Properties

Label 1045.2.a.f
Level $1045$
Weight $2$
Character orbit 1045.a
Self dual yes
Analytic conductor $8.344$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1045,2,Mod(1,1045)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1045, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1045.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.34436701122\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.7281497.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{4} q^{2} + \beta_{3} q^{3} + (\beta_{5} + \beta_{4}) q^{4} - q^{5} + \beta_{2} q^{6} + ( - \beta_{3} - \beta_1 + 1) q^{7} + ( - \beta_{5} - \beta_{4} - \beta_1 - 1) q^{8} + ( - \beta_{5} - \beta_{3} + \beta_1) q^{9}+ \cdots + (\beta_{5} + \beta_{3} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} - q^{3} + 4 q^{4} - 6 q^{5} + 5 q^{7} - 12 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + q^{12} - 5 q^{13} - 8 q^{14} + q^{15} + 4 q^{16} + q^{17} + 6 q^{18} - 6 q^{19} - 4 q^{20} - 21 q^{21}+ \cdots - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 5x^{4} + 7x^{3} + 6x^{2} - 2x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - 2\nu^{4} - 4\nu^{3} + 6\nu^{2} + 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 2\nu^{4} - 5\nu^{3} + 7\nu^{2} + 5\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 3\nu^{4} + 3\nu^{3} - 11\nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + \beta_{2} + 4\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} + 2\beta_{3} + 6\beta_{2} + 7\beta _1 + 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{5} - 6\beta_{4} + 9\beta_{3} + 10\beta_{2} + 22\beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.497517
−1.79049
−0.748369
1.77015
2.59744
−0.326248
−2.51246 0.895533 4.31247 −1.00000 −2.24999 −0.393051 −5.80998 −2.19802 2.51246
1.2 −2.23198 −1.34246 2.98176 −1.00000 2.99635 4.13295 −2.19127 −1.19780 2.23198
1.3 −0.412130 1.67805 −1.83015 −1.00000 −0.691575 0.0703171 1.57852 −0.184142 0.412130
1.4 0.205229 −3.10246 −1.95788 −1.00000 −0.636714 2.33231 −0.812271 6.62527 −0.205229
1.5 1.21244 1.77266 −0.529980 −1.00000 2.14925 −3.37010 −3.06746 0.142317 −1.21244
1.6 1.73890 −0.901323 1.02379 −1.00000 −1.56731 2.22757 −1.69754 −2.18762 −1.73890
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( +1 \)
\(11\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1045.2.a.f 6
3.b odd 2 1 9405.2.a.z 6
5.b even 2 1 5225.2.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1045.2.a.f 6 1.a even 1 1 trivial
5225.2.a.l 6 5.b even 2 1
9405.2.a.z 6 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 2T_{2}^{5} - 6T_{2}^{4} - 8T_{2}^{3} + 11T_{2}^{2} + 3T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1045))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 2 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( T^{6} + T^{5} + \cdots - 10 \) Copy content Toggle raw display
$5$ \( (T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} - 5 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( (T + 1)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 5 T^{5} + \cdots + 2 \) Copy content Toggle raw display
$17$ \( T^{6} - T^{5} + \cdots - 1360 \) Copy content Toggle raw display
$19$ \( (T + 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots - 8912 \) Copy content Toggle raw display
$29$ \( T^{6} + 9 T^{5} + \cdots + 3074 \) Copy content Toggle raw display
$31$ \( T^{6} + 21 T^{5} + \cdots - 20 \) Copy content Toggle raw display
$37$ \( T^{6} + 3 T^{5} + \cdots - 592 \) Copy content Toggle raw display
$41$ \( T^{6} + 23 T^{5} + \cdots - 4210 \) Copy content Toggle raw display
$43$ \( T^{6} - 7 T^{5} + \cdots - 326 \) Copy content Toggle raw display
$47$ \( T^{6} + 18 T^{5} + \cdots - 620 \) Copy content Toggle raw display
$53$ \( T^{6} + 17 T^{5} + \cdots - 4084 \) Copy content Toggle raw display
$59$ \( T^{6} + 29 T^{5} + \cdots - 54968 \) Copy content Toggle raw display
$61$ \( T^{6} - 17 T^{5} + \cdots + 2294 \) Copy content Toggle raw display
$67$ \( T^{6} - 8 T^{5} + \cdots - 73006 \) Copy content Toggle raw display
$71$ \( T^{6} + 12 T^{5} + \cdots - 5912 \) Copy content Toggle raw display
$73$ \( T^{6} - 2 T^{5} + \cdots - 4000 \) Copy content Toggle raw display
$79$ \( T^{6} - 3 T^{5} + \cdots + 28264 \) Copy content Toggle raw display
$83$ \( T^{6} + 11 T^{5} + \cdots - 82582 \) Copy content Toggle raw display
$89$ \( T^{6} + 22 T^{5} + \cdots + 3286 \) Copy content Toggle raw display
$97$ \( T^{6} + 2 T^{5} + \cdots - 967268 \) Copy content Toggle raw display
show more
show less