Properties

Label 1040.6.a.l.1.2
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1458804.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 361x - 1139 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 130)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.28300\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.71700 q^{3} +25.0000 q^{5} +10.2576 q^{7} -229.184 q^{9} -197.274 q^{11} +169.000 q^{13} +92.9250 q^{15} -949.722 q^{17} -2233.30 q^{19} +38.1276 q^{21} +367.911 q^{23} +625.000 q^{25} -1755.11 q^{27} -6602.16 q^{29} +9911.27 q^{31} -733.267 q^{33} +256.441 q^{35} -9397.70 q^{37} +628.173 q^{39} +20588.3 q^{41} +16341.8 q^{43} -5729.60 q^{45} +13538.5 q^{47} -16701.8 q^{49} -3530.12 q^{51} -35049.6 q^{53} -4931.84 q^{55} -8301.20 q^{57} +6170.98 q^{59} +13746.1 q^{61} -2350.88 q^{63} +4225.00 q^{65} +62136.4 q^{67} +1367.52 q^{69} +38355.6 q^{71} +59967.3 q^{73} +2323.13 q^{75} -2023.56 q^{77} -89670.2 q^{79} +49167.9 q^{81} +38134.8 q^{83} -23743.1 q^{85} -24540.2 q^{87} -78278.2 q^{89} +1733.54 q^{91} +36840.2 q^{93} -55832.6 q^{95} +80567.1 q^{97} +45212.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 22 q^{3} + 75 q^{5} + 234 q^{7} + 155 q^{9} - 48 q^{11} + 507 q^{13} + 550 q^{15} + 1506 q^{17} + 360 q^{19} + 6904 q^{21} + 2370 q^{23} + 1875 q^{25} + 10168 q^{27} - 3078 q^{29} + 5388 q^{31} - 22572 q^{33}+ \cdots - 350340 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.71700 0.238446 0.119223 0.992868i \(-0.461960\pi\)
0.119223 + 0.992868i \(0.461960\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 10.2576 0.0791228 0.0395614 0.999217i \(-0.487404\pi\)
0.0395614 + 0.999217i \(0.487404\pi\)
\(8\) 0 0
\(9\) −229.184 −0.943144
\(10\) 0 0
\(11\) −197.274 −0.491572 −0.245786 0.969324i \(-0.579046\pi\)
−0.245786 + 0.969324i \(0.579046\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 92.9250 0.106636
\(16\) 0 0
\(17\) −949.722 −0.797029 −0.398515 0.917162i \(-0.630474\pi\)
−0.398515 + 0.917162i \(0.630474\pi\)
\(18\) 0 0
\(19\) −2233.30 −1.41927 −0.709633 0.704571i \(-0.751139\pi\)
−0.709633 + 0.704571i \(0.751139\pi\)
\(20\) 0 0
\(21\) 38.1276 0.0188665
\(22\) 0 0
\(23\) 367.911 0.145018 0.0725092 0.997368i \(-0.476899\pi\)
0.0725092 + 0.997368i \(0.476899\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) −1755.11 −0.463334
\(28\) 0 0
\(29\) −6602.16 −1.45778 −0.728888 0.684633i \(-0.759963\pi\)
−0.728888 + 0.684633i \(0.759963\pi\)
\(30\) 0 0
\(31\) 9911.27 1.85236 0.926179 0.377084i \(-0.123073\pi\)
0.926179 + 0.377084i \(0.123073\pi\)
\(32\) 0 0
\(33\) −733.267 −0.117213
\(34\) 0 0
\(35\) 256.441 0.0353848
\(36\) 0 0
\(37\) −9397.70 −1.12854 −0.564271 0.825590i \(-0.690842\pi\)
−0.564271 + 0.825590i \(0.690842\pi\)
\(38\) 0 0
\(39\) 628.173 0.0661330
\(40\) 0 0
\(41\) 20588.3 1.91276 0.956380 0.292126i \(-0.0943626\pi\)
0.956380 + 0.292126i \(0.0943626\pi\)
\(42\) 0 0
\(43\) 16341.8 1.34781 0.673904 0.738819i \(-0.264616\pi\)
0.673904 + 0.738819i \(0.264616\pi\)
\(44\) 0 0
\(45\) −5729.60 −0.421787
\(46\) 0 0
\(47\) 13538.5 0.893977 0.446989 0.894540i \(-0.352496\pi\)
0.446989 + 0.894540i \(0.352496\pi\)
\(48\) 0 0
\(49\) −16701.8 −0.993740
\(50\) 0 0
\(51\) −3530.12 −0.190048
\(52\) 0 0
\(53\) −35049.6 −1.71393 −0.856965 0.515374i \(-0.827653\pi\)
−0.856965 + 0.515374i \(0.827653\pi\)
\(54\) 0 0
\(55\) −4931.84 −0.219838
\(56\) 0 0
\(57\) −8301.20 −0.338418
\(58\) 0 0
\(59\) 6170.98 0.230794 0.115397 0.993319i \(-0.463186\pi\)
0.115397 + 0.993319i \(0.463186\pi\)
\(60\) 0 0
\(61\) 13746.1 0.472993 0.236496 0.971632i \(-0.424001\pi\)
0.236496 + 0.971632i \(0.424001\pi\)
\(62\) 0 0
\(63\) −2350.88 −0.0746242
\(64\) 0 0
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) 62136.4 1.69106 0.845530 0.533927i \(-0.179284\pi\)
0.845530 + 0.533927i \(0.179284\pi\)
\(68\) 0 0
\(69\) 1367.52 0.0345790
\(70\) 0 0
\(71\) 38355.6 0.902989 0.451495 0.892274i \(-0.350891\pi\)
0.451495 + 0.892274i \(0.350891\pi\)
\(72\) 0 0
\(73\) 59967.3 1.31707 0.658533 0.752552i \(-0.271177\pi\)
0.658533 + 0.752552i \(0.271177\pi\)
\(74\) 0 0
\(75\) 2323.13 0.0476891
\(76\) 0 0
\(77\) −2023.56 −0.0388946
\(78\) 0 0
\(79\) −89670.2 −1.61652 −0.808259 0.588827i \(-0.799590\pi\)
−0.808259 + 0.588827i \(0.799590\pi\)
\(80\) 0 0
\(81\) 49167.9 0.832664
\(82\) 0 0
\(83\) 38134.8 0.607611 0.303806 0.952734i \(-0.401743\pi\)
0.303806 + 0.952734i \(0.401743\pi\)
\(84\) 0 0
\(85\) −23743.1 −0.356442
\(86\) 0 0
\(87\) −24540.2 −0.347601
\(88\) 0 0
\(89\) −78278.2 −1.04753 −0.523764 0.851863i \(-0.675473\pi\)
−0.523764 + 0.851863i \(0.675473\pi\)
\(90\) 0 0
\(91\) 1733.54 0.0219447
\(92\) 0 0
\(93\) 36840.2 0.441687
\(94\) 0 0
\(95\) −55832.6 −0.634715
\(96\) 0 0
\(97\) 80567.1 0.869417 0.434709 0.900571i \(-0.356851\pi\)
0.434709 + 0.900571i \(0.356851\pi\)
\(98\) 0 0
\(99\) 45212.0 0.463623
\(100\) 0 0
\(101\) −10770.8 −0.105062 −0.0525309 0.998619i \(-0.516729\pi\)
−0.0525309 + 0.998619i \(0.516729\pi\)
\(102\) 0 0
\(103\) −44993.4 −0.417884 −0.208942 0.977928i \(-0.567002\pi\)
−0.208942 + 0.977928i \(0.567002\pi\)
\(104\) 0 0
\(105\) 953.190 0.00843735
\(106\) 0 0
\(107\) 194227. 1.64003 0.820013 0.572345i \(-0.193966\pi\)
0.820013 + 0.572345i \(0.193966\pi\)
\(108\) 0 0
\(109\) 216396. 1.74455 0.872275 0.489016i \(-0.162644\pi\)
0.872275 + 0.489016i \(0.162644\pi\)
\(110\) 0 0
\(111\) −34931.3 −0.269096
\(112\) 0 0
\(113\) 141318. 1.04112 0.520562 0.853824i \(-0.325722\pi\)
0.520562 + 0.853824i \(0.325722\pi\)
\(114\) 0 0
\(115\) 9197.77 0.0648542
\(116\) 0 0
\(117\) −38732.1 −0.261581
\(118\) 0 0
\(119\) −9741.89 −0.0630632
\(120\) 0 0
\(121\) −122134. −0.758356
\(122\) 0 0
\(123\) 76526.7 0.456089
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) 188285. 1.03587 0.517935 0.855420i \(-0.326701\pi\)
0.517935 + 0.855420i \(0.326701\pi\)
\(128\) 0 0
\(129\) 60742.4 0.321379
\(130\) 0 0
\(131\) −263916. −1.34365 −0.671826 0.740709i \(-0.734490\pi\)
−0.671826 + 0.740709i \(0.734490\pi\)
\(132\) 0 0
\(133\) −22908.4 −0.112296
\(134\) 0 0
\(135\) −43877.7 −0.207209
\(136\) 0 0
\(137\) −337417. −1.53591 −0.767955 0.640504i \(-0.778725\pi\)
−0.767955 + 0.640504i \(0.778725\pi\)
\(138\) 0 0
\(139\) 86203.3 0.378431 0.189216 0.981936i \(-0.439405\pi\)
0.189216 + 0.981936i \(0.439405\pi\)
\(140\) 0 0
\(141\) 50322.7 0.213165
\(142\) 0 0
\(143\) −33339.3 −0.136338
\(144\) 0 0
\(145\) −165054. −0.651937
\(146\) 0 0
\(147\) −62080.5 −0.236953
\(148\) 0 0
\(149\) −290191. −1.07082 −0.535412 0.844591i \(-0.679844\pi\)
−0.535412 + 0.844591i \(0.679844\pi\)
\(150\) 0 0
\(151\) −129889. −0.463585 −0.231793 0.972765i \(-0.574459\pi\)
−0.231793 + 0.972765i \(0.574459\pi\)
\(152\) 0 0
\(153\) 217661. 0.751713
\(154\) 0 0
\(155\) 247782. 0.828400
\(156\) 0 0
\(157\) −46206.2 −0.149607 −0.0748033 0.997198i \(-0.523833\pi\)
−0.0748033 + 0.997198i \(0.523833\pi\)
\(158\) 0 0
\(159\) −130279. −0.408679
\(160\) 0 0
\(161\) 3773.89 0.0114743
\(162\) 0 0
\(163\) −379076. −1.11753 −0.558763 0.829328i \(-0.688724\pi\)
−0.558763 + 0.829328i \(0.688724\pi\)
\(164\) 0 0
\(165\) −18331.7 −0.0524194
\(166\) 0 0
\(167\) 569176. 1.57927 0.789633 0.613580i \(-0.210271\pi\)
0.789633 + 0.613580i \(0.210271\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 511838. 1.33857
\(172\) 0 0
\(173\) −113968. −0.289513 −0.144757 0.989467i \(-0.546240\pi\)
−0.144757 + 0.989467i \(0.546240\pi\)
\(174\) 0 0
\(175\) 6411.02 0.0158246
\(176\) 0 0
\(177\) 22937.5 0.0550318
\(178\) 0 0
\(179\) −320294. −0.747165 −0.373582 0.927597i \(-0.621871\pi\)
−0.373582 + 0.927597i \(0.621871\pi\)
\(180\) 0 0
\(181\) 451978. 1.02547 0.512733 0.858548i \(-0.328633\pi\)
0.512733 + 0.858548i \(0.328633\pi\)
\(182\) 0 0
\(183\) 51094.2 0.112783
\(184\) 0 0
\(185\) −234943. −0.504699
\(186\) 0 0
\(187\) 187355. 0.391798
\(188\) 0 0
\(189\) −18003.2 −0.0366603
\(190\) 0 0
\(191\) −182918. −0.362805 −0.181402 0.983409i \(-0.558064\pi\)
−0.181402 + 0.983409i \(0.558064\pi\)
\(192\) 0 0
\(193\) 508696. 0.983026 0.491513 0.870870i \(-0.336444\pi\)
0.491513 + 0.870870i \(0.336444\pi\)
\(194\) 0 0
\(195\) 15704.3 0.0295756
\(196\) 0 0
\(197\) 111666. 0.205000 0.102500 0.994733i \(-0.467316\pi\)
0.102500 + 0.994733i \(0.467316\pi\)
\(198\) 0 0
\(199\) −521218. −0.933011 −0.466505 0.884518i \(-0.654487\pi\)
−0.466505 + 0.884518i \(0.654487\pi\)
\(200\) 0 0
\(201\) 230961. 0.403226
\(202\) 0 0
\(203\) −67722.4 −0.115343
\(204\) 0 0
\(205\) 514707. 0.855412
\(206\) 0 0
\(207\) −84319.2 −0.136773
\(208\) 0 0
\(209\) 440572. 0.697672
\(210\) 0 0
\(211\) 543969. 0.841140 0.420570 0.907260i \(-0.361830\pi\)
0.420570 + 0.907260i \(0.361830\pi\)
\(212\) 0 0
\(213\) 142568. 0.215314
\(214\) 0 0
\(215\) 408544. 0.602758
\(216\) 0 0
\(217\) 101666. 0.146564
\(218\) 0 0
\(219\) 222899. 0.314049
\(220\) 0 0
\(221\) −160503. −0.221056
\(222\) 0 0
\(223\) −114372. −0.154013 −0.0770063 0.997031i \(-0.524536\pi\)
−0.0770063 + 0.997031i \(0.524536\pi\)
\(224\) 0 0
\(225\) −143240. −0.188629
\(226\) 0 0
\(227\) 213250. 0.274678 0.137339 0.990524i \(-0.456145\pi\)
0.137339 + 0.990524i \(0.456145\pi\)
\(228\) 0 0
\(229\) 1.18502e6 1.49326 0.746631 0.665239i \(-0.231670\pi\)
0.746631 + 0.665239i \(0.231670\pi\)
\(230\) 0 0
\(231\) −7521.58 −0.00927425
\(232\) 0 0
\(233\) 1.37128e6 1.65476 0.827381 0.561641i \(-0.189830\pi\)
0.827381 + 0.561641i \(0.189830\pi\)
\(234\) 0 0
\(235\) 338463. 0.399799
\(236\) 0 0
\(237\) −333304. −0.385452
\(238\) 0 0
\(239\) 1.09024e6 1.23460 0.617301 0.786727i \(-0.288226\pi\)
0.617301 + 0.786727i \(0.288226\pi\)
\(240\) 0 0
\(241\) 84897.3 0.0941567 0.0470784 0.998891i \(-0.485009\pi\)
0.0470784 + 0.998891i \(0.485009\pi\)
\(242\) 0 0
\(243\) 609249. 0.661879
\(244\) 0 0
\(245\) −417545. −0.444414
\(246\) 0 0
\(247\) −377429. −0.393634
\(248\) 0 0
\(249\) 141747. 0.144882
\(250\) 0 0
\(251\) −425949. −0.426750 −0.213375 0.976970i \(-0.568446\pi\)
−0.213375 + 0.976970i \(0.568446\pi\)
\(252\) 0 0
\(253\) −72579.1 −0.0712870
\(254\) 0 0
\(255\) −88253.0 −0.0849922
\(256\) 0 0
\(257\) 250941. 0.236995 0.118497 0.992954i \(-0.462192\pi\)
0.118497 + 0.992954i \(0.462192\pi\)
\(258\) 0 0
\(259\) −96398.1 −0.0892933
\(260\) 0 0
\(261\) 1.51311e6 1.37489
\(262\) 0 0
\(263\) 1.48299e6 1.32205 0.661026 0.750363i \(-0.270121\pi\)
0.661026 + 0.750363i \(0.270121\pi\)
\(264\) 0 0
\(265\) −876239. −0.766493
\(266\) 0 0
\(267\) −290960. −0.249779
\(268\) 0 0
\(269\) 398773. 0.336004 0.168002 0.985787i \(-0.446268\pi\)
0.168002 + 0.985787i \(0.446268\pi\)
\(270\) 0 0
\(271\) −182496. −0.150949 −0.0754743 0.997148i \(-0.524047\pi\)
−0.0754743 + 0.997148i \(0.524047\pi\)
\(272\) 0 0
\(273\) 6443.57 0.00523262
\(274\) 0 0
\(275\) −123296. −0.0983145
\(276\) 0 0
\(277\) −79202.9 −0.0620215 −0.0310107 0.999519i \(-0.509873\pi\)
−0.0310107 + 0.999519i \(0.509873\pi\)
\(278\) 0 0
\(279\) −2.27150e6 −1.74704
\(280\) 0 0
\(281\) −1.51199e6 −1.14231 −0.571154 0.820843i \(-0.693504\pi\)
−0.571154 + 0.820843i \(0.693504\pi\)
\(282\) 0 0
\(283\) −2.50781e6 −1.86135 −0.930675 0.365848i \(-0.880779\pi\)
−0.930675 + 0.365848i \(0.880779\pi\)
\(284\) 0 0
\(285\) −207530. −0.151345
\(286\) 0 0
\(287\) 211187. 0.151343
\(288\) 0 0
\(289\) −517885. −0.364744
\(290\) 0 0
\(291\) 299468. 0.207309
\(292\) 0 0
\(293\) 1.75384e6 1.19349 0.596747 0.802429i \(-0.296459\pi\)
0.596747 + 0.802429i \(0.296459\pi\)
\(294\) 0 0
\(295\) 154274. 0.103214
\(296\) 0 0
\(297\) 346237. 0.227762
\(298\) 0 0
\(299\) 62176.9 0.0402208
\(300\) 0 0
\(301\) 167628. 0.106642
\(302\) 0 0
\(303\) −40035.1 −0.0250515
\(304\) 0 0
\(305\) 343652. 0.211529
\(306\) 0 0
\(307\) 1.55298e6 0.940414 0.470207 0.882556i \(-0.344179\pi\)
0.470207 + 0.882556i \(0.344179\pi\)
\(308\) 0 0
\(309\) −167240. −0.0996426
\(310\) 0 0
\(311\) 188125. 0.110292 0.0551462 0.998478i \(-0.482438\pi\)
0.0551462 + 0.998478i \(0.482438\pi\)
\(312\) 0 0
\(313\) 846464. 0.488369 0.244184 0.969729i \(-0.421480\pi\)
0.244184 + 0.969729i \(0.421480\pi\)
\(314\) 0 0
\(315\) −58772.1 −0.0333729
\(316\) 0 0
\(317\) −303332. −0.169539 −0.0847696 0.996401i \(-0.527015\pi\)
−0.0847696 + 0.996401i \(0.527015\pi\)
\(318\) 0 0
\(319\) 1.30243e6 0.716603
\(320\) 0 0
\(321\) 721943. 0.391057
\(322\) 0 0
\(323\) 2.12102e6 1.13120
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 804345. 0.415980
\(328\) 0 0
\(329\) 138873. 0.0707340
\(330\) 0 0
\(331\) 3.36224e6 1.68678 0.843390 0.537301i \(-0.180556\pi\)
0.843390 + 0.537301i \(0.180556\pi\)
\(332\) 0 0
\(333\) 2.15380e6 1.06438
\(334\) 0 0
\(335\) 1.55341e6 0.756265
\(336\) 0 0
\(337\) 2.42001e6 1.16076 0.580380 0.814346i \(-0.302904\pi\)
0.580380 + 0.814346i \(0.302904\pi\)
\(338\) 0 0
\(339\) 525281. 0.248252
\(340\) 0 0
\(341\) −1.95523e6 −0.910568
\(342\) 0 0
\(343\) −343720. −0.157750
\(344\) 0 0
\(345\) 34188.1 0.0154642
\(346\) 0 0
\(347\) 208658. 0.0930274 0.0465137 0.998918i \(-0.485189\pi\)
0.0465137 + 0.998918i \(0.485189\pi\)
\(348\) 0 0
\(349\) −2.56139e6 −1.12567 −0.562837 0.826568i \(-0.690290\pi\)
−0.562837 + 0.826568i \(0.690290\pi\)
\(350\) 0 0
\(351\) −296613. −0.128506
\(352\) 0 0
\(353\) −2.22758e6 −0.951472 −0.475736 0.879588i \(-0.657818\pi\)
−0.475736 + 0.879588i \(0.657818\pi\)
\(354\) 0 0
\(355\) 958889. 0.403829
\(356\) 0 0
\(357\) −36210.6 −0.0150372
\(358\) 0 0
\(359\) 4.69711e6 1.92351 0.961756 0.273908i \(-0.0883164\pi\)
0.961756 + 0.273908i \(0.0883164\pi\)
\(360\) 0 0
\(361\) 2.51155e6 1.01432
\(362\) 0 0
\(363\) −453973. −0.180827
\(364\) 0 0
\(365\) 1.49918e6 0.589010
\(366\) 0 0
\(367\) 3.22496e6 1.24985 0.624926 0.780684i \(-0.285129\pi\)
0.624926 + 0.780684i \(0.285129\pi\)
\(368\) 0 0
\(369\) −4.71850e6 −1.80401
\(370\) 0 0
\(371\) −359525. −0.135611
\(372\) 0 0
\(373\) −3.09204e6 −1.15073 −0.575364 0.817898i \(-0.695140\pi\)
−0.575364 + 0.817898i \(0.695140\pi\)
\(374\) 0 0
\(375\) 58078.1 0.0213272
\(376\) 0 0
\(377\) −1.11576e6 −0.404314
\(378\) 0 0
\(379\) 3.63851e6 1.30115 0.650573 0.759444i \(-0.274529\pi\)
0.650573 + 0.759444i \(0.274529\pi\)
\(380\) 0 0
\(381\) 699854. 0.246999
\(382\) 0 0
\(383\) −1.89242e6 −0.659204 −0.329602 0.944120i \(-0.606915\pi\)
−0.329602 + 0.944120i \(0.606915\pi\)
\(384\) 0 0
\(385\) −50589.0 −0.0173942
\(386\) 0 0
\(387\) −3.74527e6 −1.27118
\(388\) 0 0
\(389\) 79129.5 0.0265133 0.0132567 0.999912i \(-0.495780\pi\)
0.0132567 + 0.999912i \(0.495780\pi\)
\(390\) 0 0
\(391\) −349413. −0.115584
\(392\) 0 0
\(393\) −980975. −0.320388
\(394\) 0 0
\(395\) −2.24176e6 −0.722929
\(396\) 0 0
\(397\) −1.82235e6 −0.580305 −0.290153 0.956980i \(-0.593706\pi\)
−0.290153 + 0.956980i \(0.593706\pi\)
\(398\) 0 0
\(399\) −85150.6 −0.0267766
\(400\) 0 0
\(401\) −117774. −0.0365754 −0.0182877 0.999833i \(-0.505821\pi\)
−0.0182877 + 0.999833i \(0.505821\pi\)
\(402\) 0 0
\(403\) 1.67500e6 0.513752
\(404\) 0 0
\(405\) 1.22920e6 0.372378
\(406\) 0 0
\(407\) 1.85392e6 0.554760
\(408\) 0 0
\(409\) 3.73101e6 1.10285 0.551427 0.834223i \(-0.314083\pi\)
0.551427 + 0.834223i \(0.314083\pi\)
\(410\) 0 0
\(411\) −1.25418e6 −0.366231
\(412\) 0 0
\(413\) 63299.6 0.0182610
\(414\) 0 0
\(415\) 953369. 0.271732
\(416\) 0 0
\(417\) 320418. 0.0902353
\(418\) 0 0
\(419\) 2.69321e6 0.749438 0.374719 0.927138i \(-0.377739\pi\)
0.374719 + 0.927138i \(0.377739\pi\)
\(420\) 0 0
\(421\) 5.56789e6 1.53103 0.765517 0.643415i \(-0.222483\pi\)
0.765517 + 0.643415i \(0.222483\pi\)
\(422\) 0 0
\(423\) −3.10281e6 −0.843149
\(424\) 0 0
\(425\) −593576. −0.159406
\(426\) 0 0
\(427\) 141002. 0.0374245
\(428\) 0 0
\(429\) −123922. −0.0325091
\(430\) 0 0
\(431\) 3.75659e6 0.974093 0.487047 0.873376i \(-0.338074\pi\)
0.487047 + 0.873376i \(0.338074\pi\)
\(432\) 0 0
\(433\) 1.60978e6 0.412615 0.206308 0.978487i \(-0.433855\pi\)
0.206308 + 0.978487i \(0.433855\pi\)
\(434\) 0 0
\(435\) −613506. −0.155452
\(436\) 0 0
\(437\) −821657. −0.205820
\(438\) 0 0
\(439\) 1.92307e6 0.476248 0.238124 0.971235i \(-0.423468\pi\)
0.238124 + 0.971235i \(0.423468\pi\)
\(440\) 0 0
\(441\) 3.82778e6 0.937239
\(442\) 0 0
\(443\) 1.43060e6 0.346346 0.173173 0.984891i \(-0.444598\pi\)
0.173173 + 0.984891i \(0.444598\pi\)
\(444\) 0 0
\(445\) −1.95695e6 −0.468469
\(446\) 0 0
\(447\) −1.07864e6 −0.255333
\(448\) 0 0
\(449\) −3.30270e6 −0.773131 −0.386565 0.922262i \(-0.626339\pi\)
−0.386565 + 0.922262i \(0.626339\pi\)
\(450\) 0 0
\(451\) −4.06153e6 −0.940260
\(452\) 0 0
\(453\) −482797. −0.110540
\(454\) 0 0
\(455\) 43338.5 0.00981398
\(456\) 0 0
\(457\) 6.85658e6 1.53574 0.767869 0.640606i \(-0.221317\pi\)
0.767869 + 0.640606i \(0.221317\pi\)
\(458\) 0 0
\(459\) 1.66687e6 0.369291
\(460\) 0 0
\(461\) 8.33435e6 1.82650 0.913250 0.407400i \(-0.133565\pi\)
0.913250 + 0.407400i \(0.133565\pi\)
\(462\) 0 0
\(463\) 2.87024e6 0.622250 0.311125 0.950369i \(-0.399294\pi\)
0.311125 + 0.950369i \(0.399294\pi\)
\(464\) 0 0
\(465\) 921005. 0.197528
\(466\) 0 0
\(467\) −6.61814e6 −1.40425 −0.702124 0.712055i \(-0.747765\pi\)
−0.702124 + 0.712055i \(0.747765\pi\)
\(468\) 0 0
\(469\) 637372. 0.133801
\(470\) 0 0
\(471\) −171748. −0.0356731
\(472\) 0 0
\(473\) −3.22380e6 −0.662545
\(474\) 0 0
\(475\) −1.39582e6 −0.283853
\(476\) 0 0
\(477\) 8.03280e6 1.61648
\(478\) 0 0
\(479\) 1.47435e6 0.293603 0.146802 0.989166i \(-0.453102\pi\)
0.146802 + 0.989166i \(0.453102\pi\)
\(480\) 0 0
\(481\) −1.58821e6 −0.313001
\(482\) 0 0
\(483\) 14027.6 0.00273599
\(484\) 0 0
\(485\) 2.01418e6 0.388815
\(486\) 0 0
\(487\) −2.63151e6 −0.502786 −0.251393 0.967885i \(-0.580889\pi\)
−0.251393 + 0.967885i \(0.580889\pi\)
\(488\) 0 0
\(489\) −1.40903e6 −0.266469
\(490\) 0 0
\(491\) −4.70461e6 −0.880684 −0.440342 0.897830i \(-0.645143\pi\)
−0.440342 + 0.897830i \(0.645143\pi\)
\(492\) 0 0
\(493\) 6.27022e6 1.16189
\(494\) 0 0
\(495\) 1.13030e6 0.207339
\(496\) 0 0
\(497\) 393437. 0.0714471
\(498\) 0 0
\(499\) −409148. −0.0735578 −0.0367789 0.999323i \(-0.511710\pi\)
−0.0367789 + 0.999323i \(0.511710\pi\)
\(500\) 0 0
\(501\) 2.11563e6 0.376569
\(502\) 0 0
\(503\) −9.62836e6 −1.69681 −0.848404 0.529350i \(-0.822436\pi\)
−0.848404 + 0.529350i \(0.822436\pi\)
\(504\) 0 0
\(505\) −269270. −0.0469851
\(506\) 0 0
\(507\) 106161. 0.0183420
\(508\) 0 0
\(509\) −1.24824e6 −0.213552 −0.106776 0.994283i \(-0.534053\pi\)
−0.106776 + 0.994283i \(0.534053\pi\)
\(510\) 0 0
\(511\) 615122. 0.104210
\(512\) 0 0
\(513\) 3.91969e6 0.657595
\(514\) 0 0
\(515\) −1.12483e6 −0.186883
\(516\) 0 0
\(517\) −2.67079e6 −0.439455
\(518\) 0 0
\(519\) −423620. −0.0690332
\(520\) 0 0
\(521\) −7.13050e6 −1.15087 −0.575434 0.817848i \(-0.695167\pi\)
−0.575434 + 0.817848i \(0.695167\pi\)
\(522\) 0 0
\(523\) −4.85487e6 −0.776110 −0.388055 0.921636i \(-0.626853\pi\)
−0.388055 + 0.921636i \(0.626853\pi\)
\(524\) 0 0
\(525\) 23829.8 0.00377330
\(526\) 0 0
\(527\) −9.41295e6 −1.47638
\(528\) 0 0
\(529\) −6.30098e6 −0.978970
\(530\) 0 0
\(531\) −1.41429e6 −0.217672
\(532\) 0 0
\(533\) 3.47942e6 0.530504
\(534\) 0 0
\(535\) 4.85568e6 0.733442
\(536\) 0 0
\(537\) −1.19053e6 −0.178158
\(538\) 0 0
\(539\) 3.29482e6 0.488495
\(540\) 0 0
\(541\) −1.13451e7 −1.66653 −0.833266 0.552872i \(-0.813532\pi\)
−0.833266 + 0.552872i \(0.813532\pi\)
\(542\) 0 0
\(543\) 1.68000e6 0.244518
\(544\) 0 0
\(545\) 5.40990e6 0.780186
\(546\) 0 0
\(547\) −401928. −0.0574355 −0.0287177 0.999588i \(-0.509142\pi\)
−0.0287177 + 0.999588i \(0.509142\pi\)
\(548\) 0 0
\(549\) −3.15038e6 −0.446100
\(550\) 0 0
\(551\) 1.47446e7 2.06897
\(552\) 0 0
\(553\) −919803. −0.127903
\(554\) 0 0
\(555\) −873282. −0.120343
\(556\) 0 0
\(557\) 7.58501e6 1.03590 0.517950 0.855411i \(-0.326695\pi\)
0.517950 + 0.855411i \(0.326695\pi\)
\(558\) 0 0
\(559\) 2.76176e6 0.373814
\(560\) 0 0
\(561\) 696400. 0.0934225
\(562\) 0 0
\(563\) 9.36555e6 1.24527 0.622633 0.782514i \(-0.286063\pi\)
0.622633 + 0.782514i \(0.286063\pi\)
\(564\) 0 0
\(565\) 3.53296e6 0.465605
\(566\) 0 0
\(567\) 504346. 0.0658827
\(568\) 0 0
\(569\) 1.36255e7 1.76430 0.882150 0.470969i \(-0.156096\pi\)
0.882150 + 0.470969i \(0.156096\pi\)
\(570\) 0 0
\(571\) −1.29016e7 −1.65598 −0.827988 0.560746i \(-0.810515\pi\)
−0.827988 + 0.560746i \(0.810515\pi\)
\(572\) 0 0
\(573\) −679907. −0.0865093
\(574\) 0 0
\(575\) 229944. 0.0290037
\(576\) 0 0
\(577\) 3.12690e6 0.390998 0.195499 0.980704i \(-0.437367\pi\)
0.195499 + 0.980704i \(0.437367\pi\)
\(578\) 0 0
\(579\) 1.89082e6 0.234398
\(580\) 0 0
\(581\) 391172. 0.0480759
\(582\) 0 0
\(583\) 6.91436e6 0.842521
\(584\) 0 0
\(585\) −968302. −0.116983
\(586\) 0 0
\(587\) 1.61598e7 1.93571 0.967854 0.251511i \(-0.0809275\pi\)
0.967854 + 0.251511i \(0.0809275\pi\)
\(588\) 0 0
\(589\) −2.21349e7 −2.62899
\(590\) 0 0
\(591\) 415062. 0.0488814
\(592\) 0 0
\(593\) −5.02852e6 −0.587223 −0.293612 0.955925i \(-0.594857\pi\)
−0.293612 + 0.955925i \(0.594857\pi\)
\(594\) 0 0
\(595\) −243547. −0.0282027
\(596\) 0 0
\(597\) −1.93737e6 −0.222472
\(598\) 0 0
\(599\) −6.83761e6 −0.778642 −0.389321 0.921102i \(-0.627290\pi\)
−0.389321 + 0.921102i \(0.627290\pi\)
\(600\) 0 0
\(601\) −8.01912e6 −0.905608 −0.452804 0.891610i \(-0.649576\pi\)
−0.452804 + 0.891610i \(0.649576\pi\)
\(602\) 0 0
\(603\) −1.42407e7 −1.59491
\(604\) 0 0
\(605\) −3.05335e6 −0.339147
\(606\) 0 0
\(607\) −7.83186e6 −0.862766 −0.431383 0.902169i \(-0.641974\pi\)
−0.431383 + 0.902169i \(0.641974\pi\)
\(608\) 0 0
\(609\) −251724. −0.0275031
\(610\) 0 0
\(611\) 2.28801e6 0.247945
\(612\) 0 0
\(613\) −1.57922e7 −1.69743 −0.848716 0.528849i \(-0.822624\pi\)
−0.848716 + 0.528849i \(0.822624\pi\)
\(614\) 0 0
\(615\) 1.91317e6 0.203969
\(616\) 0 0
\(617\) 8.38747e6 0.886989 0.443494 0.896277i \(-0.353739\pi\)
0.443494 + 0.896277i \(0.353739\pi\)
\(618\) 0 0
\(619\) −1.35269e6 −0.141896 −0.0709481 0.997480i \(-0.522602\pi\)
−0.0709481 + 0.997480i \(0.522602\pi\)
\(620\) 0 0
\(621\) −645723. −0.0671920
\(622\) 0 0
\(623\) −802948. −0.0828834
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 1.63761e6 0.166357
\(628\) 0 0
\(629\) 8.92521e6 0.899480
\(630\) 0 0
\(631\) 7.20270e6 0.720149 0.360074 0.932924i \(-0.382751\pi\)
0.360074 + 0.932924i \(0.382751\pi\)
\(632\) 0 0
\(633\) 2.02193e6 0.200566
\(634\) 0 0
\(635\) 4.70712e6 0.463255
\(636\) 0 0
\(637\) −2.82260e6 −0.275614
\(638\) 0 0
\(639\) −8.79048e6 −0.851649
\(640\) 0 0
\(641\) 2.63844e6 0.253631 0.126815 0.991926i \(-0.459524\pi\)
0.126815 + 0.991926i \(0.459524\pi\)
\(642\) 0 0
\(643\) −6.76792e6 −0.645547 −0.322774 0.946476i \(-0.604615\pi\)
−0.322774 + 0.946476i \(0.604615\pi\)
\(644\) 0 0
\(645\) 1.51856e6 0.143725
\(646\) 0 0
\(647\) −1.01251e7 −0.950907 −0.475453 0.879741i \(-0.657716\pi\)
−0.475453 + 0.879741i \(0.657716\pi\)
\(648\) 0 0
\(649\) −1.21737e6 −0.113452
\(650\) 0 0
\(651\) 377893. 0.0349475
\(652\) 0 0
\(653\) −8.17558e6 −0.750301 −0.375150 0.926964i \(-0.622409\pi\)
−0.375150 + 0.926964i \(0.622409\pi\)
\(654\) 0 0
\(655\) −6.59789e6 −0.600900
\(656\) 0 0
\(657\) −1.37435e7 −1.24218
\(658\) 0 0
\(659\) 1.24909e7 1.12042 0.560211 0.828350i \(-0.310720\pi\)
0.560211 + 0.828350i \(0.310720\pi\)
\(660\) 0 0
\(661\) 5.43688e6 0.484001 0.242001 0.970276i \(-0.422196\pi\)
0.242001 + 0.970276i \(0.422196\pi\)
\(662\) 0 0
\(663\) −596590. −0.0527099
\(664\) 0 0
\(665\) −572710. −0.0502205
\(666\) 0 0
\(667\) −2.42900e6 −0.211404
\(668\) 0 0
\(669\) −425120. −0.0367236
\(670\) 0 0
\(671\) −2.71174e6 −0.232510
\(672\) 0 0
\(673\) 9.60528e6 0.817471 0.408736 0.912653i \(-0.365970\pi\)
0.408736 + 0.912653i \(0.365970\pi\)
\(674\) 0 0
\(675\) −1.09694e6 −0.0926669
\(676\) 0 0
\(677\) 5.99107e6 0.502380 0.251190 0.967938i \(-0.419178\pi\)
0.251190 + 0.967938i \(0.419178\pi\)
\(678\) 0 0
\(679\) 826427. 0.0687907
\(680\) 0 0
\(681\) 792650. 0.0654958
\(682\) 0 0
\(683\) −1.49302e7 −1.22465 −0.612327 0.790605i \(-0.709766\pi\)
−0.612327 + 0.790605i \(0.709766\pi\)
\(684\) 0 0
\(685\) −8.43543e6 −0.686880
\(686\) 0 0
\(687\) 4.40471e6 0.356062
\(688\) 0 0
\(689\) −5.92338e6 −0.475359
\(690\) 0 0
\(691\) 4.19350e6 0.334104 0.167052 0.985948i \(-0.446575\pi\)
0.167052 + 0.985948i \(0.446575\pi\)
\(692\) 0 0
\(693\) 463767. 0.0366832
\(694\) 0 0
\(695\) 2.15508e6 0.169240
\(696\) 0 0
\(697\) −1.95531e7 −1.52453
\(698\) 0 0
\(699\) 5.09704e6 0.394571
\(700\) 0 0
\(701\) −1.88086e7 −1.44564 −0.722820 0.691036i \(-0.757155\pi\)
−0.722820 + 0.691036i \(0.757155\pi\)
\(702\) 0 0
\(703\) 2.09879e7 1.60170
\(704\) 0 0
\(705\) 1.25807e6 0.0953303
\(706\) 0 0
\(707\) −110483. −0.00831278
\(708\) 0 0
\(709\) 1.59830e7 1.19411 0.597054 0.802201i \(-0.296338\pi\)
0.597054 + 0.802201i \(0.296338\pi\)
\(710\) 0 0
\(711\) 2.05510e7 1.52461
\(712\) 0 0
\(713\) 3.64646e6 0.268626
\(714\) 0 0
\(715\) −833482. −0.0609721
\(716\) 0 0
\(717\) 4.05242e6 0.294386
\(718\) 0 0
\(719\) −1.01853e7 −0.734771 −0.367386 0.930069i \(-0.619747\pi\)
−0.367386 + 0.930069i \(0.619747\pi\)
\(720\) 0 0
\(721\) −461525. −0.0330641
\(722\) 0 0
\(723\) 315564. 0.0224513
\(724\) 0 0
\(725\) −4.12635e6 −0.291555
\(726\) 0 0
\(727\) 4.80166e6 0.336942 0.168471 0.985707i \(-0.446117\pi\)
0.168471 + 0.985707i \(0.446117\pi\)
\(728\) 0 0
\(729\) −9.68323e6 −0.674841
\(730\) 0 0
\(731\) −1.55201e7 −1.07424
\(732\) 0 0
\(733\) 4.57724e6 0.314662 0.157331 0.987546i \(-0.449711\pi\)
0.157331 + 0.987546i \(0.449711\pi\)
\(734\) 0 0
\(735\) −1.55201e6 −0.105969
\(736\) 0 0
\(737\) −1.22579e7 −0.831279
\(738\) 0 0
\(739\) −2.54398e7 −1.71358 −0.856788 0.515669i \(-0.827543\pi\)
−0.856788 + 0.515669i \(0.827543\pi\)
\(740\) 0 0
\(741\) −1.40290e6 −0.0938603
\(742\) 0 0
\(743\) 1.06776e7 0.709583 0.354791 0.934946i \(-0.384552\pi\)
0.354791 + 0.934946i \(0.384552\pi\)
\(744\) 0 0
\(745\) −7.25477e6 −0.478887
\(746\) 0 0
\(747\) −8.73987e6 −0.573065
\(748\) 0 0
\(749\) 1.99231e6 0.129763
\(750\) 0 0
\(751\) −1.24759e7 −0.807184 −0.403592 0.914939i \(-0.632238\pi\)
−0.403592 + 0.914939i \(0.632238\pi\)
\(752\) 0 0
\(753\) −1.58325e6 −0.101757
\(754\) 0 0
\(755\) −3.24722e6 −0.207322
\(756\) 0 0
\(757\) 1.89987e6 0.120499 0.0602495 0.998183i \(-0.480810\pi\)
0.0602495 + 0.998183i \(0.480810\pi\)
\(758\) 0 0
\(759\) −269777. −0.0169981
\(760\) 0 0
\(761\) 1.16295e7 0.727949 0.363975 0.931409i \(-0.381420\pi\)
0.363975 + 0.931409i \(0.381420\pi\)
\(762\) 0 0
\(763\) 2.21971e6 0.138034
\(764\) 0 0
\(765\) 5.44153e6 0.336176
\(766\) 0 0
\(767\) 1.04290e6 0.0640107
\(768\) 0 0
\(769\) −2.05493e7 −1.25309 −0.626544 0.779386i \(-0.715531\pi\)
−0.626544 + 0.779386i \(0.715531\pi\)
\(770\) 0 0
\(771\) 932748. 0.0565104
\(772\) 0 0
\(773\) −5.50647e6 −0.331455 −0.165727 0.986172i \(-0.552997\pi\)
−0.165727 + 0.986172i \(0.552997\pi\)
\(774\) 0 0
\(775\) 6.19454e6 0.370472
\(776\) 0 0
\(777\) −358312. −0.0212916
\(778\) 0 0
\(779\) −4.59799e7 −2.71472
\(780\) 0 0
\(781\) −7.56655e6 −0.443885
\(782\) 0 0
\(783\) 1.15875e7 0.675438
\(784\) 0 0
\(785\) −1.15515e6 −0.0669061
\(786\) 0 0
\(787\) −1.66836e7 −0.960182 −0.480091 0.877219i \(-0.659396\pi\)
−0.480091 + 0.877219i \(0.659396\pi\)
\(788\) 0 0
\(789\) 5.51228e6 0.315238
\(790\) 0 0
\(791\) 1.44959e6 0.0823767
\(792\) 0 0
\(793\) 2.32309e6 0.131185
\(794\) 0 0
\(795\) −3.25698e6 −0.182767
\(796\) 0 0
\(797\) −1.53978e7 −0.858643 −0.429321 0.903152i \(-0.641247\pi\)
−0.429321 + 0.903152i \(0.641247\pi\)
\(798\) 0 0
\(799\) −1.28578e7 −0.712526
\(800\) 0 0
\(801\) 1.79401e7 0.987969
\(802\) 0 0
\(803\) −1.18300e7 −0.647434
\(804\) 0 0
\(805\) 94347.3 0.00513144
\(806\) 0 0
\(807\) 1.48224e6 0.0801188
\(808\) 0 0
\(809\) −2.01482e7 −1.08234 −0.541171 0.840912i \(-0.682019\pi\)
−0.541171 + 0.840912i \(0.682019\pi\)
\(810\) 0 0
\(811\) 3.88568e6 0.207451 0.103725 0.994606i \(-0.466924\pi\)
0.103725 + 0.994606i \(0.466924\pi\)
\(812\) 0 0
\(813\) −678337. −0.0359931
\(814\) 0 0
\(815\) −9.47690e6 −0.499773
\(816\) 0 0
\(817\) −3.64961e7 −1.91290
\(818\) 0 0
\(819\) −397299. −0.0206970
\(820\) 0 0
\(821\) 1.69007e7 0.875079 0.437539 0.899199i \(-0.355850\pi\)
0.437539 + 0.899199i \(0.355850\pi\)
\(822\) 0 0
\(823\) −166131. −0.00854971 −0.00427485 0.999991i \(-0.501361\pi\)
−0.00427485 + 0.999991i \(0.501361\pi\)
\(824\) 0 0
\(825\) −458292. −0.0234427
\(826\) 0 0
\(827\) 1.64293e7 0.835324 0.417662 0.908602i \(-0.362850\pi\)
0.417662 + 0.908602i \(0.362850\pi\)
\(828\) 0 0
\(829\) 811068. 0.0409894 0.0204947 0.999790i \(-0.493476\pi\)
0.0204947 + 0.999790i \(0.493476\pi\)
\(830\) 0 0
\(831\) −294397. −0.0147888
\(832\) 0 0
\(833\) 1.58621e7 0.792040
\(834\) 0 0
\(835\) 1.42294e7 0.706269
\(836\) 0 0
\(837\) −1.73953e7 −0.858261
\(838\) 0 0
\(839\) −1.09462e7 −0.536855 −0.268427 0.963300i \(-0.586504\pi\)
−0.268427 + 0.963300i \(0.586504\pi\)
\(840\) 0 0
\(841\) 2.30773e7 1.12511
\(842\) 0 0
\(843\) −5.62007e6 −0.272378
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −1.25281e6 −0.0600033
\(848\) 0 0
\(849\) −9.32152e6 −0.443831
\(850\) 0 0
\(851\) −3.45752e6 −0.163659
\(852\) 0 0
\(853\) 1.24011e7 0.583564 0.291782 0.956485i \(-0.405752\pi\)
0.291782 + 0.956485i \(0.405752\pi\)
\(854\) 0 0
\(855\) 1.27959e7 0.598628
\(856\) 0 0
\(857\) 1.78406e7 0.829768 0.414884 0.909874i \(-0.363822\pi\)
0.414884 + 0.909874i \(0.363822\pi\)
\(858\) 0 0
\(859\) −1.43038e7 −0.661408 −0.330704 0.943735i \(-0.607286\pi\)
−0.330704 + 0.943735i \(0.607286\pi\)
\(860\) 0 0
\(861\) 784982. 0.0360871
\(862\) 0 0
\(863\) −2.13905e7 −0.977673 −0.488836 0.872376i \(-0.662578\pi\)
−0.488836 + 0.872376i \(0.662578\pi\)
\(864\) 0 0
\(865\) −2.84920e6 −0.129474
\(866\) 0 0
\(867\) −1.92498e6 −0.0869717
\(868\) 0 0
\(869\) 1.76896e7 0.794636
\(870\) 0 0
\(871\) 1.05011e7 0.469016
\(872\) 0 0
\(873\) −1.84647e7 −0.819985
\(874\) 0 0
\(875\) 160275. 0.00707696
\(876\) 0 0
\(877\) −3.28786e7 −1.44349 −0.721745 0.692159i \(-0.756660\pi\)
−0.721745 + 0.692159i \(0.756660\pi\)
\(878\) 0 0
\(879\) 6.51902e6 0.284584
\(880\) 0 0
\(881\) −2.63729e7 −1.14477 −0.572384 0.819986i \(-0.693981\pi\)
−0.572384 + 0.819986i \(0.693981\pi\)
\(882\) 0 0
\(883\) 1.89435e7 0.817634 0.408817 0.912616i \(-0.365941\pi\)
0.408817 + 0.912616i \(0.365941\pi\)
\(884\) 0 0
\(885\) 573438. 0.0246110
\(886\) 0 0
\(887\) −1.00174e7 −0.427509 −0.213755 0.976887i \(-0.568569\pi\)
−0.213755 + 0.976887i \(0.568569\pi\)
\(888\) 0 0
\(889\) 1.93135e6 0.0819610
\(890\) 0 0
\(891\) −9.69955e6 −0.409314
\(892\) 0 0
\(893\) −3.02356e7 −1.26879
\(894\) 0 0
\(895\) −8.00735e6 −0.334142
\(896\) 0 0
\(897\) 231112. 0.00959049
\(898\) 0 0
\(899\) −6.54357e7 −2.70032
\(900\) 0 0
\(901\) 3.32874e7 1.36605
\(902\) 0 0
\(903\) 623072. 0.0254284
\(904\) 0 0
\(905\) 1.12995e7 0.458602
\(906\) 0 0
\(907\) 2.20644e7 0.890581 0.445290 0.895386i \(-0.353100\pi\)
0.445290 + 0.895386i \(0.353100\pi\)
\(908\) 0 0
\(909\) 2.46850e6 0.0990884
\(910\) 0 0
\(911\) 2.02691e7 0.809167 0.404583 0.914501i \(-0.367417\pi\)
0.404583 + 0.914501i \(0.367417\pi\)
\(912\) 0 0
\(913\) −7.52299e6 −0.298685
\(914\) 0 0
\(915\) 1.27736e6 0.0504381
\(916\) 0 0
\(917\) −2.70715e6 −0.106314
\(918\) 0 0
\(919\) 1.79004e7 0.699154 0.349577 0.936908i \(-0.386325\pi\)
0.349577 + 0.936908i \(0.386325\pi\)
\(920\) 0 0
\(921\) 5.77242e6 0.224238
\(922\) 0 0
\(923\) 6.48209e6 0.250444
\(924\) 0 0
\(925\) −5.87356e6 −0.225708
\(926\) 0 0
\(927\) 1.03118e7 0.394124
\(928\) 0 0
\(929\) 9.25686e6 0.351904 0.175952 0.984399i \(-0.443700\pi\)
0.175952 + 0.984399i \(0.443700\pi\)
\(930\) 0 0
\(931\) 3.73002e7 1.41038
\(932\) 0 0
\(933\) 699260. 0.0262987
\(934\) 0 0
\(935\) 4.68388e6 0.175217
\(936\) 0 0
\(937\) −8.47287e6 −0.315269 −0.157635 0.987498i \(-0.550387\pi\)
−0.157635 + 0.987498i \(0.550387\pi\)
\(938\) 0 0
\(939\) 3.14631e6 0.116449
\(940\) 0 0
\(941\) −1.22548e7 −0.451161 −0.225580 0.974225i \(-0.572428\pi\)
−0.225580 + 0.974225i \(0.572428\pi\)
\(942\) 0 0
\(943\) 7.57465e6 0.277385
\(944\) 0 0
\(945\) −450081. −0.0163950
\(946\) 0 0
\(947\) −2.12327e7 −0.769363 −0.384681 0.923049i \(-0.625689\pi\)
−0.384681 + 0.923049i \(0.625689\pi\)
\(948\) 0 0
\(949\) 1.01345e7 0.365288
\(950\) 0 0
\(951\) −1.12749e6 −0.0404259
\(952\) 0 0
\(953\) −2.31217e7 −0.824684 −0.412342 0.911029i \(-0.635289\pi\)
−0.412342 + 0.911029i \(0.635289\pi\)
\(954\) 0 0
\(955\) −4.57295e6 −0.162251
\(956\) 0 0
\(957\) 4.84114e6 0.170871
\(958\) 0 0
\(959\) −3.46110e6 −0.121525
\(960\) 0 0
\(961\) 6.96040e7 2.43123
\(962\) 0 0
\(963\) −4.45137e7 −1.54678
\(964\) 0 0
\(965\) 1.27174e7 0.439622
\(966\) 0 0
\(967\) −1.92947e7 −0.663548 −0.331774 0.943359i \(-0.607647\pi\)
−0.331774 + 0.943359i \(0.607647\pi\)
\(968\) 0 0
\(969\) 7.88383e6 0.269729
\(970\) 0 0
\(971\) −1.63863e7 −0.557743 −0.278871 0.960328i \(-0.589960\pi\)
−0.278871 + 0.960328i \(0.589960\pi\)
\(972\) 0 0
\(973\) 884241. 0.0299425
\(974\) 0 0
\(975\) 392608. 0.0132266
\(976\) 0 0
\(977\) 3.83317e6 0.128476 0.0642380 0.997935i \(-0.479538\pi\)
0.0642380 + 0.997935i \(0.479538\pi\)
\(978\) 0 0
\(979\) 1.54422e7 0.514936
\(980\) 0 0
\(981\) −4.95945e7 −1.64536
\(982\) 0 0
\(983\) −2.80937e7 −0.927310 −0.463655 0.886016i \(-0.653462\pi\)
−0.463655 + 0.886016i \(0.653462\pi\)
\(984\) 0 0
\(985\) 2.79164e6 0.0916789
\(986\) 0 0
\(987\) 516191. 0.0168662
\(988\) 0 0
\(989\) 6.01231e6 0.195457
\(990\) 0 0
\(991\) 4.83597e7 1.56423 0.782113 0.623137i \(-0.214142\pi\)
0.782113 + 0.623137i \(0.214142\pi\)
\(992\) 0 0
\(993\) 1.24974e7 0.402206
\(994\) 0 0
\(995\) −1.30305e7 −0.417255
\(996\) 0 0
\(997\) −4.50212e7 −1.43443 −0.717215 0.696852i \(-0.754584\pi\)
−0.717215 + 0.696852i \(0.754584\pi\)
\(998\) 0 0
\(999\) 1.64940e7 0.522892
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.l.1.2 3
4.3 odd 2 130.6.a.f.1.2 3
20.3 even 4 650.6.b.j.599.5 6
20.7 even 4 650.6.b.j.599.2 6
20.19 odd 2 650.6.a.j.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.6.a.f.1.2 3 4.3 odd 2
650.6.a.j.1.2 3 20.19 odd 2
650.6.b.j.599.2 6 20.7 even 4
650.6.b.j.599.5 6 20.3 even 4
1040.6.a.l.1.2 3 1.1 even 1 trivial