Properties

Label 104.4.a.b
Level $104$
Weight $4$
Character orbit 104.a
Self dual yes
Analytic conductor $6.136$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [104,4,Mod(1,104)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(104, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("104.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.13619864060\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{3} + 19 q^{5} - 3 q^{7} - 2 q^{9} - 2 q^{11} - 13 q^{13} + 95 q^{15} + 77 q^{17} - 58 q^{19} - 15 q^{21} + 76 q^{23} + 236 q^{25} - 145 q^{27} - 6 q^{29} - 292 q^{31} - 10 q^{33} - 57 q^{35} + 207 q^{37}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 19.0000 0 −3.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 104.4.a.b 1
3.b odd 2 1 936.4.a.a 1
4.b odd 2 1 208.4.a.a 1
8.b even 2 1 832.4.a.b 1
8.d odd 2 1 832.4.a.p 1
12.b even 2 1 1872.4.a.a 1
13.b even 2 1 1352.4.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.4.a.b 1 1.a even 1 1 trivial
208.4.a.a 1 4.b odd 2 1
832.4.a.b 1 8.b even 2 1
832.4.a.p 1 8.d odd 2 1
936.4.a.a 1 3.b odd 2 1
1352.4.a.c 1 13.b even 2 1
1872.4.a.a 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 5 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(104))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T - 19 \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T + 2 \) Copy content Toggle raw display
$13$ \( T + 13 \) Copy content Toggle raw display
$17$ \( T - 77 \) Copy content Toggle raw display
$19$ \( T + 58 \) Copy content Toggle raw display
$23$ \( T - 76 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T + 292 \) Copy content Toggle raw display
$37$ \( T - 207 \) Copy content Toggle raw display
$41$ \( T - 240 \) Copy content Toggle raw display
$43$ \( T + 317 \) Copy content Toggle raw display
$47$ \( T + 375 \) Copy content Toggle raw display
$53$ \( T + 692 \) Copy content Toggle raw display
$59$ \( T - 214 \) Copy content Toggle raw display
$61$ \( T + 488 \) Copy content Toggle raw display
$67$ \( T - 782 \) Copy content Toggle raw display
$71$ \( T + 1057 \) Copy content Toggle raw display
$73$ \( T - 1174 \) Copy content Toggle raw display
$79$ \( T - 892 \) Copy content Toggle raw display
$83$ \( T - 704 \) Copy content Toggle raw display
$89$ \( T - 6 \) Copy content Toggle raw display
$97$ \( T - 830 \) Copy content Toggle raw display
show more
show less