Properties

Label 1040.2.bg.f
Level 10401040
Weight 22
Character orbit 1040.bg
Analytic conductor 8.3048.304
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(577,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1040=24513 1040 = 2^{4} \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1040.bg (of order 44, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 8.304441810218.30444181021
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(i+1)q3+(2i+1)q52iq7iq9+(i1)q11+(2i3)q13+(i+3)q15+(5i+5)q17+(3i+3)q19+(2i+2)q21+(5i+5)q23++(i+1)q99+O(q100) q + (i + 1) q^{3} + ( - 2 i + 1) q^{5} - 2 i q^{7} - i q^{9} + (i - 1) q^{11} + (2 i - 3) q^{13} + ( - i + 3) q^{15} + (5 i + 5) q^{17} + ( - 3 i + 3) q^{19} + ( - 2 i + 2) q^{21} + ( - 5 i + 5) q^{23} + \cdots + (i + 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q3+2q52q116q13+6q15+10q17+6q19+4q21+10q236q25+8q272q314q338q3510q39+2q4110q434q45++2q99+O(q100) 2 q + 2 q^{3} + 2 q^{5} - 2 q^{11} - 6 q^{13} + 6 q^{15} + 10 q^{17} + 6 q^{19} + 4 q^{21} + 10 q^{23} - 6 q^{25} + 8 q^{27} - 2 q^{31} - 4 q^{33} - 8 q^{35} - 10 q^{39} + 2 q^{41} - 10 q^{43} - 4 q^{45}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1040Z)×\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times.

nn 261261 417417 561561 911911
χ(n)\chi(n) 11 i-i ii 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
577.1
1.00000i
1.00000i
0 1.00000 1.00000i 0 1.00000 + 2.00000i 0 2.00000i 0 1.00000i 0
593.1 0 1.00000 + 1.00000i 0 1.00000 2.00000i 0 2.00000i 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.2.bg.f 2
4.b odd 2 1 130.2.g.c 2
5.c odd 4 1 1040.2.cd.e 2
12.b even 2 1 1170.2.m.a 2
13.d odd 4 1 1040.2.cd.e 2
20.d odd 2 1 650.2.g.b 2
20.e even 4 1 130.2.j.b yes 2
20.e even 4 1 650.2.j.d 2
52.f even 4 1 130.2.j.b yes 2
60.l odd 4 1 1170.2.w.c 2
65.k even 4 1 inner 1040.2.bg.f 2
156.l odd 4 1 1170.2.w.c 2
260.l odd 4 1 650.2.g.b 2
260.s odd 4 1 130.2.g.c 2
260.u even 4 1 650.2.j.d 2
780.bn even 4 1 1170.2.m.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.g.c 2 4.b odd 2 1
130.2.g.c 2 260.s odd 4 1
130.2.j.b yes 2 20.e even 4 1
130.2.j.b yes 2 52.f even 4 1
650.2.g.b 2 20.d odd 2 1
650.2.g.b 2 260.l odd 4 1
650.2.j.d 2 20.e even 4 1
650.2.j.d 2 260.u even 4 1
1040.2.bg.f 2 1.a even 1 1 trivial
1040.2.bg.f 2 65.k even 4 1 inner
1040.2.cd.e 2 5.c odd 4 1
1040.2.cd.e 2 13.d odd 4 1
1170.2.m.a 2 12.b even 2 1
1170.2.m.a 2 780.bn even 4 1
1170.2.w.c 2 60.l odd 4 1
1170.2.w.c 2 156.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1040,[χ])S_{2}^{\mathrm{new}}(1040, [\chi]):

T322T3+2 T_{3}^{2} - 2T_{3} + 2 Copy content Toggle raw display
T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T112+2T11+2 T_{11}^{2} + 2T_{11} + 2 Copy content Toggle raw display
T1926T19+18 T_{19}^{2} - 6T_{19} + 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
55 T22T+5 T^{2} - 2T + 5 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
1313 T2+6T+13 T^{2} + 6T + 13 Copy content Toggle raw display
1717 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
1919 T26T+18 T^{2} - 6T + 18 Copy content Toggle raw display
2323 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
2929 T2+16 T^{2} + 16 Copy content Toggle raw display
3131 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
3737 T2+64 T^{2} + 64 Copy content Toggle raw display
4141 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4343 T2+10T+50 T^{2} + 10T + 50 Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
5959 T2+6T+18 T^{2} + 6T + 18 Copy content Toggle raw display
6161 (T2)2 (T - 2)^{2} Copy content Toggle raw display
6767 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7171 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7373 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7979 T2+196 T^{2} + 196 Copy content Toggle raw display
8383 T2+36 T^{2} + 36 Copy content Toggle raw display
8989 T2+14T+98 T^{2} + 14T + 98 Copy content Toggle raw display
9797 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
show more
show less