Properties

Label 1040.6.a.ba
Level $1040$
Weight $6$
Character orbit 1040.a
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 1384x^{6} + 3672x^{5} + 603912x^{4} - 998448x^{3} - 83285728x^{2} + 113377312x + 442451152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 4) q^{3} + 25 q^{5} + ( - \beta_{3} + \beta_1 - 11) q^{7} + (\beta_{2} - 6 \beta_1 + 120) q^{9} + (\beta_{4} + \beta_{3} + \beta_{2} + \cdots + 57) q^{11} - 169 q^{13} + ( - 25 \beta_1 + 100) q^{15}+ \cdots + ( - 78 \beta_{7} - 41 \beta_{6} + \cdots + 68838) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 28 q^{3} + 200 q^{5} - 80 q^{7} + 936 q^{9} + 444 q^{11} - 1352 q^{13} + 700 q^{15} - 3400 q^{17} + 1668 q^{19} - 3816 q^{21} + 2964 q^{23} + 5000 q^{25} + 14464 q^{27} - 8272 q^{29} + 8684 q^{31}+ \cdots + 535828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} - 1384x^{6} + 3672x^{5} + 603912x^{4} - 998448x^{3} - 83285728x^{2} + 113377312x + 442451152 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 347 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 39865 \nu^{7} + 710912 \nu^{6} + 27403010 \nu^{5} - 565208900 \nu^{4} + \cdots + 5128090657664 ) / 51083220240 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 8399 \nu^{7} - 219218 \nu^{6} + 14013580 \nu^{5} + 203951132 \nu^{4} - 7444901996 \nu^{3} + \cdots - 1473405016616 ) / 8513870040 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 3688 \nu^{7} + 135573 \nu^{6} + 4144780 \nu^{5} - 144069386 \nu^{4} - 1529601584 \nu^{3} + \cdots - 1169311008944 ) / 2837956680 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 7623 \nu^{7} + 93842 \nu^{6} - 14680490 \nu^{5} - 127046544 \nu^{4} + 8825418844 \nu^{3} + \cdots - 646256969696 ) / 5675913360 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 247556 \nu^{7} + 3807775 \nu^{6} + 264708040 \nu^{5} - 3592250842 \nu^{4} + \cdots - 5263998783680 ) / 25541610120 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 347 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{7} + \beta_{6} - 5\beta_{5} - 3\beta_{4} - 11\beta_{3} + 4\beta_{2} + 520\beta _1 + 439 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{7} - 74\beta_{6} - 56\beta_{5} - 102\beta_{4} + 70\beta_{3} + 678\beta_{2} + 2302\beta _1 + 179500 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 1956 \beta_{7} + 252 \beta_{6} - 4488 \beta_{5} - 3384 \beta_{4} - 12108 \beta_{3} + 3964 \beta_{2} + \cdots + 588004 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 3956 \beta_{7} - 79892 \beta_{6} - 45560 \beta_{5} - 125724 \beta_{4} + 48172 \beta_{3} + \cdots + 102181380 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 1436056 \beta_{7} - 177652 \beta_{6} - 3226828 \beta_{5} - 3195996 \beta_{4} - 10009060 \beta_{3} + \cdots + 546197580 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
26.7009
22.3575
15.6369
3.15334
−1.74972
−17.5972
−19.6213
−24.8804
0 −22.7009 0 25.0000 0 147.624 0 272.331 0
1.2 0 −18.3575 0 25.0000 0 −148.402 0 93.9965 0
1.3 0 −11.6369 0 25.0000 0 99.8440 0 −107.583 0
1.4 0 0.846664 0 25.0000 0 −16.6421 0 −242.283 0
1.5 0 5.74972 0 25.0000 0 −177.565 0 −209.941 0
1.6 0 21.5972 0 25.0000 0 16.0114 0 223.439 0
1.7 0 23.6213 0 25.0000 0 249.629 0 314.966 0
1.8 0 28.8804 0 25.0000 0 −250.500 0 591.075 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.6.a.ba 8
4.b odd 2 1 520.6.a.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.6.a.d 8 4.b odd 2 1
1040.6.a.ba 8 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 28 T_{3}^{7} - 1048 T_{3}^{6} + 27304 T_{3}^{5} + 354152 T_{3}^{4} - 7501648 T_{3}^{3} + \cdots - 347819184 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1040))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 28 T^{7} + \cdots - 347819184 \) Copy content Toggle raw display
$5$ \( (T - 25)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 64\!\cdots\!40 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 94\!\cdots\!72 \) Copy content Toggle raw display
$13$ \( (T + 169)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots - 15\!\cdots\!60 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 79\!\cdots\!16 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 12\!\cdots\!76 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 56\!\cdots\!96 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots - 49\!\cdots\!80 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 13\!\cdots\!08 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 26\!\cdots\!04 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 23\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 13\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 14\!\cdots\!64 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots - 44\!\cdots\!68 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots + 53\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots + 13\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 13\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots + 64\!\cdots\!24 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 98\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 85\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots + 95\!\cdots\!20 \) Copy content Toggle raw display
show more
show less