Properties

Label 1040.6.a.o
Level $1040$
Weight $6$
Character orbit 1040.a
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.1878612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 16x^{2} + 16x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} - \beta_1 + 1) q^{3} - 25 q^{5} + ( - \beta_{3} - 3 \beta_{2} + \cdots + 34) q^{7} + ( - 4 \beta_{3} + \beta_{2} + \cdots + 161) q^{9} + (7 \beta_{3} - 6 \beta_{2} + \cdots + 129) q^{11}+ \cdots + (613 \beta_{3} - 3342 \beta_{2} + \cdots - 72667) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 100 q^{5} + 136 q^{7} + 644 q^{9} + 516 q^{11} - 676 q^{13} - 100 q^{15} + 344 q^{17} + 5012 q^{19} - 4448 q^{21} - 708 q^{23} + 2500 q^{25} + 4264 q^{27} + 5416 q^{29} + 10124 q^{31} - 16256 q^{33}+ \cdots - 290668 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 16x^{2} + 16x + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 4\nu^{2} - 4\nu - 34 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{3} - 8\nu^{2} - 40\nu + 36 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 36 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 2\beta_{2} + 24\beta _1 + 56 ) / 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.41925
−1.52205
4.24074
−3.13795
0 −23.1044 0 −25.0000 0 161.107 0 290.815 0
1.2 0 −13.6012 0 −25.0000 0 9.51473 0 −58.0072 0
1.3 0 14.4912 0 −25.0000 0 −26.5515 0 −33.0063 0
1.4 0 26.2145 0 −25.0000 0 −8.06989 0 444.199 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.6.a.o 4
4.b odd 2 1 65.6.a.c 4
12.b even 2 1 585.6.a.g 4
20.d odd 2 1 325.6.a.e 4
20.e even 4 2 325.6.b.e 8
52.b odd 2 1 845.6.a.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.6.a.c 4 4.b odd 2 1
325.6.a.e 4 20.d odd 2 1
325.6.b.e 8 20.e even 4 2
585.6.a.g 4 12.b even 2 1
845.6.a.f 4 52.b odd 2 1
1040.6.a.o 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4T_{3}^{3} - 800T_{3}^{2} + 1152T_{3} + 119376 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1040))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 4 T^{3} + \cdots + 119376 \) Copy content Toggle raw display
$5$ \( (T + 25)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 136 T^{3} + \cdots + 328448 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 10689924208 \) Copy content Toggle raw display
$13$ \( (T + 169)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 100880603792 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 161727486480 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 22398353692848 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 170255904416240 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots - 7222593222000 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 18\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 6842070199824 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 12\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 25\!\cdots\!08 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 34\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 76\!\cdots\!16 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 48\!\cdots\!88 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 54\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 96\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 11\!\cdots\!80 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 68\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 49\!\cdots\!60 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 36\!\cdots\!56 \) Copy content Toggle raw display
show more
show less