Properties

Label 1040.2.f.g.129.1
Level $1040$
Weight $2$
Character 1040.129
Analytic conductor $8.304$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(129,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.129");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 11x^{8} + 36x^{6} + 42x^{4} + 13x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 129.1
Root \(-1.35685i\) of defining polynomial
Character \(\chi\) \(=\) 1040.129
Dual form 1040.2.f.g.129.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.22659i q^{3} +(-0.589653 + 2.15692i) q^{5} +1.65488 q^{7} -7.41088 q^{9} +4.44624i q^{11} +(2.04103 + 2.97224i) q^{13} +(6.95950 + 1.90257i) q^{15} +5.33962i q^{17} -0.472457i q^{19} -5.33962i q^{21} +1.08725i q^{23} +(-4.30462 - 2.54367i) q^{25} +14.2321i q^{27} +5.50812 q^{29} +5.47201i q^{31} +14.3462 q^{33} +(-0.975805 + 3.56945i) q^{35} -3.65488 q^{37} +(9.59018 - 6.58557i) q^{39} +10.4270i q^{41} -8.14528i q^{43} +(4.36985 - 15.9847i) q^{45} -1.65488 q^{47} -4.26137 q^{49} +17.2288 q^{51} -4.14520i q^{53} +(-9.59018 - 2.62174i) q^{55} -1.52443 q^{57} -2.52401i q^{59} +0.160253 q^{61} -12.2641 q^{63} +(-7.61438 + 2.64976i) q^{65} +8.26412 q^{67} +3.50812 q^{69} -12.9861i q^{71} -10.2641 q^{73} +(-8.20738 + 13.8892i) q^{75} +7.35799i q^{77} -8.65763 q^{79} +23.6885 q^{81} +14.0696 q^{83} +(-11.5171 - 3.14852i) q^{85} -17.7724i q^{87} +7.61027i q^{89} +(3.37766 + 4.91869i) q^{91} +17.6559 q^{93} +(1.01905 + 0.278586i) q^{95} +16.7397 q^{97} -32.9505i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 3 q^{5} + 2 q^{7} - 8 q^{9} + 2 q^{13} + 13 q^{15} - q^{25} + 8 q^{29} + 8 q^{33} + 3 q^{35} - 22 q^{37} + 12 q^{39} - 4 q^{45} - 2 q^{47} + 12 q^{49} + 30 q^{51} - 12 q^{55} - 12 q^{57} - 16 q^{61}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.22659i 1.86287i −0.363905 0.931436i \(-0.618557\pi\)
0.363905 0.931436i \(-0.381443\pi\)
\(4\) 0 0
\(5\) −0.589653 + 2.15692i −0.263701 + 0.964605i
\(6\) 0 0
\(7\) 1.65488 0.625486 0.312743 0.949838i \(-0.398752\pi\)
0.312743 + 0.949838i \(0.398752\pi\)
\(8\) 0 0
\(9\) −7.41088 −2.47029
\(10\) 0 0
\(11\) 4.44624i 1.34059i 0.742094 + 0.670296i \(0.233833\pi\)
−0.742094 + 0.670296i \(0.766167\pi\)
\(12\) 0 0
\(13\) 2.04103 + 2.97224i 0.566081 + 0.824350i
\(14\) 0 0
\(15\) 6.95950 + 1.90257i 1.79693 + 0.491241i
\(16\) 0 0
\(17\) 5.33962i 1.29505i 0.762045 + 0.647524i \(0.224195\pi\)
−0.762045 + 0.647524i \(0.775805\pi\)
\(18\) 0 0
\(19\) 0.472457i 0.108389i −0.998530 0.0541946i \(-0.982741\pi\)
0.998530 0.0541946i \(-0.0172591\pi\)
\(20\) 0 0
\(21\) 5.33962i 1.16520i
\(22\) 0 0
\(23\) 1.08725i 0.226708i 0.993555 + 0.113354i \(0.0361594\pi\)
−0.993555 + 0.113354i \(0.963841\pi\)
\(24\) 0 0
\(25\) −4.30462 2.54367i −0.860924 0.508734i
\(26\) 0 0
\(27\) 14.2321i 2.73897i
\(28\) 0 0
\(29\) 5.50812 1.02283 0.511416 0.859333i \(-0.329121\pi\)
0.511416 + 0.859333i \(0.329121\pi\)
\(30\) 0 0
\(31\) 5.47201i 0.982803i 0.870933 + 0.491401i \(0.163515\pi\)
−0.870933 + 0.491401i \(0.836485\pi\)
\(32\) 0 0
\(33\) 14.3462 2.49735
\(34\) 0 0
\(35\) −0.975805 + 3.56945i −0.164941 + 0.603347i
\(36\) 0 0
\(37\) −3.65488 −0.600859 −0.300429 0.953804i \(-0.597130\pi\)
−0.300429 + 0.953804i \(0.597130\pi\)
\(38\) 0 0
\(39\) 9.59018 6.58557i 1.53566 1.05454i
\(40\) 0 0
\(41\) 10.4270i 1.62842i 0.580572 + 0.814209i \(0.302829\pi\)
−0.580572 + 0.814209i \(0.697171\pi\)
\(42\) 0 0
\(43\) 8.14528i 1.24214i −0.783753 0.621072i \(-0.786697\pi\)
0.783753 0.621072i \(-0.213303\pi\)
\(44\) 0 0
\(45\) 4.36985 15.9847i 0.651418 2.38286i
\(46\) 0 0
\(47\) −1.65488 −0.241389 −0.120695 0.992690i \(-0.538512\pi\)
−0.120695 + 0.992690i \(0.538512\pi\)
\(48\) 0 0
\(49\) −4.26137 −0.608767
\(50\) 0 0
\(51\) 17.2288 2.41251
\(52\) 0 0
\(53\) 4.14520i 0.569387i −0.958619 0.284693i \(-0.908108\pi\)
0.958619 0.284693i \(-0.0918918\pi\)
\(54\) 0 0
\(55\) −9.59018 2.62174i −1.29314 0.353515i
\(56\) 0 0
\(57\) −1.52443 −0.201915
\(58\) 0 0
\(59\) 2.52401i 0.328598i −0.986411 0.164299i \(-0.947464\pi\)
0.986411 0.164299i \(-0.0525362\pi\)
\(60\) 0 0
\(61\) 0.160253 0.0205183 0.0102591 0.999947i \(-0.496734\pi\)
0.0102591 + 0.999947i \(0.496734\pi\)
\(62\) 0 0
\(63\) −12.2641 −1.54513
\(64\) 0 0
\(65\) −7.61438 + 2.64976i −0.944448 + 0.328662i
\(66\) 0 0
\(67\) 8.26412 1.00962 0.504811 0.863230i \(-0.331562\pi\)
0.504811 + 0.863230i \(0.331562\pi\)
\(68\) 0 0
\(69\) 3.50812 0.422328
\(70\) 0 0
\(71\) 12.9861i 1.54117i −0.637336 0.770586i \(-0.719964\pi\)
0.637336 0.770586i \(-0.280036\pi\)
\(72\) 0 0
\(73\) −10.2641 −1.20132 −0.600662 0.799503i \(-0.705096\pi\)
−0.600662 + 0.799503i \(0.705096\pi\)
\(74\) 0 0
\(75\) −8.20738 + 13.8892i −0.947706 + 1.60379i
\(76\) 0 0
\(77\) 7.35799i 0.838521i
\(78\) 0 0
\(79\) −8.65763 −0.974059 −0.487030 0.873385i \(-0.661920\pi\)
−0.487030 + 0.873385i \(0.661920\pi\)
\(80\) 0 0
\(81\) 23.6885 2.63205
\(82\) 0 0
\(83\) 14.0696 1.54434 0.772172 0.635414i \(-0.219171\pi\)
0.772172 + 0.635414i \(0.219171\pi\)
\(84\) 0 0
\(85\) −11.5171 3.14852i −1.24921 0.341505i
\(86\) 0 0
\(87\) 17.7724i 1.90541i
\(88\) 0 0
\(89\) 7.61027i 0.806687i 0.915049 + 0.403344i \(0.132152\pi\)
−0.915049 + 0.403344i \(0.867848\pi\)
\(90\) 0 0
\(91\) 3.37766 + 4.91869i 0.354075 + 0.515619i
\(92\) 0 0
\(93\) 17.6559 1.83084
\(94\) 0 0
\(95\) 1.01905 + 0.278586i 0.104553 + 0.0285823i
\(96\) 0 0
\(97\) 16.7397 1.69966 0.849829 0.527058i \(-0.176705\pi\)
0.849829 + 0.527058i \(0.176705\pi\)
\(98\) 0 0
\(99\) 32.9505i 3.31165i
\(100\) 0 0
\(101\) 15.7729 1.56946 0.784731 0.619836i \(-0.212801\pi\)
0.784731 + 0.619836i \(0.212801\pi\)
\(102\) 0 0
\(103\) 1.60432i 0.158079i −0.996871 0.0790393i \(-0.974815\pi\)
0.996871 0.0790393i \(-0.0251853\pi\)
\(104\) 0 0
\(105\) 11.5171 + 3.14852i 1.12396 + 0.307264i
\(106\) 0 0
\(107\) 1.34368i 0.129898i −0.997889 0.0649492i \(-0.979311\pi\)
0.997889 0.0649492i \(-0.0206885\pi\)
\(108\) 0 0
\(109\) 5.33126i 0.510642i −0.966856 0.255321i \(-0.917819\pi\)
0.966856 0.255321i \(-0.0821811\pi\)
\(110\) 0 0
\(111\) 11.7928i 1.11932i
\(112\) 0 0
\(113\) 14.7760i 1.39001i 0.719007 + 0.695003i \(0.244597\pi\)
−0.719007 + 0.695003i \(0.755403\pi\)
\(114\) 0 0
\(115\) −2.34512 0.641102i −0.218684 0.0597831i
\(116\) 0 0
\(117\) −15.1258 22.0269i −1.39838 2.03639i
\(118\) 0 0
\(119\) 8.83643i 0.810034i
\(120\) 0 0
\(121\) −8.76903 −0.797185
\(122\) 0 0
\(123\) 33.6435 3.03353
\(124\) 0 0
\(125\) 8.02473 7.78484i 0.717753 0.696297i
\(126\) 0 0
\(127\) 3.15132i 0.279634i −0.990177 0.139817i \(-0.955349\pi\)
0.990177 0.139817i \(-0.0446515\pi\)
\(128\) 0 0
\(129\) −26.2815 −2.31396
\(130\) 0 0
\(131\) −21.0724 −1.84110 −0.920551 0.390622i \(-0.872260\pi\)
−0.920551 + 0.390622i \(0.872260\pi\)
\(132\) 0 0
\(133\) 0.781860i 0.0677959i
\(134\) 0 0
\(135\) −30.6975 8.39200i −2.64202 0.722268i
\(136\) 0 0
\(137\) 5.58631 0.477270 0.238635 0.971109i \(-0.423300\pi\)
0.238635 + 0.971109i \(0.423300\pi\)
\(138\) 0 0
\(139\) 7.85391 0.666160 0.333080 0.942899i \(-0.391912\pi\)
0.333080 + 0.942899i \(0.391912\pi\)
\(140\) 0 0
\(141\) 5.33962i 0.449677i
\(142\) 0 0
\(143\) −13.2153 + 9.07492i −1.10512 + 0.758883i
\(144\) 0 0
\(145\) −3.24788 + 11.8806i −0.269722 + 0.986629i
\(146\) 0 0
\(147\) 13.7497i 1.13406i
\(148\) 0 0
\(149\) 15.7314i 1.28877i 0.764702 + 0.644384i \(0.222886\pi\)
−0.764702 + 0.644384i \(0.777114\pi\)
\(150\) 0 0
\(151\) 18.2097i 1.48189i 0.671568 + 0.740943i \(0.265621\pi\)
−0.671568 + 0.740943i \(0.734379\pi\)
\(152\) 0 0
\(153\) 39.5713i 3.19915i
\(154\) 0 0
\(155\) −11.8027 3.22659i −0.948016 0.259166i
\(156\) 0 0
\(157\) 0.385754i 0.0307865i 0.999882 + 0.0153933i \(0.00490002\pi\)
−0.999882 + 0.0153933i \(0.995100\pi\)
\(158\) 0 0
\(159\) −13.3749 −1.06069
\(160\) 0 0
\(161\) 1.79927i 0.141803i
\(162\) 0 0
\(163\) −6.85666 −0.537055 −0.268527 0.963272i \(-0.586537\pi\)
−0.268527 + 0.963272i \(0.586537\pi\)
\(164\) 0 0
\(165\) −8.45927 + 30.9436i −0.658553 + 2.40896i
\(166\) 0 0
\(167\) −10.8836 −0.842201 −0.421101 0.907014i \(-0.638356\pi\)
−0.421101 + 0.907014i \(0.638356\pi\)
\(168\) 0 0
\(169\) −4.66837 + 12.1329i −0.359106 + 0.933297i
\(170\) 0 0
\(171\) 3.50132i 0.267753i
\(172\) 0 0
\(173\) 20.6501i 1.57000i −0.619497 0.784999i \(-0.712663\pi\)
0.619497 0.784999i \(-0.287337\pi\)
\(174\) 0 0
\(175\) −7.12363 4.20947i −0.538496 0.318206i
\(176\) 0 0
\(177\) −8.14395 −0.612137
\(178\) 0 0
\(179\) −1.89201 −0.141416 −0.0707079 0.997497i \(-0.522526\pi\)
−0.0707079 + 0.997497i \(0.522526\pi\)
\(180\) 0 0
\(181\) 4.69412 0.348911 0.174455 0.984665i \(-0.444183\pi\)
0.174455 + 0.984665i \(0.444183\pi\)
\(182\) 0 0
\(183\) 0.517070i 0.0382229i
\(184\) 0 0
\(185\) 2.15511 7.88329i 0.158447 0.579591i
\(186\) 0 0
\(187\) −23.7412 −1.73613
\(188\) 0 0
\(189\) 23.5524i 1.71319i
\(190\) 0 0
\(191\) −11.3367 −0.820298 −0.410149 0.912019i \(-0.634523\pi\)
−0.410149 + 0.912019i \(0.634523\pi\)
\(192\) 0 0
\(193\) −16.4462 −1.18382 −0.591911 0.806004i \(-0.701626\pi\)
−0.591911 + 0.806004i \(0.701626\pi\)
\(194\) 0 0
\(195\) 8.54968 + 24.5685i 0.612256 + 1.75939i
\(196\) 0 0
\(197\) 16.8858 1.20306 0.601531 0.798849i \(-0.294558\pi\)
0.601531 + 0.798849i \(0.294558\pi\)
\(198\) 0 0
\(199\) 19.0240 1.34858 0.674288 0.738469i \(-0.264451\pi\)
0.674288 + 0.738469i \(0.264451\pi\)
\(200\) 0 0
\(201\) 26.6649i 1.88080i
\(202\) 0 0
\(203\) 9.11528 0.639767
\(204\) 0 0
\(205\) −22.4901 6.14829i −1.57078 0.429415i
\(206\) 0 0
\(207\) 8.05750i 0.560035i
\(208\) 0 0
\(209\) 2.10066 0.145305
\(210\) 0 0
\(211\) 1.89201 0.130252 0.0651258 0.997877i \(-0.479255\pi\)
0.0651258 + 0.997877i \(0.479255\pi\)
\(212\) 0 0
\(213\) −41.9009 −2.87101
\(214\) 0 0
\(215\) 17.5687 + 4.80289i 1.19818 + 0.327554i
\(216\) 0 0
\(217\) 9.05553i 0.614729i
\(218\) 0 0
\(219\) 33.1181i 2.23791i
\(220\) 0 0
\(221\) −15.8706 + 10.8983i −1.06757 + 0.733101i
\(222\) 0 0
\(223\) 14.3721 0.962427 0.481214 0.876603i \(-0.340196\pi\)
0.481214 + 0.876603i \(0.340196\pi\)
\(224\) 0 0
\(225\) 31.9010 + 18.8508i 2.12673 + 1.25672i
\(226\) 0 0
\(227\) −6.94886 −0.461212 −0.230606 0.973047i \(-0.574071\pi\)
−0.230606 + 0.973047i \(0.574071\pi\)
\(228\) 0 0
\(229\) 15.3506i 1.01440i 0.861830 + 0.507198i \(0.169319\pi\)
−0.861830 + 0.507198i \(0.830681\pi\)
\(230\) 0 0
\(231\) 23.7412 1.56206
\(232\) 0 0
\(233\) 4.06993i 0.266630i −0.991074 0.133315i \(-0.957438\pi\)
0.991074 0.133315i \(-0.0425622\pi\)
\(234\) 0 0
\(235\) 0.975805 3.56945i 0.0636545 0.232845i
\(236\) 0 0
\(237\) 27.9346i 1.81455i
\(238\) 0 0
\(239\) 6.89047i 0.445707i 0.974852 + 0.222854i \(0.0715372\pi\)
−0.974852 + 0.222854i \(0.928463\pi\)
\(240\) 0 0
\(241\) 0.781860i 0.0503640i −0.999683 0.0251820i \(-0.991983\pi\)
0.999683 0.0251820i \(-0.00801653\pi\)
\(242\) 0 0
\(243\) 33.7367i 2.16421i
\(244\) 0 0
\(245\) 2.51273 9.19144i 0.160532 0.587220i
\(246\) 0 0
\(247\) 1.40425 0.964301i 0.0893506 0.0613570i
\(248\) 0 0
\(249\) 45.3969i 2.87691i
\(250\) 0 0
\(251\) −8.56085 −0.540356 −0.270178 0.962810i \(-0.587083\pi\)
−0.270178 + 0.962810i \(0.587083\pi\)
\(252\) 0 0
\(253\) −4.83419 −0.303923
\(254\) 0 0
\(255\) −10.1590 + 37.1611i −0.636181 + 2.32712i
\(256\) 0 0
\(257\) 0.279087i 0.0174090i −0.999962 0.00870448i \(-0.997229\pi\)
0.999962 0.00870448i \(-0.00277076\pi\)
\(258\) 0 0
\(259\) −6.04839 −0.375829
\(260\) 0 0
\(261\) −40.8200 −2.52670
\(262\) 0 0
\(263\) 2.67435i 0.164907i 0.996595 + 0.0824537i \(0.0262757\pi\)
−0.996595 + 0.0824537i \(0.973724\pi\)
\(264\) 0 0
\(265\) 8.94087 + 2.44423i 0.549233 + 0.150148i
\(266\) 0 0
\(267\) 24.5552 1.50276
\(268\) 0 0
\(269\) 26.5878 1.62109 0.810544 0.585677i \(-0.199171\pi\)
0.810544 + 0.585677i \(0.199171\pi\)
\(270\) 0 0
\(271\) 25.3879i 1.54221i −0.636710 0.771104i \(-0.719705\pi\)
0.636710 0.771104i \(-0.280295\pi\)
\(272\) 0 0
\(273\) 15.8706 10.8983i 0.960533 0.659597i
\(274\) 0 0
\(275\) 11.3098 19.1394i 0.682004 1.15415i
\(276\) 0 0
\(277\) 6.37232i 0.382875i 0.981505 + 0.191438i \(0.0613150\pi\)
−0.981505 + 0.191438i \(0.938685\pi\)
\(278\) 0 0
\(279\) 40.5524i 2.42781i
\(280\) 0 0
\(281\) 0.765134i 0.0456441i −0.999740 0.0228220i \(-0.992735\pi\)
0.999740 0.0228220i \(-0.00726511\pi\)
\(282\) 0 0
\(283\) 9.38817i 0.558069i −0.960281 0.279034i \(-0.909986\pi\)
0.960281 0.279034i \(-0.0900144\pi\)
\(284\) 0 0
\(285\) 0.898882 3.28807i 0.0532452 0.194768i
\(286\) 0 0
\(287\) 17.2554i 1.01855i
\(288\) 0 0
\(289\) −11.5115 −0.677149
\(290\) 0 0
\(291\) 54.0121i 3.16625i
\(292\) 0 0
\(293\) 13.4874 0.787941 0.393971 0.919123i \(-0.371101\pi\)
0.393971 + 0.919123i \(0.371101\pi\)
\(294\) 0 0
\(295\) 5.44409 + 1.48829i 0.316967 + 0.0866516i
\(296\) 0 0
\(297\) −63.2793 −3.67184
\(298\) 0 0
\(299\) −3.23157 + 2.21912i −0.186887 + 0.128335i
\(300\) 0 0
\(301\) 13.4795i 0.776944i
\(302\) 0 0
\(303\) 50.8927i 2.92371i
\(304\) 0 0
\(305\) −0.0944935 + 0.345653i −0.00541068 + 0.0197920i
\(306\) 0 0
\(307\) −25.4064 −1.45002 −0.725009 0.688739i \(-0.758165\pi\)
−0.725009 + 0.688739i \(0.758165\pi\)
\(308\) 0 0
\(309\) −5.17649 −0.294480
\(310\) 0 0
\(311\) 12.4250 0.704559 0.352280 0.935895i \(-0.385407\pi\)
0.352280 + 0.935895i \(0.385407\pi\)
\(312\) 0 0
\(313\) 23.9664i 1.35466i −0.735678 0.677331i \(-0.763136\pi\)
0.735678 0.677331i \(-0.236864\pi\)
\(314\) 0 0
\(315\) 7.23157 26.4527i 0.407453 1.49044i
\(316\) 0 0
\(317\) −20.3618 −1.14363 −0.571817 0.820381i \(-0.693761\pi\)
−0.571817 + 0.820381i \(0.693761\pi\)
\(318\) 0 0
\(319\) 24.4904i 1.37120i
\(320\) 0 0
\(321\) −4.33550 −0.241984
\(322\) 0 0
\(323\) 2.52274 0.140369
\(324\) 0 0
\(325\) −1.22548 17.9861i −0.0679774 0.997687i
\(326\) 0 0
\(327\) −17.2018 −0.951260
\(328\) 0 0
\(329\) −2.73863 −0.150986
\(330\) 0 0
\(331\) 30.0834i 1.65353i 0.562546 + 0.826766i \(0.309822\pi\)
−0.562546 + 0.826766i \(0.690178\pi\)
\(332\) 0 0
\(333\) 27.0859 1.48430
\(334\) 0 0
\(335\) −4.87296 + 17.8251i −0.266238 + 0.973887i
\(336\) 0 0
\(337\) 10.8983i 0.593670i −0.954929 0.296835i \(-0.904069\pi\)
0.954929 0.296835i \(-0.0959312\pi\)
\(338\) 0 0
\(339\) 47.6760 2.58940
\(340\) 0 0
\(341\) −24.3299 −1.31754
\(342\) 0 0
\(343\) −18.6362 −1.00626
\(344\) 0 0
\(345\) −2.06857 + 7.56674i −0.111368 + 0.407379i
\(346\) 0 0
\(347\) 11.9236i 0.640093i 0.947402 + 0.320047i \(0.103699\pi\)
−0.947402 + 0.320047i \(0.896301\pi\)
\(348\) 0 0
\(349\) 3.38144i 0.181004i 0.995896 + 0.0905021i \(0.0288472\pi\)
−0.995896 + 0.0905021i \(0.971153\pi\)
\(350\) 0 0
\(351\) −42.3011 + 29.0482i −2.25787 + 1.55048i
\(352\) 0 0
\(353\) 13.4771 0.717314 0.358657 0.933469i \(-0.383235\pi\)
0.358657 + 0.933469i \(0.383235\pi\)
\(354\) 0 0
\(355\) 28.0101 + 7.65732i 1.48662 + 0.406408i
\(356\) 0 0
\(357\) 28.5115 1.50899
\(358\) 0 0
\(359\) 4.74277i 0.250314i −0.992137 0.125157i \(-0.960057\pi\)
0.992137 0.125157i \(-0.0399434\pi\)
\(360\) 0 0
\(361\) 18.7768 0.988252
\(362\) 0 0
\(363\) 28.2941i 1.48505i
\(364\) 0 0
\(365\) 6.05227 22.1389i 0.316790 1.15880i
\(366\) 0 0
\(367\) 31.4288i 1.64057i −0.571956 0.820284i \(-0.693815\pi\)
0.571956 0.820284i \(-0.306185\pi\)
\(368\) 0 0
\(369\) 77.2729i 4.02267i
\(370\) 0 0
\(371\) 6.85981i 0.356143i
\(372\) 0 0
\(373\) 25.7810i 1.33489i −0.744660 0.667444i \(-0.767388\pi\)
0.744660 0.667444i \(-0.232612\pi\)
\(374\) 0 0
\(375\) −25.1185 25.8925i −1.29711 1.33708i
\(376\) 0 0
\(377\) 11.2423 + 16.3714i 0.579005 + 0.843172i
\(378\) 0 0
\(379\) 14.7011i 0.755146i 0.925980 + 0.377573i \(0.123241\pi\)
−0.925980 + 0.377573i \(0.876759\pi\)
\(380\) 0 0
\(381\) −10.1680 −0.520923
\(382\) 0 0
\(383\) 1.62790 0.0831816 0.0415908 0.999135i \(-0.486757\pi\)
0.0415908 + 0.999135i \(0.486757\pi\)
\(384\) 0 0
\(385\) −15.8706 4.33866i −0.808841 0.221119i
\(386\) 0 0
\(387\) 60.3637i 3.06846i
\(388\) 0 0
\(389\) 28.3607 1.43795 0.718973 0.695038i \(-0.244612\pi\)
0.718973 + 0.695038i \(0.244612\pi\)
\(390\) 0 0
\(391\) −5.80552 −0.293598
\(392\) 0 0
\(393\) 67.9919i 3.42974i
\(394\) 0 0
\(395\) 5.10500 18.6738i 0.256860 0.939582i
\(396\) 0 0
\(397\) −1.54689 −0.0776364 −0.0388182 0.999246i \(-0.512359\pi\)
−0.0388182 + 0.999246i \(0.512359\pi\)
\(398\) 0 0
\(399\) −2.52274 −0.126295
\(400\) 0 0
\(401\) 5.55872i 0.277589i 0.990321 + 0.138795i \(0.0443228\pi\)
−0.990321 + 0.138795i \(0.955677\pi\)
\(402\) 0 0
\(403\) −16.2641 + 11.1686i −0.810173 + 0.556346i
\(404\) 0 0
\(405\) −13.9680 + 51.0942i −0.694075 + 2.53889i
\(406\) 0 0
\(407\) 16.2505i 0.805506i
\(408\) 0 0
\(409\) 4.70652i 0.232722i 0.993207 + 0.116361i \(0.0371230\pi\)
−0.993207 + 0.116361i \(0.962877\pi\)
\(410\) 0 0
\(411\) 18.0247i 0.889094i
\(412\) 0 0
\(413\) 4.17694i 0.205534i
\(414\) 0 0
\(415\) −8.29620 + 30.3471i −0.407245 + 1.48968i
\(416\) 0 0
\(417\) 25.3413i 1.24097i
\(418\) 0 0
\(419\) 17.4613 0.853043 0.426521 0.904478i \(-0.359739\pi\)
0.426521 + 0.904478i \(0.359739\pi\)
\(420\) 0 0
\(421\) 23.1162i 1.12662i −0.826247 0.563308i \(-0.809529\pi\)
0.826247 0.563308i \(-0.190471\pi\)
\(422\) 0 0
\(423\) 12.2641 0.596302
\(424\) 0 0
\(425\) 13.5822 22.9850i 0.658835 1.11494i
\(426\) 0 0
\(427\) 0.265199 0.0128339
\(428\) 0 0
\(429\) 29.2810 + 42.6402i 1.41370 + 2.05869i
\(430\) 0 0
\(431\) 19.8860i 0.957877i −0.877848 0.478939i \(-0.841022\pi\)
0.877848 0.478939i \(-0.158978\pi\)
\(432\) 0 0
\(433\) 2.09858i 0.100851i −0.998728 0.0504255i \(-0.983942\pi\)
0.998728 0.0504255i \(-0.0160578\pi\)
\(434\) 0 0
\(435\) 38.3338 + 10.4796i 1.83796 + 0.502457i
\(436\) 0 0
\(437\) 0.513681 0.0245727
\(438\) 0 0
\(439\) 14.7553 0.704233 0.352117 0.935956i \(-0.385462\pi\)
0.352117 + 0.935956i \(0.385462\pi\)
\(440\) 0 0
\(441\) 31.5805 1.50383
\(442\) 0 0
\(443\) 12.8191i 0.609053i 0.952504 + 0.304526i \(0.0984982\pi\)
−0.952504 + 0.304526i \(0.901502\pi\)
\(444\) 0 0
\(445\) −16.4148 4.48742i −0.778134 0.212724i
\(446\) 0 0
\(447\) 50.7588 2.40081
\(448\) 0 0
\(449\) 25.7925i 1.21722i 0.793468 + 0.608612i \(0.208273\pi\)
−0.793468 + 0.608612i \(0.791727\pi\)
\(450\) 0 0
\(451\) −46.3607 −2.18304
\(452\) 0 0
\(453\) 58.7553 2.76057
\(454\) 0 0
\(455\) −12.6009 + 4.38503i −0.590739 + 0.205574i
\(456\) 0 0
\(457\) 9.61892 0.449954 0.224977 0.974364i \(-0.427769\pi\)
0.224977 + 0.974364i \(0.427769\pi\)
\(458\) 0 0
\(459\) −75.9940 −3.54709
\(460\) 0 0
\(461\) 18.4899i 0.861160i −0.902552 0.430580i \(-0.858309\pi\)
0.902552 0.430580i \(-0.141691\pi\)
\(462\) 0 0
\(463\) 4.26412 0.198170 0.0990852 0.995079i \(-0.468408\pi\)
0.0990852 + 0.995079i \(0.468408\pi\)
\(464\) 0 0
\(465\) −10.4109 + 38.0825i −0.482793 + 1.76603i
\(466\) 0 0
\(467\) 8.12164i 0.375825i −0.982186 0.187912i \(-0.939828\pi\)
0.982186 0.187912i \(-0.0601721\pi\)
\(468\) 0 0
\(469\) 13.6761 0.631505
\(470\) 0 0
\(471\) 1.24467 0.0573514
\(472\) 0 0
\(473\) 36.2159 1.66521
\(474\) 0 0
\(475\) −1.20178 + 2.03375i −0.0551412 + 0.0933148i
\(476\) 0 0
\(477\) 30.7196i 1.40655i
\(478\) 0 0
\(479\) 9.07748i 0.414761i 0.978260 + 0.207380i \(0.0664938\pi\)
−0.978260 + 0.207380i \(0.933506\pi\)
\(480\) 0 0
\(481\) −7.45973 10.8632i −0.340134 0.495318i
\(482\) 0 0
\(483\) 5.80552 0.264160
\(484\) 0 0
\(485\) −9.87061 + 36.1062i −0.448201 + 1.63950i
\(486\) 0 0
\(487\) −0.124845 −0.00565727 −0.00282863 0.999996i \(-0.500900\pi\)
−0.00282863 + 0.999996i \(0.500900\pi\)
\(488\) 0 0
\(489\) 22.1236i 1.00046i
\(490\) 0 0
\(491\) 31.7515 1.43293 0.716463 0.697626i \(-0.245760\pi\)
0.716463 + 0.697626i \(0.245760\pi\)
\(492\) 0 0
\(493\) 29.4113i 1.32462i
\(494\) 0 0
\(495\) 71.0717 + 19.4294i 3.19444 + 0.873285i
\(496\) 0 0
\(497\) 21.4905i 0.963981i
\(498\) 0 0
\(499\) 12.3636i 0.553469i 0.960946 + 0.276734i \(0.0892522\pi\)
−0.960946 + 0.276734i \(0.910748\pi\)
\(500\) 0 0
\(501\) 35.1170i 1.56891i
\(502\) 0 0
\(503\) 26.5184i 1.18240i −0.806527 0.591198i \(-0.798655\pi\)
0.806527 0.591198i \(-0.201345\pi\)
\(504\) 0 0
\(505\) −9.30054 + 34.0209i −0.413869 + 1.51391i
\(506\) 0 0
\(507\) 39.1478 + 15.0629i 1.73861 + 0.668968i
\(508\) 0 0
\(509\) 39.4076i 1.74671i −0.487085 0.873355i \(-0.661940\pi\)
0.487085 0.873355i \(-0.338060\pi\)
\(510\) 0 0
\(511\) −16.9859 −0.751411
\(512\) 0 0
\(513\) 6.72406 0.296874
\(514\) 0 0
\(515\) 3.46040 + 0.945994i 0.152483 + 0.0416855i
\(516\) 0 0
\(517\) 7.35799i 0.323604i
\(518\) 0 0
\(519\) −66.6294 −2.92471
\(520\) 0 0
\(521\) −30.8042 −1.34956 −0.674779 0.738020i \(-0.735761\pi\)
−0.674779 + 0.738020i \(0.735761\pi\)
\(522\) 0 0
\(523\) 5.53950i 0.242225i 0.992639 + 0.121113i \(0.0386463\pi\)
−0.992639 + 0.121113i \(0.961354\pi\)
\(524\) 0 0
\(525\) −13.5822 + 22.9850i −0.592777 + 1.00315i
\(526\) 0 0
\(527\) −29.2185 −1.27278
\(528\) 0 0
\(529\) 21.8179 0.948603
\(530\) 0 0
\(531\) 18.7051i 0.811734i
\(532\) 0 0
\(533\) −30.9914 + 21.2818i −1.34239 + 0.921815i
\(534\) 0 0
\(535\) 2.89821 + 0.792305i 0.125301 + 0.0342543i
\(536\) 0 0
\(537\) 6.10475i 0.263440i
\(538\) 0 0
\(539\) 18.9471i 0.816108i
\(540\) 0 0
\(541\) 10.7346i 0.461518i −0.973011 0.230759i \(-0.925879\pi\)
0.973011 0.230759i \(-0.0741208\pi\)
\(542\) 0 0
\(543\) 15.1460i 0.649976i
\(544\) 0 0
\(545\) 11.4991 + 3.14359i 0.492567 + 0.134657i
\(546\) 0 0
\(547\) 32.6681i 1.39679i −0.715714 0.698393i \(-0.753899\pi\)
0.715714 0.698393i \(-0.246101\pi\)
\(548\) 0 0
\(549\) −1.18761 −0.0506861
\(550\) 0 0
\(551\) 2.60235i 0.110864i
\(552\) 0 0
\(553\) −14.3273 −0.609260
\(554\) 0 0
\(555\) −25.4361 6.95366i −1.07970 0.295166i
\(556\) 0 0
\(557\) 21.4016 0.906815 0.453407 0.891303i \(-0.350208\pi\)
0.453407 + 0.891303i \(0.350208\pi\)
\(558\) 0 0
\(559\) 24.2097 16.6248i 1.02396 0.703154i
\(560\) 0 0
\(561\) 76.6032i 3.23419i
\(562\) 0 0
\(563\) 4.68087i 0.197275i 0.995123 + 0.0986376i \(0.0314485\pi\)
−0.995123 + 0.0986376i \(0.968552\pi\)
\(564\) 0 0
\(565\) −31.8706 8.71270i −1.34081 0.366546i
\(566\) 0 0
\(567\) 39.2016 1.64631
\(568\) 0 0
\(569\) −18.4434 −0.773186 −0.386593 0.922250i \(-0.626348\pi\)
−0.386593 + 0.922250i \(0.626348\pi\)
\(570\) 0 0
\(571\) −0.667911 −0.0279512 −0.0139756 0.999902i \(-0.504449\pi\)
−0.0139756 + 0.999902i \(0.504449\pi\)
\(572\) 0 0
\(573\) 36.5790i 1.52811i
\(574\) 0 0
\(575\) 2.76561 4.68021i 0.115334 0.195178i
\(576\) 0 0
\(577\) 24.6947 1.02805 0.514026 0.857775i \(-0.328154\pi\)
0.514026 + 0.857775i \(0.328154\pi\)
\(578\) 0 0
\(579\) 53.0650i 2.20531i
\(580\) 0 0
\(581\) 23.2836 0.965965
\(582\) 0 0
\(583\) 18.4305 0.763315
\(584\) 0 0
\(585\) 56.4292 19.6370i 2.33306 0.811892i
\(586\) 0 0
\(587\) −18.2586 −0.753614 −0.376807 0.926292i \(-0.622978\pi\)
−0.376807 + 0.926292i \(0.622978\pi\)
\(588\) 0 0
\(589\) 2.58529 0.106525
\(590\) 0 0
\(591\) 54.4835i 2.24115i
\(592\) 0 0
\(593\) −6.67326 −0.274038 −0.137019 0.990568i \(-0.543752\pi\)
−0.137019 + 0.990568i \(0.543752\pi\)
\(594\) 0 0
\(595\) −19.0595 5.21043i −0.781363 0.213607i
\(596\) 0 0
\(597\) 61.3826i 2.51222i
\(598\) 0 0
\(599\) −39.4490 −1.61184 −0.805922 0.592022i \(-0.798330\pi\)
−0.805922 + 0.592022i \(0.798330\pi\)
\(600\) 0 0
\(601\) −25.9245 −1.05748 −0.528741 0.848783i \(-0.677336\pi\)
−0.528741 + 0.848783i \(0.677336\pi\)
\(602\) 0 0
\(603\) −61.2444 −2.49406
\(604\) 0 0
\(605\) 5.17068 18.9141i 0.210218 0.768968i
\(606\) 0 0
\(607\) 4.40112i 0.178636i −0.996003 0.0893181i \(-0.971531\pi\)
0.996003 0.0893181i \(-0.0284688\pi\)
\(608\) 0 0
\(609\) 29.4113i 1.19180i
\(610\) 0 0
\(611\) −3.37766 4.91869i −0.136646 0.198989i
\(612\) 0 0
\(613\) −14.2573 −0.575848 −0.287924 0.957653i \(-0.592965\pi\)
−0.287924 + 0.957653i \(0.592965\pi\)
\(614\) 0 0
\(615\) −19.8380 + 72.5664i −0.799945 + 2.92616i
\(616\) 0 0
\(617\) −9.58843 −0.386016 −0.193008 0.981197i \(-0.561824\pi\)
−0.193008 + 0.981197i \(0.561824\pi\)
\(618\) 0 0
\(619\) 41.8263i 1.68114i −0.541703 0.840570i \(-0.682220\pi\)
0.541703 0.840570i \(-0.317780\pi\)
\(620\) 0 0
\(621\) −15.4739 −0.620946
\(622\) 0 0
\(623\) 12.5941i 0.504572i
\(624\) 0 0
\(625\) 12.0595 + 21.8991i 0.482379 + 0.875962i
\(626\) 0 0
\(627\) 6.77796i 0.270686i
\(628\) 0 0
\(629\) 19.5157i 0.778141i
\(630\) 0 0
\(631\) 10.7991i 0.429906i −0.976624 0.214953i \(-0.931040\pi\)
0.976624 0.214953i \(-0.0689599\pi\)
\(632\) 0 0
\(633\) 6.10475i 0.242642i
\(634\) 0 0
\(635\) 6.79714 + 1.85818i 0.269736 + 0.0737398i
\(636\) 0 0
\(637\) −8.69760 12.6658i −0.344611 0.501837i
\(638\) 0 0
\(639\) 96.2387i 3.80714i
\(640\) 0 0
\(641\) −17.0240 −0.672407 −0.336204 0.941789i \(-0.609143\pi\)
−0.336204 + 0.941789i \(0.609143\pi\)
\(642\) 0 0
\(643\) −33.9076 −1.33719 −0.668593 0.743628i \(-0.733103\pi\)
−0.668593 + 0.743628i \(0.733103\pi\)
\(644\) 0 0
\(645\) 15.4970 56.6871i 0.610192 2.23205i
\(646\) 0 0
\(647\) 24.1282i 0.948577i 0.880369 + 0.474288i \(0.157295\pi\)
−0.880369 + 0.474288i \(0.842705\pi\)
\(648\) 0 0
\(649\) 11.2224 0.440516
\(650\) 0 0
\(651\) 29.2185 1.14516
\(652\) 0 0
\(653\) 6.35210i 0.248577i −0.992246 0.124288i \(-0.960335\pi\)
0.992246 0.124288i \(-0.0396648\pi\)
\(654\) 0 0
\(655\) 12.4254 45.4515i 0.485500 1.77594i
\(656\) 0 0
\(657\) 76.0661 2.96762
\(658\) 0 0
\(659\) 19.8436 0.772998 0.386499 0.922290i \(-0.373684\pi\)
0.386499 + 0.922290i \(0.373684\pi\)
\(660\) 0 0
\(661\) 40.1796i 1.56280i −0.624028 0.781402i \(-0.714505\pi\)
0.624028 0.781402i \(-0.285495\pi\)
\(662\) 0 0
\(663\) 35.1645 + 51.2079i 1.36567 + 1.98875i
\(664\) 0 0
\(665\) 1.68641 + 0.461026i 0.0653962 + 0.0178778i
\(666\) 0 0
\(667\) 5.98872i 0.231884i
\(668\) 0 0
\(669\) 46.3729i 1.79288i
\(670\) 0 0
\(671\) 0.712522i 0.0275066i
\(672\) 0 0
\(673\) 24.0716i 0.927894i −0.885863 0.463947i \(-0.846433\pi\)
0.885863 0.463947i \(-0.153567\pi\)
\(674\) 0 0
\(675\) 36.2018 61.2637i 1.39341 2.35804i
\(676\) 0 0
\(677\) 24.0869i 0.925736i 0.886427 + 0.462868i \(0.153180\pi\)
−0.886427 + 0.462868i \(0.846820\pi\)
\(678\) 0 0
\(679\) 27.7022 1.06311
\(680\) 0 0
\(681\) 22.4211i 0.859179i
\(682\) 0 0
\(683\) 38.1236 1.45876 0.729380 0.684109i \(-0.239809\pi\)
0.729380 + 0.684109i \(0.239809\pi\)
\(684\) 0 0
\(685\) −3.29398 + 12.0492i −0.125857 + 0.460377i
\(686\) 0 0
\(687\) 49.5300 1.88969
\(688\) 0 0
\(689\) 12.3205 8.46048i 0.469374 0.322319i
\(690\) 0 0
\(691\) 4.01418i 0.152707i −0.997081 0.0763533i \(-0.975672\pi\)
0.997081 0.0763533i \(-0.0243277\pi\)
\(692\) 0 0
\(693\) 54.5292i 2.07139i
\(694\) 0 0
\(695\) −4.63108 + 16.9403i −0.175667 + 0.642581i
\(696\) 0 0
\(697\) −55.6760 −2.10888
\(698\) 0 0
\(699\) −13.1320 −0.496697
\(700\) 0 0
\(701\) 29.3041 1.10680 0.553401 0.832915i \(-0.313330\pi\)
0.553401 + 0.832915i \(0.313330\pi\)
\(702\) 0 0
\(703\) 1.72677i 0.0651265i
\(704\) 0 0
\(705\) −11.5171 3.14852i −0.433761 0.118580i
\(706\) 0 0
\(707\) 26.1023 0.981677
\(708\) 0 0
\(709\) 9.99630i 0.375419i 0.982225 + 0.187709i \(0.0601063\pi\)
−0.982225 + 0.187709i \(0.939894\pi\)
\(710\) 0 0
\(711\) 64.1606 2.40621
\(712\) 0 0
\(713\) −5.94947 −0.222809
\(714\) 0 0
\(715\) −11.7815 33.8553i −0.440602 1.26612i
\(716\) 0 0
\(717\) 22.2327 0.830296
\(718\) 0 0
\(719\) 52.7587 1.96757 0.983783 0.179363i \(-0.0574035\pi\)
0.983783 + 0.179363i \(0.0574035\pi\)
\(720\) 0 0
\(721\) 2.65496i 0.0988760i
\(722\) 0 0
\(723\) −2.52274 −0.0938218
\(724\) 0 0
\(725\) −23.7104 14.0108i −0.880581 0.520349i
\(726\) 0 0
\(727\) 14.2257i 0.527601i 0.964577 + 0.263801i \(0.0849761\pi\)
−0.964577 + 0.263801i \(0.915024\pi\)
\(728\) 0 0
\(729\) −37.7891 −1.39960
\(730\) 0 0
\(731\) 43.4927 1.60864
\(732\) 0 0
\(733\) 11.8558 0.437904 0.218952 0.975736i \(-0.429736\pi\)
0.218952 + 0.975736i \(0.429736\pi\)
\(734\) 0 0
\(735\) −29.6570 8.10755i −1.09392 0.299051i
\(736\) 0 0
\(737\) 36.7442i 1.35349i
\(738\) 0 0
\(739\) 12.4740i 0.458864i 0.973325 + 0.229432i \(0.0736868\pi\)
−0.973325 + 0.229432i \(0.926313\pi\)
\(740\) 0 0
\(741\) −3.11140 4.53095i −0.114300 0.166449i
\(742\) 0 0
\(743\) 30.9003 1.13362 0.566812 0.823847i \(-0.308177\pi\)
0.566812 + 0.823847i \(0.308177\pi\)
\(744\) 0 0
\(745\) −33.9314 9.27607i −1.24315 0.339849i
\(746\) 0 0
\(747\) −104.268 −3.81498
\(748\) 0 0
\(749\) 2.22363i 0.0812497i
\(750\) 0 0
\(751\) −11.2456 −0.410358 −0.205179 0.978725i \(-0.565778\pi\)
−0.205179 + 0.978725i \(0.565778\pi\)
\(752\) 0 0
\(753\) 27.6223i 1.00661i
\(754\) 0 0
\(755\) −39.2769 10.7374i −1.42943 0.390775i
\(756\) 0 0
\(757\) 4.81148i 0.174876i −0.996170 0.0874381i \(-0.972132\pi\)
0.996170 0.0874381i \(-0.0278680\pi\)
\(758\) 0 0
\(759\) 15.5979i 0.566169i
\(760\) 0 0
\(761\) 7.77200i 0.281735i −0.990028 0.140867i \(-0.955011\pi\)
0.990028 0.140867i \(-0.0449891\pi\)
\(762\) 0 0
\(763\) 8.82259i 0.319399i
\(764\) 0 0
\(765\) 85.3521 + 23.3333i 3.08591 + 0.843618i
\(766\) 0 0
\(767\) 7.50196 5.15159i 0.270880 0.186013i
\(768\) 0 0
\(769\) 28.5345i 1.02898i 0.857496 + 0.514491i \(0.172019\pi\)
−0.857496 + 0.514491i \(0.827981\pi\)
\(770\) 0 0
\(771\) −0.900499 −0.0324307
\(772\) 0 0
\(773\) −31.8056 −1.14397 −0.571984 0.820264i \(-0.693826\pi\)
−0.571984 + 0.820264i \(0.693826\pi\)
\(774\) 0 0
\(775\) 13.9190 23.5549i 0.499985 0.846118i
\(776\) 0 0
\(777\) 19.5157i 0.700121i
\(778\) 0 0
\(779\) 4.92629 0.176503
\(780\) 0 0
\(781\) 57.7395 2.06608
\(782\) 0 0
\(783\) 78.3921i 2.80150i
\(784\) 0 0
\(785\) −0.832042 0.227461i −0.0296968 0.00811844i
\(786\) 0 0
\(787\) −33.8537 −1.20675 −0.603376 0.797457i \(-0.706178\pi\)
−0.603376 + 0.797457i \(0.706178\pi\)
\(788\) 0 0
\(789\) 8.62903 0.307201
\(790\) 0 0
\(791\) 24.4525i 0.869430i
\(792\) 0 0
\(793\) 0.327081 + 0.476309i 0.0116150 + 0.0169142i
\(794\) 0 0
\(795\) 7.88652 28.8485i 0.279706 1.02315i
\(796\) 0 0
\(797\) 37.4776i 1.32753i 0.747943 + 0.663763i \(0.231042\pi\)
−0.747943 + 0.663763i \(0.768958\pi\)
\(798\) 0 0
\(799\) 8.83643i 0.312610i
\(800\) 0 0
\(801\) 56.3988i 1.99275i
\(802\) 0 0
\(803\) 45.6367i 1.61048i
\(804\) 0 0
\(805\) −3.88089 1.06095i −0.136783 0.0373935i
\(806\) 0 0
\(807\) 85.7880i 3.01988i
\(808\) 0 0
\(809\) 8.64480 0.303935 0.151968 0.988385i \(-0.451439\pi\)
0.151968 + 0.988385i \(0.451439\pi\)
\(810\) 0 0
\(811\) 15.4230i 0.541574i 0.962639 + 0.270787i \(0.0872840\pi\)
−0.962639 + 0.270787i \(0.912716\pi\)
\(812\) 0 0
\(813\) −81.9165 −2.87294
\(814\) 0 0
\(815\) 4.04305 14.7893i 0.141622 0.518045i
\(816\) 0 0
\(817\) −3.84830 −0.134635
\(818\) 0 0
\(819\) −25.0315 36.4519i −0.874670 1.27373i
\(820\) 0 0
\(821\) 24.9107i 0.869389i 0.900578 + 0.434694i \(0.143144\pi\)
−0.900578 + 0.434694i \(0.856856\pi\)
\(822\) 0 0
\(823\) 3.47743i 0.121215i −0.998162 0.0606077i \(-0.980696\pi\)
0.998162 0.0606077i \(-0.0193039\pi\)
\(824\) 0 0
\(825\) −61.7549 36.4920i −2.15003 1.27049i
\(826\) 0 0
\(827\) −32.6194 −1.13429 −0.567143 0.823619i \(-0.691951\pi\)
−0.567143 + 0.823619i \(0.691951\pi\)
\(828\) 0 0
\(829\) 36.8123 1.27854 0.639271 0.768981i \(-0.279236\pi\)
0.639271 + 0.768981i \(0.279236\pi\)
\(830\) 0 0
\(831\) 20.5608 0.713248
\(832\) 0 0
\(833\) 22.7541i 0.788383i
\(834\) 0 0
\(835\) 6.41757 23.4752i 0.222089 0.812391i
\(836\) 0 0
\(837\) −77.8782 −2.69187
\(838\) 0 0
\(839\) 23.6723i 0.817259i −0.912700 0.408629i \(-0.866007\pi\)
0.912700 0.408629i \(-0.133993\pi\)
\(840\) 0 0
\(841\) 1.33938 0.0461856
\(842\) 0 0
\(843\) −2.46877 −0.0850291
\(844\) 0 0
\(845\) −23.4169 17.2235i −0.805566 0.592506i
\(846\) 0 0
\(847\) −14.5117 −0.498628
\(848\) 0 0
\(849\) −30.2918 −1.03961
\(850\) 0 0
\(851\) 3.97378i 0.136219i
\(852\) 0 0
\(853\) 1.82238 0.0623970 0.0311985 0.999513i \(-0.490068\pi\)
0.0311985 + 0.999513i \(0.490068\pi\)
\(854\) 0 0
\(855\) −7.55208 2.06457i −0.258276 0.0706066i
\(856\) 0 0
\(857\) 34.1031i 1.16494i 0.812852 + 0.582470i \(0.197914\pi\)
−0.812852 + 0.582470i \(0.802086\pi\)
\(858\) 0 0
\(859\) 18.6350 0.635819 0.317910 0.948121i \(-0.397019\pi\)
0.317910 + 0.948121i \(0.397019\pi\)
\(860\) 0 0
\(861\) 55.6760 1.89743
\(862\) 0 0
\(863\) 5.16462 0.175806 0.0879028 0.996129i \(-0.471984\pi\)
0.0879028 + 0.996129i \(0.471984\pi\)
\(864\) 0 0
\(865\) 44.5406 + 12.1764i 1.51443 + 0.414010i
\(866\) 0 0
\(867\) 37.1430i 1.26144i
\(868\) 0 0
\(869\) 38.4939i 1.30582i
\(870\) 0 0
\(871\) 16.8673 + 24.5629i 0.571528 + 0.832282i
\(872\) 0 0
\(873\) −124.056 −4.19865
\(874\) 0 0
\(875\) 13.2800 12.8830i 0.448945 0.435524i
\(876\) 0 0
\(877\) −20.1381 −0.680015 −0.340007 0.940423i \(-0.610430\pi\)
−0.340007 + 0.940423i \(0.610430\pi\)
\(878\) 0 0
\(879\) 43.5182i 1.46783i
\(880\) 0 0
\(881\) −10.2164 −0.344199 −0.172100 0.985080i \(-0.555055\pi\)
−0.172100 + 0.985080i \(0.555055\pi\)
\(882\) 0 0
\(883\) 14.6787i 0.493976i 0.969018 + 0.246988i \(0.0794409\pi\)
−0.969018 + 0.246988i \(0.920559\pi\)
\(884\) 0 0
\(885\) 4.80210 17.5659i 0.161421 0.590470i
\(886\) 0 0
\(887\) 12.6524i 0.424827i 0.977180 + 0.212413i \(0.0681323\pi\)
−0.977180 + 0.212413i \(0.931868\pi\)
\(888\) 0 0
\(889\) 5.21505i 0.174907i
\(890\) 0 0
\(891\) 105.325i 3.52851i
\(892\) 0 0
\(893\) 0.781860i 0.0261640i
\(894\) 0 0
\(895\) 1.11563 4.08093i 0.0372915 0.136410i
\(896\) 0 0
\(897\) 7.16019 + 10.4270i 0.239072 + 0.348146i
\(898\) 0 0
\(899\) 30.1405i 1.00524i
\(900\) 0 0
\(901\) 22.1338 0.737383
\(902\) 0 0
\(903\) −43.4927 −1.44735
\(904\) 0 0
\(905\) −2.76790 + 10.1248i −0.0920081 + 0.336561i
\(906\) 0 0
\(907\) 39.2705i 1.30396i −0.758238 0.651978i \(-0.773940\pi\)
0.758238 0.651978i \(-0.226060\pi\)
\(908\) 0 0
\(909\) −116.891 −3.87703
\(910\) 0 0
\(911\) 8.32826 0.275928 0.137964 0.990437i \(-0.455944\pi\)
0.137964 + 0.990437i \(0.455944\pi\)
\(912\) 0 0
\(913\) 62.5569i 2.07033i
\(914\) 0 0
\(915\) 1.11528 + 0.304892i 0.0368700 + 0.0100794i
\(916\) 0 0
\(917\) −34.8723 −1.15158
\(918\) 0 0
\(919\) −45.1893 −1.49066 −0.745329 0.666697i \(-0.767708\pi\)
−0.745329 + 0.666697i \(0.767708\pi\)
\(920\) 0 0
\(921\) 81.9760i 2.70120i
\(922\) 0 0
\(923\) 38.5979 26.5051i 1.27046 0.872427i
\(924\) 0 0
\(925\) 15.7329 + 9.29681i 0.517293 + 0.305677i
\(926\) 0 0
\(927\) 11.8894i 0.390501i
\(928\) 0 0
\(929\) 18.8393i 0.618098i 0.951046 + 0.309049i \(0.100011\pi\)
−0.951046 + 0.309049i \(0.899989\pi\)
\(930\) 0 0
\(931\) 2.01332i 0.0659837i
\(932\) 0 0
\(933\) 40.0905i 1.31250i
\(934\) 0 0
\(935\) 13.9991 51.2079i 0.457819 1.67468i
\(936\) 0 0
\(937\) 15.8303i 0.517154i −0.965991 0.258577i \(-0.916746\pi\)
0.965991 0.258577i \(-0.0832536\pi\)
\(938\) 0 0
\(939\) −77.3298 −2.52356
\(940\) 0 0
\(941\) 8.41058i 0.274177i −0.990559 0.137088i \(-0.956226\pi\)
0.990559 0.137088i \(-0.0437745\pi\)
\(942\) 0 0
\(943\) −11.3367 −0.369175
\(944\) 0 0
\(945\) −50.8007 13.8878i −1.65255 0.451769i
\(946\) 0 0
\(947\) 47.9898 1.55946 0.779730 0.626116i \(-0.215356\pi\)
0.779730 + 0.626116i \(0.215356\pi\)
\(948\) 0 0
\(949\) −20.9494 30.5074i −0.680046 0.990311i
\(950\) 0 0
\(951\) 65.6992i 2.13044i
\(952\) 0 0
\(953\) 38.6553i 1.25217i −0.779755 0.626084i \(-0.784657\pi\)
0.779755 0.626084i \(-0.215343\pi\)
\(954\) 0 0
\(955\) 6.68474 24.4525i 0.216313 0.791263i
\(956\) 0 0
\(957\) 79.0205 2.55437
\(958\) 0 0
\(959\) 9.24467 0.298526
\(960\) 0 0
\(961\) 1.05706 0.0340986
\(962\) 0 0
\(963\) 9.95785i 0.320887i
\(964\) 0 0
\(965\) 9.69753 35.4731i 0.312175 1.14192i
\(966\) 0 0
\(967\) 32.5757 1.04756 0.523782 0.851853i \(-0.324521\pi\)
0.523782 + 0.851853i \(0.324521\pi\)
\(968\) 0 0
\(969\) 8.13985i 0.261490i
\(970\) 0 0
\(971\) 7.75150 0.248758 0.124379 0.992235i \(-0.460306\pi\)
0.124379 + 0.992235i \(0.460306\pi\)
\(972\) 0 0
\(973\) 12.9973 0.416674
\(974\) 0 0
\(975\) −58.0336 + 3.95412i −1.85856 + 0.126633i
\(976\) 0 0
\(977\) −0.0696366 −0.00222787 −0.00111394 0.999999i \(-0.500355\pi\)
−0.00111394 + 0.999999i \(0.500355\pi\)
\(978\) 0 0
\(979\) −33.8371 −1.08144
\(980\) 0 0
\(981\) 39.5093i 1.26143i
\(982\) 0 0
\(983\) −51.0126 −1.62705 −0.813525 0.581530i \(-0.802454\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(984\) 0 0
\(985\) −9.95675 + 36.4213i −0.317248 + 1.16048i
\(986\) 0 0
\(987\) 8.83643i 0.281267i
\(988\) 0 0
\(989\) 8.85599 0.281604
\(990\) 0 0
\(991\) −42.6294 −1.35417 −0.677084 0.735906i \(-0.736757\pi\)
−0.677084 + 0.735906i \(0.736757\pi\)
\(992\) 0 0
\(993\) 97.0667 3.08032
\(994\) 0 0
\(995\) −11.2176 + 41.0333i −0.355620 + 1.30084i
\(996\) 0 0
\(997\) 56.5323i 1.79040i −0.445670 0.895198i \(-0.647034\pi\)
0.445670 0.895198i \(-0.352966\pi\)
\(998\) 0 0
\(999\) 52.0166i 1.64573i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.f.g.129.1 10
4.3 odd 2 520.2.f.b.129.10 yes 10
5.4 even 2 1040.2.f.f.129.10 10
13.12 even 2 1040.2.f.f.129.1 10
20.3 even 4 2600.2.k.f.2001.2 20
20.7 even 4 2600.2.k.f.2001.19 20
20.19 odd 2 520.2.f.a.129.1 10
52.51 odd 2 520.2.f.a.129.10 yes 10
65.64 even 2 inner 1040.2.f.g.129.10 10
260.103 even 4 2600.2.k.f.2001.1 20
260.207 even 4 2600.2.k.f.2001.20 20
260.259 odd 2 520.2.f.b.129.1 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.f.a.129.1 10 20.19 odd 2
520.2.f.a.129.10 yes 10 52.51 odd 2
520.2.f.b.129.1 yes 10 260.259 odd 2
520.2.f.b.129.10 yes 10 4.3 odd 2
1040.2.f.f.129.1 10 13.12 even 2
1040.2.f.f.129.10 10 5.4 even 2
1040.2.f.g.129.1 10 1.1 even 1 trivial
1040.2.f.g.129.10 10 65.64 even 2 inner
2600.2.k.f.2001.1 20 260.103 even 4
2600.2.k.f.2001.2 20 20.3 even 4
2600.2.k.f.2001.19 20 20.7 even 4
2600.2.k.f.2001.20 20 260.207 even 4