Properties

Label 1040.6.a.v.1.3
Level $1040$
Weight $6$
Character 1040.1
Self dual yes
Analytic conductor $166.799$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,6,Mod(1,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(166.799172605\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 1252x^{5} + 1388x^{4} + 394896x^{3} - 722832x^{2} - 18679104x - 35596800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 260)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-4.57223\) of defining polynomial
Character \(\chi\) \(=\) 1040.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.57223 q^{3} +25.0000 q^{5} +193.140 q^{7} -222.095 q^{9} -289.873 q^{11} +169.000 q^{13} -114.306 q^{15} -1813.23 q^{17} -1934.30 q^{19} -883.081 q^{21} -4946.34 q^{23} +625.000 q^{25} +2126.52 q^{27} +8657.48 q^{29} -2133.98 q^{31} +1325.37 q^{33} +4828.50 q^{35} +8823.83 q^{37} -772.707 q^{39} -7374.25 q^{41} +22164.4 q^{43} -5552.37 q^{45} +2806.61 q^{47} +20496.1 q^{49} +8290.50 q^{51} +20528.5 q^{53} -7246.83 q^{55} +8844.06 q^{57} -23362.5 q^{59} +4880.67 q^{61} -42895.4 q^{63} +4225.00 q^{65} +1610.81 q^{67} +22615.8 q^{69} -32885.3 q^{71} +42088.0 q^{73} -2857.64 q^{75} -55986.1 q^{77} +19996.4 q^{79} +44246.1 q^{81} -53725.6 q^{83} -45330.7 q^{85} -39584.0 q^{87} +91913.0 q^{89} +32640.7 q^{91} +9757.07 q^{93} -48357.5 q^{95} +47552.0 q^{97} +64379.3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 2 q^{3} + 175 q^{5} - 86 q^{7} + 807 q^{9} - 508 q^{11} + 1183 q^{13} + 50 q^{15} - 566 q^{17} - 164 q^{19} + 1816 q^{21} + 318 q^{23} + 4375 q^{25} + 2384 q^{27} + 6410 q^{29} - 6208 q^{31} + 10556 q^{33}+ \cdots - 59968 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.57223 −0.293309 −0.146654 0.989188i \(-0.546851\pi\)
−0.146654 + 0.989188i \(0.546851\pi\)
\(4\) 0 0
\(5\) 25.0000 0.447214
\(6\) 0 0
\(7\) 193.140 1.48980 0.744899 0.667177i \(-0.232498\pi\)
0.744899 + 0.667177i \(0.232498\pi\)
\(8\) 0 0
\(9\) −222.095 −0.913970
\(10\) 0 0
\(11\) −289.873 −0.722314 −0.361157 0.932505i \(-0.617618\pi\)
−0.361157 + 0.932505i \(0.617618\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) −114.306 −0.131172
\(16\) 0 0
\(17\) −1813.23 −1.52170 −0.760852 0.648925i \(-0.775219\pi\)
−0.760852 + 0.648925i \(0.775219\pi\)
\(18\) 0 0
\(19\) −1934.30 −1.22925 −0.614624 0.788820i \(-0.710692\pi\)
−0.614624 + 0.788820i \(0.710692\pi\)
\(20\) 0 0
\(21\) −883.081 −0.436971
\(22\) 0 0
\(23\) −4946.34 −1.94968 −0.974842 0.222897i \(-0.928449\pi\)
−0.974842 + 0.222897i \(0.928449\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 2126.52 0.561384
\(28\) 0 0
\(29\) 8657.48 1.91160 0.955798 0.294023i \(-0.0949941\pi\)
0.955798 + 0.294023i \(0.0949941\pi\)
\(30\) 0 0
\(31\) −2133.98 −0.398829 −0.199415 0.979915i \(-0.563904\pi\)
−0.199415 + 0.979915i \(0.563904\pi\)
\(32\) 0 0
\(33\) 1325.37 0.211861
\(34\) 0 0
\(35\) 4828.50 0.666258
\(36\) 0 0
\(37\) 8823.83 1.05963 0.529813 0.848114i \(-0.322262\pi\)
0.529813 + 0.848114i \(0.322262\pi\)
\(38\) 0 0
\(39\) −772.707 −0.0813492
\(40\) 0 0
\(41\) −7374.25 −0.685107 −0.342553 0.939498i \(-0.611292\pi\)
−0.342553 + 0.939498i \(0.611292\pi\)
\(42\) 0 0
\(43\) 22164.4 1.82803 0.914016 0.405677i \(-0.132964\pi\)
0.914016 + 0.405677i \(0.132964\pi\)
\(44\) 0 0
\(45\) −5552.37 −0.408740
\(46\) 0 0
\(47\) 2806.61 0.185326 0.0926631 0.995698i \(-0.470462\pi\)
0.0926631 + 0.995698i \(0.470462\pi\)
\(48\) 0 0
\(49\) 20496.1 1.21950
\(50\) 0 0
\(51\) 8290.50 0.446329
\(52\) 0 0
\(53\) 20528.5 1.00385 0.501923 0.864912i \(-0.332626\pi\)
0.501923 + 0.864912i \(0.332626\pi\)
\(54\) 0 0
\(55\) −7246.83 −0.323029
\(56\) 0 0
\(57\) 8844.06 0.360549
\(58\) 0 0
\(59\) −23362.5 −0.873756 −0.436878 0.899521i \(-0.643916\pi\)
−0.436878 + 0.899521i \(0.643916\pi\)
\(60\) 0 0
\(61\) 4880.67 0.167940 0.0839701 0.996468i \(-0.473240\pi\)
0.0839701 + 0.996468i \(0.473240\pi\)
\(62\) 0 0
\(63\) −42895.4 −1.36163
\(64\) 0 0
\(65\) 4225.00 0.124035
\(66\) 0 0
\(67\) 1610.81 0.0438386 0.0219193 0.999760i \(-0.493022\pi\)
0.0219193 + 0.999760i \(0.493022\pi\)
\(68\) 0 0
\(69\) 22615.8 0.571859
\(70\) 0 0
\(71\) −32885.3 −0.774205 −0.387102 0.922037i \(-0.626524\pi\)
−0.387102 + 0.922037i \(0.626524\pi\)
\(72\) 0 0
\(73\) 42088.0 0.924381 0.462190 0.886781i \(-0.347064\pi\)
0.462190 + 0.886781i \(0.347064\pi\)
\(74\) 0 0
\(75\) −2857.64 −0.0586617
\(76\) 0 0
\(77\) −55986.1 −1.07610
\(78\) 0 0
\(79\) 19996.4 0.360483 0.180242 0.983622i \(-0.442312\pi\)
0.180242 + 0.983622i \(0.442312\pi\)
\(80\) 0 0
\(81\) 44246.1 0.749311
\(82\) 0 0
\(83\) −53725.6 −0.856024 −0.428012 0.903773i \(-0.640786\pi\)
−0.428012 + 0.903773i \(0.640786\pi\)
\(84\) 0 0
\(85\) −45330.7 −0.680527
\(86\) 0 0
\(87\) −39584.0 −0.560688
\(88\) 0 0
\(89\) 91913.0 1.22999 0.614996 0.788531i \(-0.289158\pi\)
0.614996 + 0.788531i \(0.289158\pi\)
\(90\) 0 0
\(91\) 32640.7 0.413196
\(92\) 0 0
\(93\) 9757.07 0.116980
\(94\) 0 0
\(95\) −48357.5 −0.549736
\(96\) 0 0
\(97\) 47552.0 0.513145 0.256572 0.966525i \(-0.417407\pi\)
0.256572 + 0.966525i \(0.417407\pi\)
\(98\) 0 0
\(99\) 64379.3 0.660174
\(100\) 0 0
\(101\) 126491. 1.23384 0.616919 0.787027i \(-0.288381\pi\)
0.616919 + 0.787027i \(0.288381\pi\)
\(102\) 0 0
\(103\) 120144. 1.11586 0.557928 0.829889i \(-0.311596\pi\)
0.557928 + 0.829889i \(0.311596\pi\)
\(104\) 0 0
\(105\) −22077.0 −0.195419
\(106\) 0 0
\(107\) 82869.1 0.699734 0.349867 0.936799i \(-0.386227\pi\)
0.349867 + 0.936799i \(0.386227\pi\)
\(108\) 0 0
\(109\) −165073. −1.33079 −0.665397 0.746490i \(-0.731738\pi\)
−0.665397 + 0.746490i \(0.731738\pi\)
\(110\) 0 0
\(111\) −40344.6 −0.310798
\(112\) 0 0
\(113\) 191436. 1.41035 0.705177 0.709032i \(-0.250868\pi\)
0.705177 + 0.709032i \(0.250868\pi\)
\(114\) 0 0
\(115\) −123658. −0.871925
\(116\) 0 0
\(117\) −37534.0 −0.253490
\(118\) 0 0
\(119\) −350207. −2.26703
\(120\) 0 0
\(121\) −77024.6 −0.478262
\(122\) 0 0
\(123\) 33716.8 0.200948
\(124\) 0 0
\(125\) 15625.0 0.0894427
\(126\) 0 0
\(127\) −66362.9 −0.365104 −0.182552 0.983196i \(-0.558436\pi\)
−0.182552 + 0.983196i \(0.558436\pi\)
\(128\) 0 0
\(129\) −101341. −0.536178
\(130\) 0 0
\(131\) −74916.8 −0.381418 −0.190709 0.981647i \(-0.561079\pi\)
−0.190709 + 0.981647i \(0.561079\pi\)
\(132\) 0 0
\(133\) −373591. −1.83133
\(134\) 0 0
\(135\) 53163.0 0.251059
\(136\) 0 0
\(137\) 198208. 0.902235 0.451118 0.892464i \(-0.351025\pi\)
0.451118 + 0.892464i \(0.351025\pi\)
\(138\) 0 0
\(139\) −78716.9 −0.345566 −0.172783 0.984960i \(-0.555276\pi\)
−0.172783 + 0.984960i \(0.555276\pi\)
\(140\) 0 0
\(141\) −12832.5 −0.0543578
\(142\) 0 0
\(143\) −48988.6 −0.200334
\(144\) 0 0
\(145\) 216437. 0.854892
\(146\) 0 0
\(147\) −93713.0 −0.357690
\(148\) 0 0
\(149\) −467138. −1.72377 −0.861885 0.507104i \(-0.830716\pi\)
−0.861885 + 0.507104i \(0.830716\pi\)
\(150\) 0 0
\(151\) 128317. 0.457974 0.228987 0.973429i \(-0.426459\pi\)
0.228987 + 0.973429i \(0.426459\pi\)
\(152\) 0 0
\(153\) 402708. 1.39079
\(154\) 0 0
\(155\) −53349.6 −0.178362
\(156\) 0 0
\(157\) 402301. 1.30257 0.651287 0.758832i \(-0.274229\pi\)
0.651287 + 0.758832i \(0.274229\pi\)
\(158\) 0 0
\(159\) −93861.0 −0.294437
\(160\) 0 0
\(161\) −955337. −2.90464
\(162\) 0 0
\(163\) 464263. 1.36866 0.684330 0.729173i \(-0.260095\pi\)
0.684330 + 0.729173i \(0.260095\pi\)
\(164\) 0 0
\(165\) 33134.2 0.0947472
\(166\) 0 0
\(167\) 78682.3 0.218316 0.109158 0.994024i \(-0.465185\pi\)
0.109158 + 0.994024i \(0.465185\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) 429598. 1.12350
\(172\) 0 0
\(173\) −432227. −1.09798 −0.548992 0.835827i \(-0.684988\pi\)
−0.548992 + 0.835827i \(0.684988\pi\)
\(174\) 0 0
\(175\) 120713. 0.297960
\(176\) 0 0
\(177\) 106819. 0.256280
\(178\) 0 0
\(179\) 402481. 0.938886 0.469443 0.882963i \(-0.344455\pi\)
0.469443 + 0.882963i \(0.344455\pi\)
\(180\) 0 0
\(181\) 110182. 0.249984 0.124992 0.992158i \(-0.460109\pi\)
0.124992 + 0.992158i \(0.460109\pi\)
\(182\) 0 0
\(183\) −22315.5 −0.0492583
\(184\) 0 0
\(185\) 220596. 0.473880
\(186\) 0 0
\(187\) 525606. 1.09915
\(188\) 0 0
\(189\) 410716. 0.836349
\(190\) 0 0
\(191\) 31198.5 0.0618801 0.0309400 0.999521i \(-0.490150\pi\)
0.0309400 + 0.999521i \(0.490150\pi\)
\(192\) 0 0
\(193\) 511652. 0.988738 0.494369 0.869252i \(-0.335399\pi\)
0.494369 + 0.869252i \(0.335399\pi\)
\(194\) 0 0
\(195\) −19317.7 −0.0363805
\(196\) 0 0
\(197\) −521813. −0.957964 −0.478982 0.877825i \(-0.658994\pi\)
−0.478982 + 0.877825i \(0.658994\pi\)
\(198\) 0 0
\(199\) 44734.2 0.0800769 0.0400385 0.999198i \(-0.487252\pi\)
0.0400385 + 0.999198i \(0.487252\pi\)
\(200\) 0 0
\(201\) −7364.99 −0.0128583
\(202\) 0 0
\(203\) 1.67211e6 2.84789
\(204\) 0 0
\(205\) −184356. −0.306389
\(206\) 0 0
\(207\) 1.09856e6 1.78195
\(208\) 0 0
\(209\) 560701. 0.887904
\(210\) 0 0
\(211\) −845530. −1.30744 −0.653721 0.756735i \(-0.726793\pi\)
−0.653721 + 0.756735i \(0.726793\pi\)
\(212\) 0 0
\(213\) 150359. 0.227081
\(214\) 0 0
\(215\) 554109. 0.817521
\(216\) 0 0
\(217\) −412158. −0.594175
\(218\) 0 0
\(219\) −192436. −0.271129
\(220\) 0 0
\(221\) −306436. −0.422045
\(222\) 0 0
\(223\) 1.14273e6 1.53880 0.769399 0.638769i \(-0.220556\pi\)
0.769399 + 0.638769i \(0.220556\pi\)
\(224\) 0 0
\(225\) −138809. −0.182794
\(226\) 0 0
\(227\) −356171. −0.458768 −0.229384 0.973336i \(-0.573671\pi\)
−0.229384 + 0.973336i \(0.573671\pi\)
\(228\) 0 0
\(229\) 1.16047e6 1.46234 0.731168 0.682198i \(-0.238976\pi\)
0.731168 + 0.682198i \(0.238976\pi\)
\(230\) 0 0
\(231\) 255982. 0.315630
\(232\) 0 0
\(233\) 926173. 1.11764 0.558821 0.829288i \(-0.311254\pi\)
0.558821 + 0.829288i \(0.311254\pi\)
\(234\) 0 0
\(235\) 70165.2 0.0828804
\(236\) 0 0
\(237\) −91428.4 −0.105733
\(238\) 0 0
\(239\) −1.30321e6 −1.47577 −0.737885 0.674927i \(-0.764175\pi\)
−0.737885 + 0.674927i \(0.764175\pi\)
\(240\) 0 0
\(241\) 537456. 0.596074 0.298037 0.954554i \(-0.403668\pi\)
0.298037 + 0.954554i \(0.403668\pi\)
\(242\) 0 0
\(243\) −719048. −0.781164
\(244\) 0 0
\(245\) 512403. 0.545377
\(246\) 0 0
\(247\) −326897. −0.340932
\(248\) 0 0
\(249\) 245646. 0.251079
\(250\) 0 0
\(251\) −305760. −0.306335 −0.153167 0.988200i \(-0.548947\pi\)
−0.153167 + 0.988200i \(0.548947\pi\)
\(252\) 0 0
\(253\) 1.43381e6 1.40828
\(254\) 0 0
\(255\) 207262. 0.199604
\(256\) 0 0
\(257\) −465369. −0.439506 −0.219753 0.975556i \(-0.570525\pi\)
−0.219753 + 0.975556i \(0.570525\pi\)
\(258\) 0 0
\(259\) 1.70424e6 1.57863
\(260\) 0 0
\(261\) −1.92278e6 −1.74714
\(262\) 0 0
\(263\) 1.37558e6 1.22630 0.613149 0.789967i \(-0.289902\pi\)
0.613149 + 0.789967i \(0.289902\pi\)
\(264\) 0 0
\(265\) 513212. 0.448934
\(266\) 0 0
\(267\) −420248. −0.360767
\(268\) 0 0
\(269\) 1.25766e6 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(270\) 0 0
\(271\) 1.98346e6 1.64059 0.820294 0.571943i \(-0.193810\pi\)
0.820294 + 0.571943i \(0.193810\pi\)
\(272\) 0 0
\(273\) −149241. −0.121194
\(274\) 0 0
\(275\) −181171. −0.144463
\(276\) 0 0
\(277\) −1.83132e6 −1.43405 −0.717026 0.697047i \(-0.754497\pi\)
−0.717026 + 0.697047i \(0.754497\pi\)
\(278\) 0 0
\(279\) 473947. 0.364518
\(280\) 0 0
\(281\) −716556. −0.541358 −0.270679 0.962670i \(-0.587248\pi\)
−0.270679 + 0.962670i \(0.587248\pi\)
\(282\) 0 0
\(283\) 955059. 0.708866 0.354433 0.935081i \(-0.384674\pi\)
0.354433 + 0.935081i \(0.384674\pi\)
\(284\) 0 0
\(285\) 221102. 0.161243
\(286\) 0 0
\(287\) −1.42426e6 −1.02067
\(288\) 0 0
\(289\) 1.86794e6 1.31558
\(290\) 0 0
\(291\) −217419. −0.150510
\(292\) 0 0
\(293\) −1.67941e6 −1.14285 −0.571423 0.820655i \(-0.693609\pi\)
−0.571423 + 0.820655i \(0.693609\pi\)
\(294\) 0 0
\(295\) −584063. −0.390755
\(296\) 0 0
\(297\) −616421. −0.405496
\(298\) 0 0
\(299\) −835931. −0.540745
\(300\) 0 0
\(301\) 4.28083e6 2.72340
\(302\) 0 0
\(303\) −578348. −0.361895
\(304\) 0 0
\(305\) 122017. 0.0751051
\(306\) 0 0
\(307\) −738204. −0.447024 −0.223512 0.974701i \(-0.571752\pi\)
−0.223512 + 0.974701i \(0.571752\pi\)
\(308\) 0 0
\(309\) −549325. −0.327291
\(310\) 0 0
\(311\) −1.65404e6 −0.969715 −0.484857 0.874593i \(-0.661129\pi\)
−0.484857 + 0.874593i \(0.661129\pi\)
\(312\) 0 0
\(313\) 52478.5 0.0302775 0.0151388 0.999885i \(-0.495181\pi\)
0.0151388 + 0.999885i \(0.495181\pi\)
\(314\) 0 0
\(315\) −1.07239e6 −0.608940
\(316\) 0 0
\(317\) 341349. 0.190788 0.0953938 0.995440i \(-0.469589\pi\)
0.0953938 + 0.995440i \(0.469589\pi\)
\(318\) 0 0
\(319\) −2.50957e6 −1.38077
\(320\) 0 0
\(321\) −378897. −0.205238
\(322\) 0 0
\(323\) 3.50733e6 1.87055
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 754753. 0.390333
\(328\) 0 0
\(329\) 542069. 0.276099
\(330\) 0 0
\(331\) −1.75708e6 −0.881500 −0.440750 0.897630i \(-0.645288\pi\)
−0.440750 + 0.897630i \(0.645288\pi\)
\(332\) 0 0
\(333\) −1.95973e6 −0.968467
\(334\) 0 0
\(335\) 40270.2 0.0196052
\(336\) 0 0
\(337\) 3.52015e6 1.68844 0.844222 0.535993i \(-0.180063\pi\)
0.844222 + 0.535993i \(0.180063\pi\)
\(338\) 0 0
\(339\) −875290. −0.413669
\(340\) 0 0
\(341\) 618585. 0.288080
\(342\) 0 0
\(343\) 712518. 0.327010
\(344\) 0 0
\(345\) 565395. 0.255743
\(346\) 0 0
\(347\) 2.59869e6 1.15859 0.579296 0.815117i \(-0.303327\pi\)
0.579296 + 0.815117i \(0.303327\pi\)
\(348\) 0 0
\(349\) 568423. 0.249809 0.124905 0.992169i \(-0.460138\pi\)
0.124905 + 0.992169i \(0.460138\pi\)
\(350\) 0 0
\(351\) 359382. 0.155700
\(352\) 0 0
\(353\) 450591. 0.192463 0.0962313 0.995359i \(-0.469321\pi\)
0.0962313 + 0.995359i \(0.469321\pi\)
\(354\) 0 0
\(355\) −822132. −0.346235
\(356\) 0 0
\(357\) 1.60123e6 0.664940
\(358\) 0 0
\(359\) −3.62131e6 −1.48296 −0.741480 0.670975i \(-0.765876\pi\)
−0.741480 + 0.670975i \(0.765876\pi\)
\(360\) 0 0
\(361\) 1.26541e6 0.511051
\(362\) 0 0
\(363\) 352174. 0.140278
\(364\) 0 0
\(365\) 1.05220e6 0.413396
\(366\) 0 0
\(367\) −383281. −0.148543 −0.0742715 0.997238i \(-0.523663\pi\)
−0.0742715 + 0.997238i \(0.523663\pi\)
\(368\) 0 0
\(369\) 1.63778e6 0.626167
\(370\) 0 0
\(371\) 3.96488e6 1.49553
\(372\) 0 0
\(373\) 2.25251e6 0.838292 0.419146 0.907919i \(-0.362329\pi\)
0.419146 + 0.907919i \(0.362329\pi\)
\(374\) 0 0
\(375\) −71441.1 −0.0262343
\(376\) 0 0
\(377\) 1.46311e6 0.530182
\(378\) 0 0
\(379\) −108337. −0.0387417 −0.0193708 0.999812i \(-0.506166\pi\)
−0.0193708 + 0.999812i \(0.506166\pi\)
\(380\) 0 0
\(381\) 303427. 0.107088
\(382\) 0 0
\(383\) 5.25708e6 1.83125 0.915625 0.402034i \(-0.131697\pi\)
0.915625 + 0.402034i \(0.131697\pi\)
\(384\) 0 0
\(385\) −1.39965e6 −0.481248
\(386\) 0 0
\(387\) −4.92259e6 −1.67077
\(388\) 0 0
\(389\) 3.56120e6 1.19323 0.596613 0.802529i \(-0.296513\pi\)
0.596613 + 0.802529i \(0.296513\pi\)
\(390\) 0 0
\(391\) 8.96884e6 2.96684
\(392\) 0 0
\(393\) 342537. 0.111873
\(394\) 0 0
\(395\) 499911. 0.161213
\(396\) 0 0
\(397\) −2.15566e6 −0.686444 −0.343222 0.939254i \(-0.611518\pi\)
−0.343222 + 0.939254i \(0.611518\pi\)
\(398\) 0 0
\(399\) 1.70814e6 0.537146
\(400\) 0 0
\(401\) −717167. −0.222720 −0.111360 0.993780i \(-0.535521\pi\)
−0.111360 + 0.993780i \(0.535521\pi\)
\(402\) 0 0
\(403\) −360643. −0.110615
\(404\) 0 0
\(405\) 1.10615e6 0.335102
\(406\) 0 0
\(407\) −2.55779e6 −0.765384
\(408\) 0 0
\(409\) 4.88152e6 1.44293 0.721467 0.692448i \(-0.243468\pi\)
0.721467 + 0.692448i \(0.243468\pi\)
\(410\) 0 0
\(411\) −906253. −0.264633
\(412\) 0 0
\(413\) −4.51224e6 −1.30172
\(414\) 0 0
\(415\) −1.34314e6 −0.382825
\(416\) 0 0
\(417\) 359912. 0.101358
\(418\) 0 0
\(419\) 4.77315e6 1.32822 0.664111 0.747634i \(-0.268810\pi\)
0.664111 + 0.747634i \(0.268810\pi\)
\(420\) 0 0
\(421\) 1.13836e6 0.313021 0.156511 0.987676i \(-0.449975\pi\)
0.156511 + 0.987676i \(0.449975\pi\)
\(422\) 0 0
\(423\) −623333. −0.169383
\(424\) 0 0
\(425\) −1.13327e6 −0.304341
\(426\) 0 0
\(427\) 942653. 0.250197
\(428\) 0 0
\(429\) 223987. 0.0587597
\(430\) 0 0
\(431\) 594447. 0.154142 0.0770708 0.997026i \(-0.475443\pi\)
0.0770708 + 0.997026i \(0.475443\pi\)
\(432\) 0 0
\(433\) −289328. −0.0741603 −0.0370801 0.999312i \(-0.511806\pi\)
−0.0370801 + 0.999312i \(0.511806\pi\)
\(434\) 0 0
\(435\) −989599. −0.250747
\(436\) 0 0
\(437\) 9.56770e6 2.39665
\(438\) 0 0
\(439\) −7.28780e6 −1.80482 −0.902412 0.430873i \(-0.858206\pi\)
−0.902412 + 0.430873i \(0.858206\pi\)
\(440\) 0 0
\(441\) −4.55208e6 −1.11459
\(442\) 0 0
\(443\) −5.66527e6 −1.37155 −0.685774 0.727814i \(-0.740536\pi\)
−0.685774 + 0.727814i \(0.740536\pi\)
\(444\) 0 0
\(445\) 2.29783e6 0.550069
\(446\) 0 0
\(447\) 2.13586e6 0.505597
\(448\) 0 0
\(449\) −4.91365e6 −1.15024 −0.575120 0.818069i \(-0.695045\pi\)
−0.575120 + 0.818069i \(0.695045\pi\)
\(450\) 0 0
\(451\) 2.13760e6 0.494862
\(452\) 0 0
\(453\) −586693. −0.134328
\(454\) 0 0
\(455\) 816017. 0.184787
\(456\) 0 0
\(457\) −6.01249e6 −1.34668 −0.673339 0.739333i \(-0.735141\pi\)
−0.673339 + 0.739333i \(0.735141\pi\)
\(458\) 0 0
\(459\) −3.85587e6 −0.854261
\(460\) 0 0
\(461\) 6.60229e6 1.44691 0.723456 0.690371i \(-0.242552\pi\)
0.723456 + 0.690371i \(0.242552\pi\)
\(462\) 0 0
\(463\) −3.22312e6 −0.698753 −0.349376 0.936982i \(-0.613607\pi\)
−0.349376 + 0.936982i \(0.613607\pi\)
\(464\) 0 0
\(465\) 243927. 0.0523151
\(466\) 0 0
\(467\) 3.21943e6 0.683103 0.341552 0.939863i \(-0.389048\pi\)
0.341552 + 0.939863i \(0.389048\pi\)
\(468\) 0 0
\(469\) 311112. 0.0653107
\(470\) 0 0
\(471\) −1.83941e6 −0.382056
\(472\) 0 0
\(473\) −6.42485e6 −1.32041
\(474\) 0 0
\(475\) −1.20894e6 −0.245850
\(476\) 0 0
\(477\) −4.55927e6 −0.917486
\(478\) 0 0
\(479\) 8.37964e6 1.66873 0.834366 0.551211i \(-0.185834\pi\)
0.834366 + 0.551211i \(0.185834\pi\)
\(480\) 0 0
\(481\) 1.49123e6 0.293888
\(482\) 0 0
\(483\) 4.36802e6 0.851955
\(484\) 0 0
\(485\) 1.18880e6 0.229485
\(486\) 0 0
\(487\) 8.95783e6 1.71151 0.855757 0.517378i \(-0.173092\pi\)
0.855757 + 0.517378i \(0.173092\pi\)
\(488\) 0 0
\(489\) −2.12272e6 −0.401440
\(490\) 0 0
\(491\) −425627. −0.0796756 −0.0398378 0.999206i \(-0.512684\pi\)
−0.0398378 + 0.999206i \(0.512684\pi\)
\(492\) 0 0
\(493\) −1.56980e7 −2.90888
\(494\) 0 0
\(495\) 1.60948e6 0.295239
\(496\) 0 0
\(497\) −6.35147e6 −1.15341
\(498\) 0 0
\(499\) −1.12507e6 −0.202268 −0.101134 0.994873i \(-0.532247\pi\)
−0.101134 + 0.994873i \(0.532247\pi\)
\(500\) 0 0
\(501\) −359753. −0.0640340
\(502\) 0 0
\(503\) 4.07903e6 0.718847 0.359424 0.933175i \(-0.382973\pi\)
0.359424 + 0.933175i \(0.382973\pi\)
\(504\) 0 0
\(505\) 3.16229e6 0.551789
\(506\) 0 0
\(507\) −130587. −0.0225622
\(508\) 0 0
\(509\) 9.37759e6 1.60434 0.802170 0.597095i \(-0.203679\pi\)
0.802170 + 0.597095i \(0.203679\pi\)
\(510\) 0 0
\(511\) 8.12888e6 1.37714
\(512\) 0 0
\(513\) −4.11333e6 −0.690080
\(514\) 0 0
\(515\) 3.00360e6 0.499026
\(516\) 0 0
\(517\) −813560. −0.133864
\(518\) 0 0
\(519\) 1.97624e6 0.322048
\(520\) 0 0
\(521\) −1.20746e6 −0.194885 −0.0974423 0.995241i \(-0.531066\pi\)
−0.0974423 + 0.995241i \(0.531066\pi\)
\(522\) 0 0
\(523\) −1.03495e7 −1.65450 −0.827250 0.561834i \(-0.810096\pi\)
−0.827250 + 0.561834i \(0.810096\pi\)
\(524\) 0 0
\(525\) −551926. −0.0873942
\(526\) 0 0
\(527\) 3.86940e6 0.606900
\(528\) 0 0
\(529\) 1.80299e7 2.80127
\(530\) 0 0
\(531\) 5.18870e6 0.798586
\(532\) 0 0
\(533\) −1.24625e6 −0.190014
\(534\) 0 0
\(535\) 2.07173e6 0.312931
\(536\) 0 0
\(537\) −1.84024e6 −0.275383
\(538\) 0 0
\(539\) −5.94128e6 −0.880862
\(540\) 0 0
\(541\) −9.73024e6 −1.42932 −0.714662 0.699470i \(-0.753419\pi\)
−0.714662 + 0.699470i \(0.753419\pi\)
\(542\) 0 0
\(543\) −503776. −0.0733226
\(544\) 0 0
\(545\) −4.12683e6 −0.595149
\(546\) 0 0
\(547\) 640777. 0.0915669 0.0457835 0.998951i \(-0.485422\pi\)
0.0457835 + 0.998951i \(0.485422\pi\)
\(548\) 0 0
\(549\) −1.08397e6 −0.153492
\(550\) 0 0
\(551\) −1.67461e7 −2.34983
\(552\) 0 0
\(553\) 3.86212e6 0.537047
\(554\) 0 0
\(555\) −1.00861e6 −0.138993
\(556\) 0 0
\(557\) −6.38949e6 −0.872626 −0.436313 0.899795i \(-0.643716\pi\)
−0.436313 + 0.899795i \(0.643716\pi\)
\(558\) 0 0
\(559\) 3.74578e6 0.507005
\(560\) 0 0
\(561\) −2.40319e6 −0.322390
\(562\) 0 0
\(563\) −794793. −0.105678 −0.0528388 0.998603i \(-0.516827\pi\)
−0.0528388 + 0.998603i \(0.516827\pi\)
\(564\) 0 0
\(565\) 4.78590e6 0.630729
\(566\) 0 0
\(567\) 8.54569e6 1.11632
\(568\) 0 0
\(569\) 515557. 0.0667569 0.0333785 0.999443i \(-0.489373\pi\)
0.0333785 + 0.999443i \(0.489373\pi\)
\(570\) 0 0
\(571\) 7.21986e6 0.926698 0.463349 0.886176i \(-0.346648\pi\)
0.463349 + 0.886176i \(0.346648\pi\)
\(572\) 0 0
\(573\) −142647. −0.0181500
\(574\) 0 0
\(575\) −3.09146e6 −0.389937
\(576\) 0 0
\(577\) −9.48847e6 −1.18647 −0.593235 0.805030i \(-0.702149\pi\)
−0.593235 + 0.805030i \(0.702149\pi\)
\(578\) 0 0
\(579\) −2.33939e6 −0.290006
\(580\) 0 0
\(581\) −1.03766e7 −1.27530
\(582\) 0 0
\(583\) −5.95066e6 −0.725093
\(584\) 0 0
\(585\) −938350. −0.113364
\(586\) 0 0
\(587\) −4.21397e6 −0.504773 −0.252387 0.967626i \(-0.581215\pi\)
−0.252387 + 0.967626i \(0.581215\pi\)
\(588\) 0 0
\(589\) 4.12776e6 0.490260
\(590\) 0 0
\(591\) 2.38585e6 0.280979
\(592\) 0 0
\(593\) −6.43958e6 −0.752006 −0.376003 0.926619i \(-0.622702\pi\)
−0.376003 + 0.926619i \(0.622702\pi\)
\(594\) 0 0
\(595\) −8.75518e6 −1.01385
\(596\) 0 0
\(597\) −204535. −0.0234873
\(598\) 0 0
\(599\) −1.06380e7 −1.21142 −0.605710 0.795686i \(-0.707111\pi\)
−0.605710 + 0.795686i \(0.707111\pi\)
\(600\) 0 0
\(601\) 1.48154e7 1.67311 0.836557 0.547879i \(-0.184565\pi\)
0.836557 + 0.547879i \(0.184565\pi\)
\(602\) 0 0
\(603\) −357752. −0.0400672
\(604\) 0 0
\(605\) −1.92561e6 −0.213885
\(606\) 0 0
\(607\) −1.52111e7 −1.67567 −0.837837 0.545921i \(-0.816180\pi\)
−0.837837 + 0.545921i \(0.816180\pi\)
\(608\) 0 0
\(609\) −7.64526e6 −0.835312
\(610\) 0 0
\(611\) 474317. 0.0514003
\(612\) 0 0
\(613\) 1.08915e7 1.17068 0.585340 0.810788i \(-0.300961\pi\)
0.585340 + 0.810788i \(0.300961\pi\)
\(614\) 0 0
\(615\) 842919. 0.0898666
\(616\) 0 0
\(617\) 6.62264e6 0.700355 0.350177 0.936683i \(-0.386121\pi\)
0.350177 + 0.936683i \(0.386121\pi\)
\(618\) 0 0
\(619\) 1.82789e6 0.191745 0.0958723 0.995394i \(-0.469436\pi\)
0.0958723 + 0.995394i \(0.469436\pi\)
\(620\) 0 0
\(621\) −1.05185e7 −1.09452
\(622\) 0 0
\(623\) 1.77521e7 1.83244
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −2.56366e6 −0.260430
\(628\) 0 0
\(629\) −1.59996e7 −1.61244
\(630\) 0 0
\(631\) 2.45976e6 0.245935 0.122967 0.992411i \(-0.460759\pi\)
0.122967 + 0.992411i \(0.460759\pi\)
\(632\) 0 0
\(633\) 3.86596e6 0.383484
\(634\) 0 0
\(635\) −1.65907e6 −0.163279
\(636\) 0 0
\(637\) 3.46385e6 0.338228
\(638\) 0 0
\(639\) 7.30365e6 0.707600
\(640\) 0 0
\(641\) 6.90052e6 0.663341 0.331670 0.943395i \(-0.392388\pi\)
0.331670 + 0.943395i \(0.392388\pi\)
\(642\) 0 0
\(643\) 6.14505e6 0.586135 0.293068 0.956092i \(-0.405324\pi\)
0.293068 + 0.956092i \(0.405324\pi\)
\(644\) 0 0
\(645\) −2.53351e6 −0.239786
\(646\) 0 0
\(647\) 6.62103e6 0.621821 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(648\) 0 0
\(649\) 6.77217e6 0.631126
\(650\) 0 0
\(651\) 1.88448e6 0.174277
\(652\) 0 0
\(653\) −7.91365e6 −0.726263 −0.363131 0.931738i \(-0.618292\pi\)
−0.363131 + 0.931738i \(0.618292\pi\)
\(654\) 0 0
\(655\) −1.87292e6 −0.170575
\(656\) 0 0
\(657\) −9.34752e6 −0.844856
\(658\) 0 0
\(659\) 60778.0 0.00545171 0.00272586 0.999996i \(-0.499132\pi\)
0.00272586 + 0.999996i \(0.499132\pi\)
\(660\) 0 0
\(661\) 1.60526e7 1.42903 0.714516 0.699619i \(-0.246647\pi\)
0.714516 + 0.699619i \(0.246647\pi\)
\(662\) 0 0
\(663\) 1.40109e6 0.123789
\(664\) 0 0
\(665\) −9.33977e6 −0.818997
\(666\) 0 0
\(667\) −4.28228e7 −3.72701
\(668\) 0 0
\(669\) −5.22482e6 −0.451343
\(670\) 0 0
\(671\) −1.41477e6 −0.121306
\(672\) 0 0
\(673\) 1.60234e7 1.36369 0.681846 0.731496i \(-0.261177\pi\)
0.681846 + 0.731496i \(0.261177\pi\)
\(674\) 0 0
\(675\) 1.32908e6 0.112277
\(676\) 0 0
\(677\) 1.38633e7 1.16251 0.581255 0.813722i \(-0.302562\pi\)
0.581255 + 0.813722i \(0.302562\pi\)
\(678\) 0 0
\(679\) 9.18421e6 0.764482
\(680\) 0 0
\(681\) 1.62849e6 0.134561
\(682\) 0 0
\(683\) 1.63727e7 1.34298 0.671488 0.741016i \(-0.265656\pi\)
0.671488 + 0.741016i \(0.265656\pi\)
\(684\) 0 0
\(685\) 4.95520e6 0.403492
\(686\) 0 0
\(687\) −5.30596e6 −0.428916
\(688\) 0 0
\(689\) 3.46932e6 0.278417
\(690\) 0 0
\(691\) 1.81683e7 1.44750 0.723750 0.690062i \(-0.242417\pi\)
0.723750 + 0.690062i \(0.242417\pi\)
\(692\) 0 0
\(693\) 1.24342e7 0.983526
\(694\) 0 0
\(695\) −1.96792e6 −0.154542
\(696\) 0 0
\(697\) 1.33712e7 1.04253
\(698\) 0 0
\(699\) −4.23468e6 −0.327814
\(700\) 0 0
\(701\) −1.57090e7 −1.20740 −0.603702 0.797210i \(-0.706308\pi\)
−0.603702 + 0.797210i \(0.706308\pi\)
\(702\) 0 0
\(703\) −1.70679e7 −1.30254
\(704\) 0 0
\(705\) −320811. −0.0243095
\(706\) 0 0
\(707\) 2.44306e7 1.83817
\(708\) 0 0
\(709\) −2.26506e7 −1.69225 −0.846125 0.532985i \(-0.821070\pi\)
−0.846125 + 0.532985i \(0.821070\pi\)
\(710\) 0 0
\(711\) −4.44110e6 −0.329471
\(712\) 0 0
\(713\) 1.05554e7 0.777591
\(714\) 0 0
\(715\) −1.22471e6 −0.0895921
\(716\) 0 0
\(717\) 5.95856e6 0.432856
\(718\) 0 0
\(719\) −1.39425e7 −1.00582 −0.502909 0.864339i \(-0.667737\pi\)
−0.502909 + 0.864339i \(0.667737\pi\)
\(720\) 0 0
\(721\) 2.32046e7 1.66240
\(722\) 0 0
\(723\) −2.45737e6 −0.174834
\(724\) 0 0
\(725\) 5.41092e6 0.382319
\(726\) 0 0
\(727\) −2.82130e7 −1.97976 −0.989881 0.141903i \(-0.954678\pi\)
−0.989881 + 0.141903i \(0.954678\pi\)
\(728\) 0 0
\(729\) −7.46414e6 −0.520189
\(730\) 0 0
\(731\) −4.01890e7 −2.78173
\(732\) 0 0
\(733\) −2.19905e7 −1.51174 −0.755868 0.654724i \(-0.772785\pi\)
−0.755868 + 0.654724i \(0.772785\pi\)
\(734\) 0 0
\(735\) −2.34283e6 −0.159964
\(736\) 0 0
\(737\) −466930. −0.0316653
\(738\) 0 0
\(739\) −7.09511e6 −0.477912 −0.238956 0.971030i \(-0.576805\pi\)
−0.238956 + 0.971030i \(0.576805\pi\)
\(740\) 0 0
\(741\) 1.49465e6 0.0999984
\(742\) 0 0
\(743\) −1.37027e7 −0.910614 −0.455307 0.890334i \(-0.650471\pi\)
−0.455307 + 0.890334i \(0.650471\pi\)
\(744\) 0 0
\(745\) −1.16784e7 −0.770893
\(746\) 0 0
\(747\) 1.19322e7 0.782380
\(748\) 0 0
\(749\) 1.60053e7 1.04246
\(750\) 0 0
\(751\) 2.18956e7 1.41664 0.708318 0.705894i \(-0.249454\pi\)
0.708318 + 0.705894i \(0.249454\pi\)
\(752\) 0 0
\(753\) 1.39800e6 0.0898507
\(754\) 0 0
\(755\) 3.20792e6 0.204812
\(756\) 0 0
\(757\) 3.74824e6 0.237732 0.118866 0.992910i \(-0.462074\pi\)
0.118866 + 0.992910i \(0.462074\pi\)
\(758\) 0 0
\(759\) −6.55571e6 −0.413062
\(760\) 0 0
\(761\) 2.89635e6 0.181297 0.0906483 0.995883i \(-0.471106\pi\)
0.0906483 + 0.995883i \(0.471106\pi\)
\(762\) 0 0
\(763\) −3.18823e7 −1.98261
\(764\) 0 0
\(765\) 1.00677e7 0.621981
\(766\) 0 0
\(767\) −3.94827e6 −0.242336
\(768\) 0 0
\(769\) −1.17597e7 −0.717101 −0.358550 0.933510i \(-0.616729\pi\)
−0.358550 + 0.933510i \(0.616729\pi\)
\(770\) 0 0
\(771\) 2.12778e6 0.128911
\(772\) 0 0
\(773\) 2.29593e7 1.38200 0.691002 0.722853i \(-0.257170\pi\)
0.691002 + 0.722853i \(0.257170\pi\)
\(774\) 0 0
\(775\) −1.33374e6 −0.0797659
\(776\) 0 0
\(777\) −7.79216e6 −0.463026
\(778\) 0 0
\(779\) 1.42640e7 0.842166
\(780\) 0 0
\(781\) 9.53256e6 0.559219
\(782\) 0 0
\(783\) 1.84103e7 1.07314
\(784\) 0 0
\(785\) 1.00575e7 0.582529
\(786\) 0 0
\(787\) 7.27898e6 0.418922 0.209461 0.977817i \(-0.432829\pi\)
0.209461 + 0.977817i \(0.432829\pi\)
\(788\) 0 0
\(789\) −6.28946e6 −0.359684
\(790\) 0 0
\(791\) 3.69740e7 2.10114
\(792\) 0 0
\(793\) 824833. 0.0465782
\(794\) 0 0
\(795\) −2.34653e6 −0.131676
\(796\) 0 0
\(797\) −2.24859e6 −0.125391 −0.0626954 0.998033i \(-0.519970\pi\)
−0.0626954 + 0.998033i \(0.519970\pi\)
\(798\) 0 0
\(799\) −5.08902e6 −0.282012
\(800\) 0 0
\(801\) −2.04134e7 −1.12418
\(802\) 0 0
\(803\) −1.22002e7 −0.667693
\(804\) 0 0
\(805\) −2.38834e7 −1.29899
\(806\) 0 0
\(807\) −5.75033e6 −0.310820
\(808\) 0 0
\(809\) −3.73687e6 −0.200741 −0.100371 0.994950i \(-0.532003\pi\)
−0.100371 + 0.994950i \(0.532003\pi\)
\(810\) 0 0
\(811\) −3.62597e7 −1.93585 −0.967926 0.251237i \(-0.919163\pi\)
−0.967926 + 0.251237i \(0.919163\pi\)
\(812\) 0 0
\(813\) −9.06882e6 −0.481199
\(814\) 0 0
\(815\) 1.16066e7 0.612083
\(816\) 0 0
\(817\) −4.28725e7 −2.24711
\(818\) 0 0
\(819\) −7.24932e6 −0.377649
\(820\) 0 0
\(821\) −1.51475e7 −0.784299 −0.392150 0.919901i \(-0.628268\pi\)
−0.392150 + 0.919901i \(0.628268\pi\)
\(822\) 0 0
\(823\) −1.57234e7 −0.809183 −0.404592 0.914497i \(-0.632586\pi\)
−0.404592 + 0.914497i \(0.632586\pi\)
\(824\) 0 0
\(825\) 828354. 0.0423722
\(826\) 0 0
\(827\) 5.78012e6 0.293882 0.146941 0.989145i \(-0.453057\pi\)
0.146941 + 0.989145i \(0.453057\pi\)
\(828\) 0 0
\(829\) −1.93183e7 −0.976297 −0.488149 0.872761i \(-0.662328\pi\)
−0.488149 + 0.872761i \(0.662328\pi\)
\(830\) 0 0
\(831\) 8.37321e6 0.420620
\(832\) 0 0
\(833\) −3.71642e7 −1.85572
\(834\) 0 0
\(835\) 1.96706e6 0.0976339
\(836\) 0 0
\(837\) −4.53796e6 −0.223896
\(838\) 0 0
\(839\) 6.32985e6 0.310448 0.155224 0.987879i \(-0.450390\pi\)
0.155224 + 0.987879i \(0.450390\pi\)
\(840\) 0 0
\(841\) 5.44407e7 2.65420
\(842\) 0 0
\(843\) 3.27626e6 0.158785
\(844\) 0 0
\(845\) 714025. 0.0344010
\(846\) 0 0
\(847\) −1.48765e7 −0.712514
\(848\) 0 0
\(849\) −4.36675e6 −0.207917
\(850\) 0 0
\(851\) −4.36457e7 −2.06594
\(852\) 0 0
\(853\) 1.52040e7 0.715460 0.357730 0.933825i \(-0.383551\pi\)
0.357730 + 0.933825i \(0.383551\pi\)
\(854\) 0 0
\(855\) 1.07399e7 0.502443
\(856\) 0 0
\(857\) −2.66908e7 −1.24139 −0.620697 0.784051i \(-0.713150\pi\)
−0.620697 + 0.784051i \(0.713150\pi\)
\(858\) 0 0
\(859\) −2.97401e7 −1.37518 −0.687589 0.726100i \(-0.741331\pi\)
−0.687589 + 0.726100i \(0.741331\pi\)
\(860\) 0 0
\(861\) 6.51206e6 0.299372
\(862\) 0 0
\(863\) −2.62439e6 −0.119950 −0.0599751 0.998200i \(-0.519102\pi\)
−0.0599751 + 0.998200i \(0.519102\pi\)
\(864\) 0 0
\(865\) −1.08057e7 −0.491034
\(866\) 0 0
\(867\) −8.54065e6 −0.385872
\(868\) 0 0
\(869\) −5.79643e6 −0.260382
\(870\) 0 0
\(871\) 272227. 0.0121586
\(872\) 0 0
\(873\) −1.05611e7 −0.468999
\(874\) 0 0
\(875\) 3.01782e6 0.133252
\(876\) 0 0
\(877\) 1.54222e7 0.677093 0.338547 0.940950i \(-0.390065\pi\)
0.338547 + 0.940950i \(0.390065\pi\)
\(878\) 0 0
\(879\) 7.67866e6 0.335207
\(880\) 0 0
\(881\) 1.54269e7 0.669637 0.334818 0.942283i \(-0.391325\pi\)
0.334818 + 0.942283i \(0.391325\pi\)
\(882\) 0 0
\(883\) −7.88254e6 −0.340223 −0.170112 0.985425i \(-0.554413\pi\)
−0.170112 + 0.985425i \(0.554413\pi\)
\(884\) 0 0
\(885\) 2.67047e6 0.114612
\(886\) 0 0
\(887\) 1.52145e7 0.649306 0.324653 0.945833i \(-0.394753\pi\)
0.324653 + 0.945833i \(0.394753\pi\)
\(888\) 0 0
\(889\) −1.28174e7 −0.543931
\(890\) 0 0
\(891\) −1.28257e7 −0.541238
\(892\) 0 0
\(893\) −5.42882e6 −0.227812
\(894\) 0 0
\(895\) 1.00620e7 0.419883
\(896\) 0 0
\(897\) 3.82207e6 0.158605
\(898\) 0 0
\(899\) −1.84749e7 −0.762401
\(900\) 0 0
\(901\) −3.72229e7 −1.52756
\(902\) 0 0
\(903\) −1.95729e7 −0.798797
\(904\) 0 0
\(905\) 2.75454e6 0.111796
\(906\) 0 0
\(907\) −1.83400e7 −0.740253 −0.370127 0.928981i \(-0.620686\pi\)
−0.370127 + 0.928981i \(0.620686\pi\)
\(908\) 0 0
\(909\) −2.80931e7 −1.12769
\(910\) 0 0
\(911\) 4.69902e7 1.87591 0.937954 0.346761i \(-0.112718\pi\)
0.937954 + 0.346761i \(0.112718\pi\)
\(912\) 0 0
\(913\) 1.55736e7 0.618318
\(914\) 0 0
\(915\) −557888. −0.0220290
\(916\) 0 0
\(917\) −1.44694e7 −0.568236
\(918\) 0 0
\(919\) 1.42824e7 0.557844 0.278922 0.960314i \(-0.410023\pi\)
0.278922 + 0.960314i \(0.410023\pi\)
\(920\) 0 0
\(921\) 3.37524e6 0.131116
\(922\) 0 0
\(923\) −5.55761e6 −0.214726
\(924\) 0 0
\(925\) 5.51490e6 0.211925
\(926\) 0 0
\(927\) −2.66833e7 −1.01986
\(928\) 0 0
\(929\) −1.39002e7 −0.528424 −0.264212 0.964465i \(-0.585112\pi\)
−0.264212 + 0.964465i \(0.585112\pi\)
\(930\) 0 0
\(931\) −3.96456e7 −1.49907
\(932\) 0 0
\(933\) 7.56263e6 0.284426
\(934\) 0 0
\(935\) 1.31402e7 0.491554
\(936\) 0 0
\(937\) −1.81287e7 −0.674556 −0.337278 0.941405i \(-0.609506\pi\)
−0.337278 + 0.941405i \(0.609506\pi\)
\(938\) 0 0
\(939\) −239944. −0.00888066
\(940\) 0 0
\(941\) 3.21587e7 1.18392 0.591962 0.805966i \(-0.298353\pi\)
0.591962 + 0.805966i \(0.298353\pi\)
\(942\) 0 0
\(943\) 3.64755e7 1.33574
\(944\) 0 0
\(945\) 1.02679e7 0.374027
\(946\) 0 0
\(947\) 1.20017e7 0.434879 0.217440 0.976074i \(-0.430229\pi\)
0.217440 + 0.976074i \(0.430229\pi\)
\(948\) 0 0
\(949\) 7.11287e6 0.256377
\(950\) 0 0
\(951\) −1.56072e6 −0.0559596
\(952\) 0 0
\(953\) 1.62560e7 0.579806 0.289903 0.957056i \(-0.406377\pi\)
0.289903 + 0.957056i \(0.406377\pi\)
\(954\) 0 0
\(955\) 779963. 0.0276736
\(956\) 0 0
\(957\) 1.14743e7 0.404993
\(958\) 0 0
\(959\) 3.82819e7 1.34415
\(960\) 0 0
\(961\) −2.40753e7 −0.840935
\(962\) 0 0
\(963\) −1.84048e7 −0.639536
\(964\) 0 0
\(965\) 1.27913e7 0.442177
\(966\) 0 0
\(967\) 3.35091e7 1.15238 0.576191 0.817315i \(-0.304539\pi\)
0.576191 + 0.817315i \(0.304539\pi\)
\(968\) 0 0
\(969\) −1.60363e7 −0.548649
\(970\) 0 0
\(971\) 5.02968e7 1.71195 0.855977 0.517013i \(-0.172956\pi\)
0.855977 + 0.517013i \(0.172956\pi\)
\(972\) 0 0
\(973\) −1.52034e7 −0.514824
\(974\) 0 0
\(975\) −482942. −0.0162698
\(976\) 0 0
\(977\) −1.50963e7 −0.505982 −0.252991 0.967469i \(-0.581414\pi\)
−0.252991 + 0.967469i \(0.581414\pi\)
\(978\) 0 0
\(979\) −2.66431e7 −0.888440
\(980\) 0 0
\(981\) 3.66619e7 1.21631
\(982\) 0 0
\(983\) −3.25193e6 −0.107339 −0.0536694 0.998559i \(-0.517092\pi\)
−0.0536694 + 0.998559i \(0.517092\pi\)
\(984\) 0 0
\(985\) −1.30453e7 −0.428415
\(986\) 0 0
\(987\) −2.47846e6 −0.0809822
\(988\) 0 0
\(989\) −1.09632e8 −3.56409
\(990\) 0 0
\(991\) 2.53501e6 0.0819964 0.0409982 0.999159i \(-0.486946\pi\)
0.0409982 + 0.999159i \(0.486946\pi\)
\(992\) 0 0
\(993\) 8.03379e6 0.258552
\(994\) 0 0
\(995\) 1.11836e6 0.0358115
\(996\) 0 0
\(997\) −3.45726e7 −1.10153 −0.550763 0.834662i \(-0.685663\pi\)
−0.550763 + 0.834662i \(0.685663\pi\)
\(998\) 0 0
\(999\) 1.87641e7 0.594858
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.6.a.v.1.3 7
4.3 odd 2 260.6.a.f.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
260.6.a.f.1.5 7 4.3 odd 2
1040.6.a.v.1.3 7 1.1 even 1 trivial