: [N,k,chi] = [102,4,Mod(5,102)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(102, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([8, 5]))
N = Newforms(chi, 4, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("102.5");
S:= CuspForms(chi, 4);
N := Newforms(S);
Newform invariants
sage: traces = [72,0,0,0,0,0,0,0,0,0,144]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic q q q -expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 72 + 312 T 5 70 + 48 T 5 69 + 41988 T 5 68 + 3015360 T 5 67 + ⋯ + 65 ⋯ 72 T_{5}^{72} + 312 T_{5}^{70} + 48 T_{5}^{69} + 41988 T_{5}^{68} + 3015360 T_{5}^{67} + \cdots + 65\!\cdots\!72 T 5 7 2 + 3 1 2 T 5 7 0 + 4 8 T 5 6 9 + 4 1 9 8 8 T 5 6 8 + 3 0 1 5 3 6 0 T 5 6 7 + ⋯ + 6 5 ⋯ 7 2
T5^72 + 312*T5^70 + 48*T5^69 + 41988*T5^68 + 3015360*T5^67 + 3220928*T5^66 + 1243385568*T5^65 + 312127752*T5^64 + 150143831552*T5^63 + 4541107735512*T5^62 - 108660247231776*T5^61 + 2756895933557424*T5^60 - 26850967941723744*T5^59 + 293739561133832808*T5^58 - 3947319543815996416*T5^57 + 58234017104457433485*T5^56 - 448102457184461002272*T5^55 - 9821440066666667932720*T5^54 - 7053122533692263725392*T5^53 + 2254226208890658334446396*T5^52 - 5997327123439344538265376*T5^51 + 1337707834135596154177667016*T5^50 + 22508165104912652198486443392*T5^49 + 170870430484604403179188717192*T5^48 + 4269141213002382843686536697472*T5^47 + 26172565273409931659823516428496*T5^46 - 213033549320431807732284498214112*T5^45 + 720837031795172142066490258201656*T5^44 - 75275382821765423757008113812194496*T5^43 - 1970727236974585764532502317035801488*T5^42 - 2485310187639444677868023322593291328*T5^41 + 77967861006834583766807270082558476988*T5^40 - 341641516255737284234141792784497718528*T5^39 + 19280362653110396124140418110348706997824*T5^38 + 352923434177906804179742463595230999558528*T5^37 - 400929392248928670824762143986876653790560*T5^36 - 18774410625428651795013996511433419532475648*T5^35 + 121270295087704219755669455591213128142024256*T5^34 + 993107183466159345563444519513597241071242752*T5^33 - 16758550020461718233402387349676878660026207040*T5^32 - 93271800506805693985865122740467047868661531648*T5^31 + 1854101195751185862314718346619896818347860333056*T5^30 + 25583072377372011421465285053047639391089655734016*T5^29 + 39006511069298367514613442576321428457146564217024*T5^28 - 2774346231043023861078493070058047962769682681273344*T5^27 - 44647280472479979785215937736924662196913447223903232*T5^26 - 317456332262278921030310385838978761033441545512327680*T5^25 + 538839497041720867768189108025535801193693078817525360*T5^24 + 40856436443604368330850056604634480881458147909977751040*T5^23 + 489529825815617893604369670226073065809552470788573293312*T5^22 + 2728446808017295084927002103093040901190550718146485234432*T5^21 - 3483105931661481048580739399387812300367565136081031817792*T5^20 - 213436670363877314736231931274432582251539559967657638666752*T5^19 - 2069914976389731555311508102060806936577847942753334240301952*T5^18 - 10345057365884655461690048445174313608311074848549751328090112*T5^17 - 7737805032707194135344201285670677302256662876297274520085376*T5^16 + 365858450598142534629988906100617730105217438444468595505563648*T5^15 + 3969468262691697902247262009713195406946870204204129118499180800*T5^14 + 26580125367618887162875393127692224704538834723271899588841652736*T5^13 + 135477526469285598180503629672400804523855415877509022058070317952*T5^12 + 558312021324900201250363833405762418399507522074502516225349698560*T5^11 + 1898412183687117055430302897967290010965938238719182533653761188608*T5^10 + 5329597552837480751441960884375604189285012823241724034707924442112*T5^9 + 12176284243764096583436534516304344421174583601598443038512637128768*T5^8 + 21917691232070885417034113808406074761415313164022501347518968086528*T5^7 + 29240998350324938585953893969257190432366649953569904022124325864448*T5^6 + 25494131001834638706610396006644645401280792127949267337944371236864*T5^5 + 10210466846537897507244873890832551423895480316732946926806842234880*T5^4 - 1336087384959036696533779466029794503821469523595730157326428160000*T5^3 - 673759244797455090666826200257054066503368148870803623663879798784*T5^2 + 146116234377552236274013095969111547137263873536779057245307469824*T5 + 651563992336081342167891993256378397152659746675101640294535299072
acting on S 4 n e w ( 102 , [ χ ] ) S_{4}^{\mathrm{new}}(102, [\chi]) S 4 n e w ( 1 0 2 , [ χ ] ) .