Properties

Label 1040.6.a.h.1.2
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{14}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.74166\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.2250 q^{3} +25.0000 q^{5} +51.1669 q^{7} +126.600 q^{9} -494.607 q^{11} -169.000 q^{13} +480.624 q^{15} -2364.88 q^{17} +699.408 q^{19} +983.681 q^{21} +3809.57 q^{23} +625.000 q^{25} -2237.80 q^{27} +2263.52 q^{29} +9088.51 q^{31} -9508.81 q^{33} +1279.17 q^{35} -4487.29 q^{37} -3249.02 q^{39} -12430.1 q^{41} +12572.6 q^{43} +3164.99 q^{45} -3601.31 q^{47} -14189.0 q^{49} -45464.8 q^{51} +7547.01 q^{53} -12365.2 q^{55} +13446.1 q^{57} -50069.9 q^{59} -24756.7 q^{61} +6477.70 q^{63} -4225.00 q^{65} -43724.6 q^{67} +73238.8 q^{69} -7603.34 q^{71} -21623.2 q^{73} +12015.6 q^{75} -25307.5 q^{77} -103537. q^{79} -73785.2 q^{81} +80394.0 q^{83} -59122.0 q^{85} +43516.1 q^{87} +59301.0 q^{89} -8647.20 q^{91} +174726. q^{93} +17485.2 q^{95} -73477.5 q^{97} -62617.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{3} + 50 q^{5} + 252 q^{7} - 106 q^{9} + 36 q^{11} - 338 q^{13} + 400 q^{15} - 2380 q^{17} + 1092 q^{19} + 336 q^{21} + 1176 q^{23} + 1250 q^{25} - 704 q^{27} - 4872 q^{29} + 2260 q^{31} - 11220 q^{33}+ \cdots - 186036 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 19.2250 1.23328 0.616641 0.787244i \(-0.288493\pi\)
0.616641 + 0.787244i \(0.288493\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 51.1669 0.394679 0.197339 0.980335i \(-0.436770\pi\)
0.197339 + 0.980335i \(0.436770\pi\)
\(8\) 0 0
\(9\) 126.600 0.520986
\(10\) 0 0
\(11\) −494.607 −1.23248 −0.616238 0.787560i \(-0.711344\pi\)
−0.616238 + 0.787560i \(0.711344\pi\)
\(12\) 0 0
\(13\) −169.000 −0.277350
\(14\) 0 0
\(15\) 480.624 0.551541
\(16\) 0 0
\(17\) −2364.88 −1.98466 −0.992332 0.123603i \(-0.960555\pi\)
−0.992332 + 0.123603i \(0.960555\pi\)
\(18\) 0 0
\(19\) 699.408 0.444474 0.222237 0.974993i \(-0.428664\pi\)
0.222237 + 0.974993i \(0.428664\pi\)
\(20\) 0 0
\(21\) 983.681 0.486750
\(22\) 0 0
\(23\) 3809.57 1.50161 0.750803 0.660526i \(-0.229667\pi\)
0.750803 + 0.660526i \(0.229667\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −2237.80 −0.590760
\(28\) 0 0
\(29\) 2263.52 0.499792 0.249896 0.968273i \(-0.419603\pi\)
0.249896 + 0.968273i \(0.419603\pi\)
\(30\) 0 0
\(31\) 9088.51 1.69859 0.849294 0.527920i \(-0.177028\pi\)
0.849294 + 0.527920i \(0.177028\pi\)
\(32\) 0 0
\(33\) −9508.81 −1.51999
\(34\) 0 0
\(35\) 1279.17 0.176506
\(36\) 0 0
\(37\) −4487.29 −0.538865 −0.269433 0.963019i \(-0.586836\pi\)
−0.269433 + 0.963019i \(0.586836\pi\)
\(38\) 0 0
\(39\) −3249.02 −0.342051
\(40\) 0 0
\(41\) −12430.1 −1.15482 −0.577409 0.816455i \(-0.695936\pi\)
−0.577409 + 0.816455i \(0.695936\pi\)
\(42\) 0 0
\(43\) 12572.6 1.03694 0.518470 0.855096i \(-0.326502\pi\)
0.518470 + 0.855096i \(0.326502\pi\)
\(44\) 0 0
\(45\) 3164.99 0.232992
\(46\) 0 0
\(47\) −3601.31 −0.237802 −0.118901 0.992906i \(-0.537937\pi\)
−0.118901 + 0.992906i \(0.537937\pi\)
\(48\) 0 0
\(49\) −14189.0 −0.844229
\(50\) 0 0
\(51\) −45464.8 −2.44765
\(52\) 0 0
\(53\) 7547.01 0.369050 0.184525 0.982828i \(-0.440925\pi\)
0.184525 + 0.982828i \(0.440925\pi\)
\(54\) 0 0
\(55\) −12365.2 −0.551180
\(56\) 0 0
\(57\) 13446.1 0.548162
\(58\) 0 0
\(59\) −50069.9 −1.87261 −0.936304 0.351192i \(-0.885777\pi\)
−0.936304 + 0.351192i \(0.885777\pi\)
\(60\) 0 0
\(61\) −24756.7 −0.851861 −0.425930 0.904756i \(-0.640053\pi\)
−0.425930 + 0.904756i \(0.640053\pi\)
\(62\) 0 0
\(63\) 6477.70 0.205622
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −43724.6 −1.18998 −0.594989 0.803734i \(-0.702844\pi\)
−0.594989 + 0.803734i \(0.702844\pi\)
\(68\) 0 0
\(69\) 73238.8 1.85190
\(70\) 0 0
\(71\) −7603.34 −0.179002 −0.0895011 0.995987i \(-0.528527\pi\)
−0.0895011 + 0.995987i \(0.528527\pi\)
\(72\) 0 0
\(73\) −21623.2 −0.474911 −0.237456 0.971398i \(-0.576313\pi\)
−0.237456 + 0.971398i \(0.576313\pi\)
\(74\) 0 0
\(75\) 12015.6 0.246657
\(76\) 0 0
\(77\) −25307.5 −0.486432
\(78\) 0 0
\(79\) −103537. −1.86651 −0.933253 0.359220i \(-0.883043\pi\)
−0.933253 + 0.359220i \(0.883043\pi\)
\(80\) 0 0
\(81\) −73785.2 −1.24956
\(82\) 0 0
\(83\) 80394.0 1.28094 0.640470 0.767983i \(-0.278740\pi\)
0.640470 + 0.767983i \(0.278740\pi\)
\(84\) 0 0
\(85\) −59122.0 −0.887568
\(86\) 0 0
\(87\) 43516.1 0.616385
\(88\) 0 0
\(89\) 59301.0 0.793574 0.396787 0.917911i \(-0.370125\pi\)
0.396787 + 0.917911i \(0.370125\pi\)
\(90\) 0 0
\(91\) −8647.20 −0.109464
\(92\) 0 0
\(93\) 174726. 2.09484
\(94\) 0 0
\(95\) 17485.2 0.198775
\(96\) 0 0
\(97\) −73477.5 −0.792913 −0.396456 0.918054i \(-0.629760\pi\)
−0.396456 + 0.918054i \(0.629760\pi\)
\(98\) 0 0
\(99\) −62617.0 −0.642103
\(100\) 0 0
\(101\) 97567.8 0.951707 0.475853 0.879525i \(-0.342139\pi\)
0.475853 + 0.879525i \(0.342139\pi\)
\(102\) 0 0
\(103\) −30991.0 −0.287835 −0.143917 0.989590i \(-0.545970\pi\)
−0.143917 + 0.989590i \(0.545970\pi\)
\(104\) 0 0
\(105\) 24592.0 0.217681
\(106\) 0 0
\(107\) −202039. −1.70599 −0.852993 0.521923i \(-0.825215\pi\)
−0.852993 + 0.521923i \(0.825215\pi\)
\(108\) 0 0
\(109\) −171150. −1.37978 −0.689890 0.723914i \(-0.742341\pi\)
−0.689890 + 0.723914i \(0.742341\pi\)
\(110\) 0 0
\(111\) −86268.1 −0.664573
\(112\) 0 0
\(113\) −138118. −1.01755 −0.508774 0.860900i \(-0.669901\pi\)
−0.508774 + 0.860900i \(0.669901\pi\)
\(114\) 0 0
\(115\) 95239.2 0.671539
\(116\) 0 0
\(117\) −21395.3 −0.144495
\(118\) 0 0
\(119\) −121003. −0.783304
\(120\) 0 0
\(121\) 83585.1 0.518998
\(122\) 0 0
\(123\) −238968. −1.42422
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −86030.1 −0.473305 −0.236653 0.971594i \(-0.576050\pi\)
−0.236653 + 0.971594i \(0.576050\pi\)
\(128\) 0 0
\(129\) 241708. 1.27884
\(130\) 0 0
\(131\) 297647. 1.51538 0.757692 0.652612i \(-0.226327\pi\)
0.757692 + 0.652612i \(0.226327\pi\)
\(132\) 0 0
\(133\) 35786.5 0.175424
\(134\) 0 0
\(135\) −55944.9 −0.264196
\(136\) 0 0
\(137\) −75631.0 −0.344269 −0.172135 0.985073i \(-0.555066\pi\)
−0.172135 + 0.985073i \(0.555066\pi\)
\(138\) 0 0
\(139\) −58569.2 −0.257118 −0.128559 0.991702i \(-0.541035\pi\)
−0.128559 + 0.991702i \(0.541035\pi\)
\(140\) 0 0
\(141\) −69235.0 −0.293277
\(142\) 0 0
\(143\) 83588.6 0.341827
\(144\) 0 0
\(145\) 56588.0 0.223514
\(146\) 0 0
\(147\) −272782. −1.04117
\(148\) 0 0
\(149\) −344984. −1.27301 −0.636507 0.771271i \(-0.719621\pi\)
−0.636507 + 0.771271i \(0.719621\pi\)
\(150\) 0 0
\(151\) −12433.7 −0.0443770 −0.0221885 0.999754i \(-0.507063\pi\)
−0.0221885 + 0.999754i \(0.507063\pi\)
\(152\) 0 0
\(153\) −299393. −1.03398
\(154\) 0 0
\(155\) 227213. 0.759632
\(156\) 0 0
\(157\) −416674. −1.34911 −0.674555 0.738225i \(-0.735664\pi\)
−0.674555 + 0.738225i \(0.735664\pi\)
\(158\) 0 0
\(159\) 145091. 0.455143
\(160\) 0 0
\(161\) 194924. 0.592652
\(162\) 0 0
\(163\) 225121. 0.663661 0.331831 0.943339i \(-0.392334\pi\)
0.331831 + 0.943339i \(0.392334\pi\)
\(164\) 0 0
\(165\) −237720. −0.679761
\(166\) 0 0
\(167\) 94547.0 0.262335 0.131168 0.991360i \(-0.458127\pi\)
0.131168 + 0.991360i \(0.458127\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 88544.7 0.231565
\(172\) 0 0
\(173\) −92745.6 −0.235602 −0.117801 0.993037i \(-0.537584\pi\)
−0.117801 + 0.993037i \(0.537584\pi\)
\(174\) 0 0
\(175\) 31979.3 0.0789357
\(176\) 0 0
\(177\) −962592. −2.30945
\(178\) 0 0
\(179\) −226852. −0.529187 −0.264594 0.964360i \(-0.585238\pi\)
−0.264594 + 0.964360i \(0.585238\pi\)
\(180\) 0 0
\(181\) 691487. 1.56887 0.784436 0.620210i \(-0.212953\pi\)
0.784436 + 0.620210i \(0.212953\pi\)
\(182\) 0 0
\(183\) −475947. −1.05058
\(184\) 0 0
\(185\) −112182. −0.240988
\(186\) 0 0
\(187\) 1.16969e6 2.44605
\(188\) 0 0
\(189\) −114501. −0.233160
\(190\) 0 0
\(191\) 340612. 0.675579 0.337790 0.941222i \(-0.390321\pi\)
0.337790 + 0.941222i \(0.390321\pi\)
\(192\) 0 0
\(193\) −479839. −0.927262 −0.463631 0.886028i \(-0.653454\pi\)
−0.463631 + 0.886028i \(0.653454\pi\)
\(194\) 0 0
\(195\) −81225.5 −0.152970
\(196\) 0 0
\(197\) 775437. 1.42358 0.711789 0.702394i \(-0.247885\pi\)
0.711789 + 0.702394i \(0.247885\pi\)
\(198\) 0 0
\(199\) −960804. −1.71990 −0.859948 0.510382i \(-0.829504\pi\)
−0.859948 + 0.510382i \(0.829504\pi\)
\(200\) 0 0
\(201\) −840605. −1.46758
\(202\) 0 0
\(203\) 115817. 0.197257
\(204\) 0 0
\(205\) −310752. −0.516451
\(206\) 0 0
\(207\) 482289. 0.782315
\(208\) 0 0
\(209\) −345932. −0.547804
\(210\) 0 0
\(211\) −1.00406e6 −1.55258 −0.776289 0.630377i \(-0.782900\pi\)
−0.776289 + 0.630377i \(0.782900\pi\)
\(212\) 0 0
\(213\) −146174. −0.220760
\(214\) 0 0
\(215\) 314315. 0.463734
\(216\) 0 0
\(217\) 465030. 0.670397
\(218\) 0 0
\(219\) −415705. −0.585700
\(220\) 0 0
\(221\) 399665. 0.550447
\(222\) 0 0
\(223\) −369742. −0.497893 −0.248947 0.968517i \(-0.580084\pi\)
−0.248947 + 0.968517i \(0.580084\pi\)
\(224\) 0 0
\(225\) 79124.7 0.104197
\(226\) 0 0
\(227\) 622238. 0.801479 0.400740 0.916192i \(-0.368753\pi\)
0.400740 + 0.916192i \(0.368753\pi\)
\(228\) 0 0
\(229\) 328149. 0.413506 0.206753 0.978393i \(-0.433710\pi\)
0.206753 + 0.978393i \(0.433710\pi\)
\(230\) 0 0
\(231\) −486536. −0.599908
\(232\) 0 0
\(233\) 1.25086e6 1.50945 0.754723 0.656044i \(-0.227771\pi\)
0.754723 + 0.656044i \(0.227771\pi\)
\(234\) 0 0
\(235\) −90032.7 −0.106348
\(236\) 0 0
\(237\) −1.99050e6 −2.30193
\(238\) 0 0
\(239\) −14131.5 −0.0160027 −0.00800134 0.999968i \(-0.502547\pi\)
−0.00800134 + 0.999968i \(0.502547\pi\)
\(240\) 0 0
\(241\) 61638.0 0.0683606 0.0341803 0.999416i \(-0.489118\pi\)
0.0341803 + 0.999416i \(0.489118\pi\)
\(242\) 0 0
\(243\) −874735. −0.950300
\(244\) 0 0
\(245\) −354724. −0.377551
\(246\) 0 0
\(247\) −118200. −0.123275
\(248\) 0 0
\(249\) 1.54557e6 1.57976
\(250\) 0 0
\(251\) 66537.0 0.0666621 0.0333310 0.999444i \(-0.489388\pi\)
0.0333310 + 0.999444i \(0.489388\pi\)
\(252\) 0 0
\(253\) −1.88424e6 −1.85069
\(254\) 0 0
\(255\) −1.13662e6 −1.09462
\(256\) 0 0
\(257\) −270539. −0.255504 −0.127752 0.991806i \(-0.540776\pi\)
−0.127752 + 0.991806i \(0.540776\pi\)
\(258\) 0 0
\(259\) −229601. −0.212679
\(260\) 0 0
\(261\) 286561. 0.260385
\(262\) 0 0
\(263\) 1.11803e6 0.996698 0.498349 0.866976i \(-0.333940\pi\)
0.498349 + 0.866976i \(0.333940\pi\)
\(264\) 0 0
\(265\) 188675. 0.165044
\(266\) 0 0
\(267\) 1.14006e6 0.978701
\(268\) 0 0
\(269\) 947186. 0.798095 0.399047 0.916930i \(-0.369341\pi\)
0.399047 + 0.916930i \(0.369341\pi\)
\(270\) 0 0
\(271\) 2.13848e6 1.76881 0.884405 0.466720i \(-0.154564\pi\)
0.884405 + 0.466720i \(0.154564\pi\)
\(272\) 0 0
\(273\) −166242. −0.135000
\(274\) 0 0
\(275\) −309129. −0.246495
\(276\) 0 0
\(277\) −1.34126e6 −1.05030 −0.525151 0.851009i \(-0.675991\pi\)
−0.525151 + 0.851009i \(0.675991\pi\)
\(278\) 0 0
\(279\) 1.15060e6 0.884941
\(280\) 0 0
\(281\) 1.64581e6 1.24341 0.621705 0.783252i \(-0.286440\pi\)
0.621705 + 0.783252i \(0.286440\pi\)
\(282\) 0 0
\(283\) −444740. −0.330096 −0.165048 0.986286i \(-0.552778\pi\)
−0.165048 + 0.986286i \(0.552778\pi\)
\(284\) 0 0
\(285\) 336152. 0.245146
\(286\) 0 0
\(287\) −636007. −0.455782
\(288\) 0 0
\(289\) 4.17280e6 2.93889
\(290\) 0 0
\(291\) −1.41260e6 −0.977885
\(292\) 0 0
\(293\) 458582. 0.312067 0.156033 0.987752i \(-0.450129\pi\)
0.156033 + 0.987752i \(0.450129\pi\)
\(294\) 0 0
\(295\) −1.25175e6 −0.837455
\(296\) 0 0
\(297\) 1.10683e6 0.728098
\(298\) 0 0
\(299\) −643817. −0.416471
\(300\) 0 0
\(301\) 643300. 0.409258
\(302\) 0 0
\(303\) 1.87574e6 1.17372
\(304\) 0 0
\(305\) −618918. −0.380964
\(306\) 0 0
\(307\) −2.49374e6 −1.51010 −0.755050 0.655668i \(-0.772387\pi\)
−0.755050 + 0.655668i \(0.772387\pi\)
\(308\) 0 0
\(309\) −595802. −0.354982
\(310\) 0 0
\(311\) 1.74516e6 1.02314 0.511569 0.859242i \(-0.329065\pi\)
0.511569 + 0.859242i \(0.329065\pi\)
\(312\) 0 0
\(313\) 791926. 0.456903 0.228451 0.973555i \(-0.426634\pi\)
0.228451 + 0.973555i \(0.426634\pi\)
\(314\) 0 0
\(315\) 161943. 0.0919569
\(316\) 0 0
\(317\) −2.73806e6 −1.53037 −0.765183 0.643813i \(-0.777352\pi\)
−0.765183 + 0.643813i \(0.777352\pi\)
\(318\) 0 0
\(319\) −1.11955e6 −0.615982
\(320\) 0 0
\(321\) −3.88419e6 −2.10396
\(322\) 0 0
\(323\) −1.65402e6 −0.882132
\(324\) 0 0
\(325\) −105625. −0.0554700
\(326\) 0 0
\(327\) −3.29035e6 −1.70166
\(328\) 0 0
\(329\) −184268. −0.0938554
\(330\) 0 0
\(331\) −134538. −0.0674954 −0.0337477 0.999430i \(-0.510744\pi\)
−0.0337477 + 0.999430i \(0.510744\pi\)
\(332\) 0 0
\(333\) −568089. −0.280741
\(334\) 0 0
\(335\) −1.09312e6 −0.532175
\(336\) 0 0
\(337\) −393396. −0.188693 −0.0943463 0.995539i \(-0.530076\pi\)
−0.0943463 + 0.995539i \(0.530076\pi\)
\(338\) 0 0
\(339\) −2.65532e6 −1.25492
\(340\) 0 0
\(341\) −4.49524e6 −2.09347
\(342\) 0 0
\(343\) −1.58597e6 −0.727878
\(344\) 0 0
\(345\) 1.83097e6 0.828197
\(346\) 0 0
\(347\) 409410. 0.182530 0.0912651 0.995827i \(-0.470909\pi\)
0.0912651 + 0.995827i \(0.470909\pi\)
\(348\) 0 0
\(349\) 862372. 0.378993 0.189497 0.981881i \(-0.439314\pi\)
0.189497 + 0.981881i \(0.439314\pi\)
\(350\) 0 0
\(351\) 378187. 0.163847
\(352\) 0 0
\(353\) −967902. −0.413423 −0.206711 0.978402i \(-0.566276\pi\)
−0.206711 + 0.978402i \(0.566276\pi\)
\(354\) 0 0
\(355\) −190083. −0.0800522
\(356\) 0 0
\(357\) −2.32629e6 −0.966035
\(358\) 0 0
\(359\) 2.87414e6 1.17699 0.588493 0.808502i \(-0.299721\pi\)
0.588493 + 0.808502i \(0.299721\pi\)
\(360\) 0 0
\(361\) −1.98693e6 −0.802443
\(362\) 0 0
\(363\) 1.60692e6 0.640071
\(364\) 0 0
\(365\) −540579. −0.212387
\(366\) 0 0
\(367\) −2.80197e6 −1.08592 −0.542961 0.839758i \(-0.682697\pi\)
−0.542961 + 0.839758i \(0.682697\pi\)
\(368\) 0 0
\(369\) −1.57364e6 −0.601644
\(370\) 0 0
\(371\) 386157. 0.145656
\(372\) 0 0
\(373\) −508739. −0.189331 −0.0946657 0.995509i \(-0.530178\pi\)
−0.0946657 + 0.995509i \(0.530178\pi\)
\(374\) 0 0
\(375\) 300390. 0.110308
\(376\) 0 0
\(377\) −382535. −0.138617
\(378\) 0 0
\(379\) −26753.7 −0.00956722 −0.00478361 0.999989i \(-0.501523\pi\)
−0.00478361 + 0.999989i \(0.501523\pi\)
\(380\) 0 0
\(381\) −1.65393e6 −0.583719
\(382\) 0 0
\(383\) 4.57628e6 1.59410 0.797049 0.603914i \(-0.206393\pi\)
0.797049 + 0.603914i \(0.206393\pi\)
\(384\) 0 0
\(385\) −632687. −0.217539
\(386\) 0 0
\(387\) 1.59168e6 0.540231
\(388\) 0 0
\(389\) −905452. −0.303383 −0.151692 0.988428i \(-0.548472\pi\)
−0.151692 + 0.988428i \(0.548472\pi\)
\(390\) 0 0
\(391\) −9.00917e6 −2.98018
\(392\) 0 0
\(393\) 5.72225e6 1.86890
\(394\) 0 0
\(395\) −2.58843e6 −0.834727
\(396\) 0 0
\(397\) 2.20323e6 0.701590 0.350795 0.936452i \(-0.385911\pi\)
0.350795 + 0.936452i \(0.385911\pi\)
\(398\) 0 0
\(399\) 687995. 0.216348
\(400\) 0 0
\(401\) −1.12383e6 −0.349011 −0.174505 0.984656i \(-0.555833\pi\)
−0.174505 + 0.984656i \(0.555833\pi\)
\(402\) 0 0
\(403\) −1.53596e6 −0.471104
\(404\) 0 0
\(405\) −1.84463e6 −0.558820
\(406\) 0 0
\(407\) 2.21945e6 0.664139
\(408\) 0 0
\(409\) 1.00525e6 0.297143 0.148572 0.988902i \(-0.452532\pi\)
0.148572 + 0.988902i \(0.452532\pi\)
\(410\) 0 0
\(411\) −1.45400e6 −0.424581
\(412\) 0 0
\(413\) −2.56192e6 −0.739078
\(414\) 0 0
\(415\) 2.00985e6 0.572854
\(416\) 0 0
\(417\) −1.12599e6 −0.317099
\(418\) 0 0
\(419\) −1.52964e6 −0.425653 −0.212826 0.977090i \(-0.568267\pi\)
−0.212826 + 0.977090i \(0.568267\pi\)
\(420\) 0 0
\(421\) 2.29967e6 0.632354 0.316177 0.948700i \(-0.397601\pi\)
0.316177 + 0.948700i \(0.397601\pi\)
\(422\) 0 0
\(423\) −455924. −0.123891
\(424\) 0 0
\(425\) −1.47805e6 −0.396933
\(426\) 0 0
\(427\) −1.26672e6 −0.336211
\(428\) 0 0
\(429\) 1.60699e6 0.421570
\(430\) 0 0
\(431\) 2.62082e6 0.679585 0.339793 0.940500i \(-0.389643\pi\)
0.339793 + 0.940500i \(0.389643\pi\)
\(432\) 0 0
\(433\) −591237. −0.151545 −0.0757726 0.997125i \(-0.524142\pi\)
−0.0757726 + 0.997125i \(0.524142\pi\)
\(434\) 0 0
\(435\) 1.08790e6 0.275656
\(436\) 0 0
\(437\) 2.66444e6 0.667425
\(438\) 0 0
\(439\) 5.86023e6 1.45129 0.725644 0.688070i \(-0.241542\pi\)
0.725644 + 0.688070i \(0.241542\pi\)
\(440\) 0 0
\(441\) −1.79632e6 −0.439831
\(442\) 0 0
\(443\) −1.49526e6 −0.361998 −0.180999 0.983483i \(-0.557933\pi\)
−0.180999 + 0.983483i \(0.557933\pi\)
\(444\) 0 0
\(445\) 1.48253e6 0.354897
\(446\) 0 0
\(447\) −6.63231e6 −1.56999
\(448\) 0 0
\(449\) −3.87629e6 −0.907404 −0.453702 0.891154i \(-0.649897\pi\)
−0.453702 + 0.891154i \(0.649897\pi\)
\(450\) 0 0
\(451\) 6.14800e6 1.42329
\(452\) 0 0
\(453\) −239038. −0.0547294
\(454\) 0 0
\(455\) −216180. −0.0489539
\(456\) 0 0
\(457\) 6.46622e6 1.44830 0.724152 0.689640i \(-0.242231\pi\)
0.724152 + 0.689640i \(0.242231\pi\)
\(458\) 0 0
\(459\) 5.29212e6 1.17246
\(460\) 0 0
\(461\) −7.26166e6 −1.59141 −0.795707 0.605681i \(-0.792901\pi\)
−0.795707 + 0.605681i \(0.792901\pi\)
\(462\) 0 0
\(463\) −4.81594e6 −1.04407 −0.522034 0.852925i \(-0.674827\pi\)
−0.522034 + 0.852925i \(0.674827\pi\)
\(464\) 0 0
\(465\) 4.36816e6 0.936841
\(466\) 0 0
\(467\) −231914. −0.0492078 −0.0246039 0.999697i \(-0.507832\pi\)
−0.0246039 + 0.999697i \(0.507832\pi\)
\(468\) 0 0
\(469\) −2.23725e6 −0.469659
\(470\) 0 0
\(471\) −8.01055e6 −1.66383
\(472\) 0 0
\(473\) −6.21849e6 −1.27800
\(474\) 0 0
\(475\) 437130. 0.0888948
\(476\) 0 0
\(477\) 955448. 0.192270
\(478\) 0 0
\(479\) −3.25748e6 −0.648700 −0.324350 0.945937i \(-0.605145\pi\)
−0.324350 + 0.945937i \(0.605145\pi\)
\(480\) 0 0
\(481\) 758353. 0.149454
\(482\) 0 0
\(483\) 3.74740e6 0.730907
\(484\) 0 0
\(485\) −1.83694e6 −0.354601
\(486\) 0 0
\(487\) −7.51626e6 −1.43608 −0.718042 0.696000i \(-0.754961\pi\)
−0.718042 + 0.696000i \(0.754961\pi\)
\(488\) 0 0
\(489\) 4.32794e6 0.818482
\(490\) 0 0
\(491\) 456011. 0.0853634 0.0426817 0.999089i \(-0.486410\pi\)
0.0426817 + 0.999089i \(0.486410\pi\)
\(492\) 0 0
\(493\) −5.35296e6 −0.991920
\(494\) 0 0
\(495\) −1.56543e6 −0.287157
\(496\) 0 0
\(497\) −389039. −0.0706483
\(498\) 0 0
\(499\) −3.33321e6 −0.599255 −0.299627 0.954056i \(-0.596862\pi\)
−0.299627 + 0.954056i \(0.596862\pi\)
\(500\) 0 0
\(501\) 1.81766e6 0.323534
\(502\) 0 0
\(503\) 3.46235e6 0.610171 0.305085 0.952325i \(-0.401315\pi\)
0.305085 + 0.952325i \(0.401315\pi\)
\(504\) 0 0
\(505\) 2.43919e6 0.425616
\(506\) 0 0
\(507\) 549084. 0.0948679
\(508\) 0 0
\(509\) −7.66998e6 −1.31220 −0.656100 0.754674i \(-0.727795\pi\)
−0.656100 + 0.754674i \(0.727795\pi\)
\(510\) 0 0
\(511\) −1.10639e6 −0.187437
\(512\) 0 0
\(513\) −1.56513e6 −0.262578
\(514\) 0 0
\(515\) −774776. −0.128724
\(516\) 0 0
\(517\) 1.78123e6 0.293085
\(518\) 0 0
\(519\) −1.78303e6 −0.290563
\(520\) 0 0
\(521\) −7.45075e6 −1.20256 −0.601278 0.799040i \(-0.705342\pi\)
−0.601278 + 0.799040i \(0.705342\pi\)
\(522\) 0 0
\(523\) 3.50008e6 0.559530 0.279765 0.960068i \(-0.409743\pi\)
0.279765 + 0.960068i \(0.409743\pi\)
\(524\) 0 0
\(525\) 614801. 0.0973500
\(526\) 0 0
\(527\) −2.14932e7 −3.37113
\(528\) 0 0
\(529\) 8.07646e6 1.25482
\(530\) 0 0
\(531\) −6.33883e6 −0.975602
\(532\) 0 0
\(533\) 2.10068e6 0.320289
\(534\) 0 0
\(535\) −5.05097e6 −0.762940
\(536\) 0 0
\(537\) −4.36122e6 −0.652638
\(538\) 0 0
\(539\) 7.01796e6 1.04049
\(540\) 0 0
\(541\) −6.76874e6 −0.994294 −0.497147 0.867666i \(-0.665619\pi\)
−0.497147 + 0.867666i \(0.665619\pi\)
\(542\) 0 0
\(543\) 1.32938e7 1.93486
\(544\) 0 0
\(545\) −4.27874e6 −0.617056
\(546\) 0 0
\(547\) 1.19664e7 1.71000 0.855001 0.518627i \(-0.173557\pi\)
0.855001 + 0.518627i \(0.173557\pi\)
\(548\) 0 0
\(549\) −3.13419e6 −0.443807
\(550\) 0 0
\(551\) 1.58313e6 0.222145
\(552\) 0 0
\(553\) −5.29768e6 −0.736670
\(554\) 0 0
\(555\) −2.15670e6 −0.297206
\(556\) 0 0
\(557\) 445095. 0.0607875 0.0303938 0.999538i \(-0.490324\pi\)
0.0303938 + 0.999538i \(0.490324\pi\)
\(558\) 0 0
\(559\) −2.12477e6 −0.287595
\(560\) 0 0
\(561\) 2.24872e7 3.01667
\(562\) 0 0
\(563\) 9.94384e6 1.32216 0.661078 0.750317i \(-0.270099\pi\)
0.661078 + 0.750317i \(0.270099\pi\)
\(564\) 0 0
\(565\) −3.45296e6 −0.455061
\(566\) 0 0
\(567\) −3.77536e6 −0.493174
\(568\) 0 0
\(569\) 6.04270e6 0.782439 0.391220 0.920297i \(-0.372053\pi\)
0.391220 + 0.920297i \(0.372053\pi\)
\(570\) 0 0
\(571\) 5.12993e6 0.658447 0.329224 0.944252i \(-0.393213\pi\)
0.329224 + 0.944252i \(0.393213\pi\)
\(572\) 0 0
\(573\) 6.54825e6 0.833180
\(574\) 0 0
\(575\) 2.38098e6 0.300321
\(576\) 0 0
\(577\) −5.30151e6 −0.662918 −0.331459 0.943470i \(-0.607541\pi\)
−0.331459 + 0.943470i \(0.607541\pi\)
\(578\) 0 0
\(579\) −9.22489e6 −1.14358
\(580\) 0 0
\(581\) 4.11351e6 0.505560
\(582\) 0 0
\(583\) −3.73281e6 −0.454846
\(584\) 0 0
\(585\) −534883. −0.0646203
\(586\) 0 0
\(587\) −9.26443e6 −1.10975 −0.554873 0.831935i \(-0.687233\pi\)
−0.554873 + 0.831935i \(0.687233\pi\)
\(588\) 0 0
\(589\) 6.35657e6 0.754979
\(590\) 0 0
\(591\) 1.49078e7 1.75567
\(592\) 0 0
\(593\) −4.97831e6 −0.581360 −0.290680 0.956820i \(-0.593882\pi\)
−0.290680 + 0.956820i \(0.593882\pi\)
\(594\) 0 0
\(595\) −3.02509e6 −0.350304
\(596\) 0 0
\(597\) −1.84714e7 −2.12112
\(598\) 0 0
\(599\) 9.54062e6 1.08645 0.543225 0.839587i \(-0.317203\pi\)
0.543225 + 0.839587i \(0.317203\pi\)
\(600\) 0 0
\(601\) −3.23751e6 −0.365615 −0.182808 0.983149i \(-0.558519\pi\)
−0.182808 + 0.983149i \(0.558519\pi\)
\(602\) 0 0
\(603\) −5.53552e6 −0.619962
\(604\) 0 0
\(605\) 2.08963e6 0.232103
\(606\) 0 0
\(607\) 1.01617e7 1.11942 0.559711 0.828688i \(-0.310912\pi\)
0.559711 + 0.828688i \(0.310912\pi\)
\(608\) 0 0
\(609\) 2.22658e6 0.243274
\(610\) 0 0
\(611\) 608621. 0.0659544
\(612\) 0 0
\(613\) 2.31456e6 0.248781 0.124391 0.992233i \(-0.460302\pi\)
0.124391 + 0.992233i \(0.460302\pi\)
\(614\) 0 0
\(615\) −5.97419e6 −0.636929
\(616\) 0 0
\(617\) −6.41200e6 −0.678079 −0.339040 0.940772i \(-0.610102\pi\)
−0.339040 + 0.940772i \(0.610102\pi\)
\(618\) 0 0
\(619\) 1.37209e7 1.43932 0.719659 0.694327i \(-0.244298\pi\)
0.719659 + 0.694327i \(0.244298\pi\)
\(620\) 0 0
\(621\) −8.52503e6 −0.887089
\(622\) 0 0
\(623\) 3.03425e6 0.313207
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −6.65054e6 −0.675597
\(628\) 0 0
\(629\) 1.06119e7 1.06947
\(630\) 0 0
\(631\) 3.42813e6 0.342755 0.171378 0.985205i \(-0.445178\pi\)
0.171378 + 0.985205i \(0.445178\pi\)
\(632\) 0 0
\(633\) −1.93030e7 −1.91477
\(634\) 0 0
\(635\) −2.15075e6 −0.211669
\(636\) 0 0
\(637\) 2.39793e6 0.234147
\(638\) 0 0
\(639\) −962579. −0.0932576
\(640\) 0 0
\(641\) 1.19999e7 1.15354 0.576770 0.816906i \(-0.304313\pi\)
0.576770 + 0.816906i \(0.304313\pi\)
\(642\) 0 0
\(643\) −39448.9 −0.00376277 −0.00188139 0.999998i \(-0.500599\pi\)
−0.00188139 + 0.999998i \(0.500599\pi\)
\(644\) 0 0
\(645\) 6.04269e6 0.571915
\(646\) 0 0
\(647\) 3.43534e6 0.322633 0.161317 0.986903i \(-0.448426\pi\)
0.161317 + 0.986903i \(0.448426\pi\)
\(648\) 0 0
\(649\) 2.47649e7 2.30794
\(650\) 0 0
\(651\) 8.94019e6 0.826788
\(652\) 0 0
\(653\) 1.35146e7 1.24028 0.620142 0.784490i \(-0.287075\pi\)
0.620142 + 0.784490i \(0.287075\pi\)
\(654\) 0 0
\(655\) 7.44117e6 0.677700
\(656\) 0 0
\(657\) −2.73748e6 −0.247422
\(658\) 0 0
\(659\) 2.17250e7 1.94871 0.974355 0.225018i \(-0.0722442\pi\)
0.974355 + 0.225018i \(0.0722442\pi\)
\(660\) 0 0
\(661\) 3.12575e6 0.278260 0.139130 0.990274i \(-0.455569\pi\)
0.139130 + 0.990274i \(0.455569\pi\)
\(662\) 0 0
\(663\) 7.68354e6 0.678856
\(664\) 0 0
\(665\) 894663. 0.0784522
\(666\) 0 0
\(667\) 8.62304e6 0.750491
\(668\) 0 0
\(669\) −7.10827e6 −0.614043
\(670\) 0 0
\(671\) 1.22449e7 1.04990
\(672\) 0 0
\(673\) −1.26422e7 −1.07594 −0.537968 0.842965i \(-0.680808\pi\)
−0.537968 + 0.842965i \(0.680808\pi\)
\(674\) 0 0
\(675\) −1.39862e6 −0.118152
\(676\) 0 0
\(677\) −1.82316e7 −1.52881 −0.764404 0.644737i \(-0.776967\pi\)
−0.764404 + 0.644737i \(0.776967\pi\)
\(678\) 0 0
\(679\) −3.75961e6 −0.312946
\(680\) 0 0
\(681\) 1.19625e7 0.988450
\(682\) 0 0
\(683\) 1.60919e7 1.31994 0.659972 0.751290i \(-0.270568\pi\)
0.659972 + 0.751290i \(0.270568\pi\)
\(684\) 0 0
\(685\) −1.89077e6 −0.153962
\(686\) 0 0
\(687\) 6.30865e6 0.509970
\(688\) 0 0
\(689\) −1.27544e6 −0.102356
\(690\) 0 0
\(691\) −1.96555e6 −0.156599 −0.0782994 0.996930i \(-0.524949\pi\)
−0.0782994 + 0.996930i \(0.524949\pi\)
\(692\) 0 0
\(693\) −3.20392e6 −0.253424
\(694\) 0 0
\(695\) −1.46423e6 −0.114987
\(696\) 0 0
\(697\) 2.93956e7 2.29193
\(698\) 0 0
\(699\) 2.40477e7 1.86157
\(700\) 0 0
\(701\) 2.38464e7 1.83285 0.916426 0.400204i \(-0.131061\pi\)
0.916426 + 0.400204i \(0.131061\pi\)
\(702\) 0 0
\(703\) −3.13845e6 −0.239512
\(704\) 0 0
\(705\) −1.73088e6 −0.131157
\(706\) 0 0
\(707\) 4.99224e6 0.375618
\(708\) 0 0
\(709\) −6.90141e6 −0.515611 −0.257805 0.966197i \(-0.582999\pi\)
−0.257805 + 0.966197i \(0.582999\pi\)
\(710\) 0 0
\(711\) −1.31078e7 −0.972423
\(712\) 0 0
\(713\) 3.46233e7 2.55061
\(714\) 0 0
\(715\) 2.08971e6 0.152870
\(716\) 0 0
\(717\) −271677. −0.0197358
\(718\) 0 0
\(719\) 1.72590e6 0.124507 0.0622533 0.998060i \(-0.480171\pi\)
0.0622533 + 0.998060i \(0.480171\pi\)
\(720\) 0 0
\(721\) −1.58571e6 −0.113602
\(722\) 0 0
\(723\) 1.18499e6 0.0843079
\(724\) 0 0
\(725\) 1.41470e6 0.0999585
\(726\) 0 0
\(727\) −4.93378e6 −0.346213 −0.173107 0.984903i \(-0.555381\pi\)
−0.173107 + 0.984903i \(0.555381\pi\)
\(728\) 0 0
\(729\) 1.11306e6 0.0775709
\(730\) 0 0
\(731\) −2.97327e7 −2.05798
\(732\) 0 0
\(733\) 1.95099e7 1.34120 0.670601 0.741818i \(-0.266036\pi\)
0.670601 + 0.741818i \(0.266036\pi\)
\(734\) 0 0
\(735\) −6.81956e6 −0.465627
\(736\) 0 0
\(737\) 2.16265e7 1.46662
\(738\) 0 0
\(739\) −1.62743e7 −1.09621 −0.548103 0.836411i \(-0.684650\pi\)
−0.548103 + 0.836411i \(0.684650\pi\)
\(740\) 0 0
\(741\) −2.27239e6 −0.152033
\(742\) 0 0
\(743\) −1.79935e7 −1.19576 −0.597878 0.801587i \(-0.703989\pi\)
−0.597878 + 0.801587i \(0.703989\pi\)
\(744\) 0 0
\(745\) −8.62460e6 −0.569309
\(746\) 0 0
\(747\) 1.01779e7 0.667351
\(748\) 0 0
\(749\) −1.03377e7 −0.673316
\(750\) 0 0
\(751\) −1.05276e7 −0.681130 −0.340565 0.940221i \(-0.610618\pi\)
−0.340565 + 0.940221i \(0.610618\pi\)
\(752\) 0 0
\(753\) 1.27917e6 0.0822132
\(754\) 0 0
\(755\) −310843. −0.0198460
\(756\) 0 0
\(757\) 7.81642e6 0.495756 0.247878 0.968791i \(-0.420267\pi\)
0.247878 + 0.968791i \(0.420267\pi\)
\(758\) 0 0
\(759\) −3.62244e7 −2.28243
\(760\) 0 0
\(761\) −6.86800e6 −0.429901 −0.214951 0.976625i \(-0.568959\pi\)
−0.214951 + 0.976625i \(0.568959\pi\)
\(762\) 0 0
\(763\) −8.75719e6 −0.544570
\(764\) 0 0
\(765\) −7.48482e6 −0.462411
\(766\) 0 0
\(767\) 8.46181e6 0.519368
\(768\) 0 0
\(769\) 1.29868e7 0.791928 0.395964 0.918266i \(-0.370410\pi\)
0.395964 + 0.918266i \(0.370410\pi\)
\(770\) 0 0
\(771\) −5.20111e6 −0.315108
\(772\) 0 0
\(773\) 2.61945e7 1.57674 0.788371 0.615200i \(-0.210925\pi\)
0.788371 + 0.615200i \(0.210925\pi\)
\(774\) 0 0
\(775\) 5.68032e6 0.339718
\(776\) 0 0
\(777\) −4.41407e6 −0.262293
\(778\) 0 0
\(779\) −8.69369e6 −0.513287
\(780\) 0 0
\(781\) 3.76066e6 0.220616
\(782\) 0 0
\(783\) −5.06530e6 −0.295257
\(784\) 0 0
\(785\) −1.04169e7 −0.603340
\(786\) 0 0
\(787\) −2.55783e6 −0.147209 −0.0736046 0.997288i \(-0.523450\pi\)
−0.0736046 + 0.997288i \(0.523450\pi\)
\(788\) 0 0
\(789\) 2.14941e7 1.22921
\(790\) 0 0
\(791\) −7.06708e6 −0.401605
\(792\) 0 0
\(793\) 4.18389e6 0.236264
\(794\) 0 0
\(795\) 3.62728e6 0.203546
\(796\) 0 0
\(797\) 2.70410e7 1.50792 0.753958 0.656923i \(-0.228142\pi\)
0.753958 + 0.656923i \(0.228142\pi\)
\(798\) 0 0
\(799\) 8.51666e6 0.471957
\(800\) 0 0
\(801\) 7.50748e6 0.413441
\(802\) 0 0
\(803\) 1.06950e7 0.585317
\(804\) 0 0
\(805\) 4.87309e6 0.265042
\(806\) 0 0
\(807\) 1.82096e7 0.984276
\(808\) 0 0
\(809\) −7.14004e6 −0.383557 −0.191778 0.981438i \(-0.561425\pi\)
−0.191778 + 0.981438i \(0.561425\pi\)
\(810\) 0 0
\(811\) 3.49368e7 1.86522 0.932612 0.360882i \(-0.117524\pi\)
0.932612 + 0.360882i \(0.117524\pi\)
\(812\) 0 0
\(813\) 4.11122e7 2.18144
\(814\) 0 0
\(815\) 5.62802e6 0.296798
\(816\) 0 0
\(817\) 8.79337e6 0.460893
\(818\) 0 0
\(819\) −1.09473e6 −0.0570293
\(820\) 0 0
\(821\) −5.14344e6 −0.266315 −0.133158 0.991095i \(-0.542512\pi\)
−0.133158 + 0.991095i \(0.542512\pi\)
\(822\) 0 0
\(823\) −4.85712e6 −0.249965 −0.124982 0.992159i \(-0.539887\pi\)
−0.124982 + 0.992159i \(0.539887\pi\)
\(824\) 0 0
\(825\) −5.94300e6 −0.303998
\(826\) 0 0
\(827\) −1.70403e7 −0.866391 −0.433196 0.901300i \(-0.642614\pi\)
−0.433196 + 0.901300i \(0.642614\pi\)
\(828\) 0 0
\(829\) −2.27045e7 −1.14743 −0.573715 0.819055i \(-0.694498\pi\)
−0.573715 + 0.819055i \(0.694498\pi\)
\(830\) 0 0
\(831\) −2.57857e7 −1.29532
\(832\) 0 0
\(833\) 3.35552e7 1.67551
\(834\) 0 0
\(835\) 2.36368e6 0.117320
\(836\) 0 0
\(837\) −2.03382e7 −1.00346
\(838\) 0 0
\(839\) 1.63556e7 0.802159 0.401080 0.916043i \(-0.368635\pi\)
0.401080 + 0.916043i \(0.368635\pi\)
\(840\) 0 0
\(841\) −1.53876e7 −0.750208
\(842\) 0 0
\(843\) 3.16407e7 1.53347
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) 4.27679e6 0.204837
\(848\) 0 0
\(849\) −8.55012e6 −0.407102
\(850\) 0 0
\(851\) −1.70946e7 −0.809163
\(852\) 0 0
\(853\) −4.52879e6 −0.213113 −0.106556 0.994307i \(-0.533982\pi\)
−0.106556 + 0.994307i \(0.533982\pi\)
\(854\) 0 0
\(855\) 2.21362e6 0.103559
\(856\) 0 0
\(857\) −3.52177e7 −1.63798 −0.818990 0.573807i \(-0.805466\pi\)
−0.818990 + 0.573807i \(0.805466\pi\)
\(858\) 0 0
\(859\) 3.55901e7 1.64568 0.822841 0.568271i \(-0.192388\pi\)
0.822841 + 0.568271i \(0.192388\pi\)
\(860\) 0 0
\(861\) −1.22272e7 −0.562108
\(862\) 0 0
\(863\) −2.78981e7 −1.27511 −0.637555 0.770405i \(-0.720054\pi\)
−0.637555 + 0.770405i \(0.720054\pi\)
\(864\) 0 0
\(865\) −2.31864e6 −0.105364
\(866\) 0 0
\(867\) 8.02220e7 3.62448
\(868\) 0 0
\(869\) 5.12103e7 2.30042
\(870\) 0 0
\(871\) 7.38946e6 0.330041
\(872\) 0 0
\(873\) −9.30222e6 −0.413096
\(874\) 0 0
\(875\) 799482. 0.0353011
\(876\) 0 0
\(877\) 6.79883e6 0.298494 0.149247 0.988800i \(-0.452315\pi\)
0.149247 + 0.988800i \(0.452315\pi\)
\(878\) 0 0
\(879\) 8.81622e6 0.384867
\(880\) 0 0
\(881\) −4.02331e7 −1.74640 −0.873201 0.487360i \(-0.837960\pi\)
−0.873201 + 0.487360i \(0.837960\pi\)
\(882\) 0 0
\(883\) −7.81137e6 −0.337152 −0.168576 0.985689i \(-0.553917\pi\)
−0.168576 + 0.985689i \(0.553917\pi\)
\(884\) 0 0
\(885\) −2.40648e7 −1.03282
\(886\) 0 0
\(887\) 2.69396e7 1.14970 0.574848 0.818260i \(-0.305061\pi\)
0.574848 + 0.818260i \(0.305061\pi\)
\(888\) 0 0
\(889\) −4.40189e6 −0.186803
\(890\) 0 0
\(891\) 3.64947e7 1.54005
\(892\) 0 0
\(893\) −2.51878e6 −0.105697
\(894\) 0 0
\(895\) −5.67129e6 −0.236660
\(896\) 0 0
\(897\) −1.23774e7 −0.513626
\(898\) 0 0
\(899\) 2.05720e7 0.848942
\(900\) 0 0
\(901\) −1.78478e7 −0.732440
\(902\) 0 0
\(903\) 1.23674e7 0.504731
\(904\) 0 0
\(905\) 1.72872e7 0.701621
\(906\) 0 0
\(907\) −3.66946e7 −1.48110 −0.740549 0.672002i \(-0.765435\pi\)
−0.740549 + 0.672002i \(0.765435\pi\)
\(908\) 0 0
\(909\) 1.23520e7 0.495826
\(910\) 0 0
\(911\) 1.68568e7 0.672945 0.336473 0.941693i \(-0.390766\pi\)
0.336473 + 0.941693i \(0.390766\pi\)
\(912\) 0 0
\(913\) −3.97635e7 −1.57873
\(914\) 0 0
\(915\) −1.18987e7 −0.469836
\(916\) 0 0
\(917\) 1.52296e7 0.598090
\(918\) 0 0
\(919\) −3.12525e7 −1.22066 −0.610332 0.792146i \(-0.708964\pi\)
−0.610332 + 0.792146i \(0.708964\pi\)
\(920\) 0 0
\(921\) −4.79421e7 −1.86238
\(922\) 0 0
\(923\) 1.28496e6 0.0496463
\(924\) 0 0
\(925\) −2.80456e6 −0.107773
\(926\) 0 0
\(927\) −3.92345e6 −0.149958
\(928\) 0 0
\(929\) −3.27128e7 −1.24359 −0.621797 0.783178i \(-0.713597\pi\)
−0.621797 + 0.783178i \(0.713597\pi\)
\(930\) 0 0
\(931\) −9.92387e6 −0.375238
\(932\) 0 0
\(933\) 3.35506e7 1.26182
\(934\) 0 0
\(935\) 2.92422e7 1.09391
\(936\) 0 0
\(937\) 4.53506e7 1.68746 0.843731 0.536767i \(-0.180355\pi\)
0.843731 + 0.536767i \(0.180355\pi\)
\(938\) 0 0
\(939\) 1.52247e7 0.563490
\(940\) 0 0
\(941\) −4.45649e7 −1.64066 −0.820331 0.571890i \(-0.806211\pi\)
−0.820331 + 0.571890i \(0.806211\pi\)
\(942\) 0 0
\(943\) −4.73532e7 −1.73408
\(944\) 0 0
\(945\) −2.86252e6 −0.104272
\(946\) 0 0
\(947\) −1.90646e7 −0.690800 −0.345400 0.938456i \(-0.612257\pi\)
−0.345400 + 0.938456i \(0.612257\pi\)
\(948\) 0 0
\(949\) 3.65432e6 0.131717
\(950\) 0 0
\(951\) −5.26392e7 −1.88737
\(952\) 0 0
\(953\) 4.22576e6 0.150721 0.0753603 0.997156i \(-0.475989\pi\)
0.0753603 + 0.997156i \(0.475989\pi\)
\(954\) 0 0
\(955\) 8.51529e6 0.302128
\(956\) 0 0
\(957\) −2.15234e7 −0.759680
\(958\) 0 0
\(959\) −3.86980e6 −0.135876
\(960\) 0 0
\(961\) 5.39718e7 1.88520
\(962\) 0 0
\(963\) −2.55780e7 −0.888794
\(964\) 0 0
\(965\) −1.19960e7 −0.414684
\(966\) 0 0
\(967\) 3.50435e7 1.20515 0.602575 0.798062i \(-0.294141\pi\)
0.602575 + 0.798062i \(0.294141\pi\)
\(968\) 0 0
\(969\) −3.17984e7 −1.08792
\(970\) 0 0
\(971\) −7.67176e6 −0.261124 −0.130562 0.991440i \(-0.541678\pi\)
−0.130562 + 0.991440i \(0.541678\pi\)
\(972\) 0 0
\(973\) −2.99680e6 −0.101479
\(974\) 0 0
\(975\) −2.03064e6 −0.0684102
\(976\) 0 0
\(977\) −4.64539e7 −1.55699 −0.778494 0.627652i \(-0.784016\pi\)
−0.778494 + 0.627652i \(0.784016\pi\)
\(978\) 0 0
\(979\) −2.93307e7 −0.978061
\(980\) 0 0
\(981\) −2.16675e7 −0.718846
\(982\) 0 0
\(983\) −1.52982e7 −0.504959 −0.252480 0.967602i \(-0.581246\pi\)
−0.252480 + 0.967602i \(0.581246\pi\)
\(984\) 0 0
\(985\) 1.93859e7 0.636643
\(986\) 0 0
\(987\) −3.54254e6 −0.115750
\(988\) 0 0
\(989\) 4.78961e7 1.55708
\(990\) 0 0
\(991\) 8.70500e6 0.281569 0.140784 0.990040i \(-0.455038\pi\)
0.140784 + 0.990040i \(0.455038\pi\)
\(992\) 0 0
\(993\) −2.58649e6 −0.0832409
\(994\) 0 0
\(995\) −2.40201e7 −0.769161
\(996\) 0 0
\(997\) −4.01903e7 −1.28051 −0.640256 0.768162i \(-0.721172\pi\)
−0.640256 + 0.768162i \(0.721172\pi\)
\(998\) 0 0
\(999\) 1.00416e7 0.318340
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.h.1.2 2
4.3 odd 2 130.6.a.e.1.1 2
20.3 even 4 650.6.b.c.599.1 4
20.7 even 4 650.6.b.c.599.4 4
20.19 odd 2 650.6.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.e.1.1 2 4.3 odd 2
650.6.a.c.1.2 2 20.19 odd 2
650.6.b.c.599.1 4 20.3 even 4
650.6.b.c.599.4 4 20.7 even 4
1040.6.a.h.1.2 2 1.1 even 1 trivial