Properties

Label 105.2.i.d
Level 105105
Weight 22
Character orbit 105.i
Analytic conductor 0.8380.838
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,2,Mod(16,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.16");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 105=357 105 = 3 \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 105.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.8384292212230.838429221223
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123+ζ122ζ12)q2+(ζ122+1)q3+(4ζ123+2ζ122+2)q4ζ122q5+(ζ1232ζ12+1)q6++(ζ1232ζ121)q99+O(q100) q + ( - \zeta_{12}^{3} + \zeta_{12}^{2} - \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{3} + ( - 4 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + \cdots - 2) q^{4} - \zeta_{12}^{2} q^{5} + (\zeta_{12}^{3} - 2 \zeta_{12} + 1) q^{6} + \cdots + (\zeta_{12}^{3} - 2 \zeta_{12} - 1) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q2+2q34q42q5+4q624q82q9+2q10+2q11+4q12+16q13+18q144q1516q1610q17+2q182q19+8q208q22+4q99+O(q100) 4 q + 2 q^{2} + 2 q^{3} - 4 q^{4} - 2 q^{5} + 4 q^{6} - 24 q^{8} - 2 q^{9} + 2 q^{10} + 2 q^{11} + 4 q^{12} + 16 q^{13} + 18 q^{14} - 4 q^{15} - 16 q^{16} - 10 q^{17} + 2 q^{18} - 2 q^{19} + 8 q^{20} - 8 q^{22}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/105Z)×\left(\mathbb{Z}/105\mathbb{Z}\right)^\times.

nn 2222 3131 7171
χ(n)\chi(n) 11 ζ122-\zeta_{12}^{2} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
16.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.366025 + 0.633975i 0.500000 + 0.866025i 0.732051 + 1.26795i −0.500000 + 0.866025i −0.732051 −0.866025 2.50000i −2.53590 −0.500000 + 0.866025i −0.366025 0.633975i
16.2 1.36603 2.36603i 0.500000 + 0.866025i −2.73205 4.73205i −0.500000 + 0.866025i 2.73205 0.866025 + 2.50000i −9.46410 −0.500000 + 0.866025i 1.36603 + 2.36603i
46.1 −0.366025 0.633975i 0.500000 0.866025i 0.732051 1.26795i −0.500000 0.866025i −0.732051 −0.866025 + 2.50000i −2.53590 −0.500000 0.866025i −0.366025 + 0.633975i
46.2 1.36603 + 2.36603i 0.500000 0.866025i −2.73205 + 4.73205i −0.500000 0.866025i 2.73205 0.866025 2.50000i −9.46410 −0.500000 0.866025i 1.36603 2.36603i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.2.i.d 4
3.b odd 2 1 315.2.j.c 4
4.b odd 2 1 1680.2.bg.o 4
5.b even 2 1 525.2.i.f 4
5.c odd 4 1 525.2.r.a 4
5.c odd 4 1 525.2.r.f 4
7.b odd 2 1 735.2.i.l 4
7.c even 3 1 inner 105.2.i.d 4
7.c even 3 1 735.2.a.g 2
7.d odd 6 1 735.2.a.h 2
7.d odd 6 1 735.2.i.l 4
21.g even 6 1 2205.2.a.ba 2
21.h odd 6 1 315.2.j.c 4
21.h odd 6 1 2205.2.a.z 2
28.g odd 6 1 1680.2.bg.o 4
35.i odd 6 1 3675.2.a.be 2
35.j even 6 1 525.2.i.f 4
35.j even 6 1 3675.2.a.bg 2
35.l odd 12 1 525.2.r.a 4
35.l odd 12 1 525.2.r.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.i.d 4 1.a even 1 1 trivial
105.2.i.d 4 7.c even 3 1 inner
315.2.j.c 4 3.b odd 2 1
315.2.j.c 4 21.h odd 6 1
525.2.i.f 4 5.b even 2 1
525.2.i.f 4 35.j even 6 1
525.2.r.a 4 5.c odd 4 1
525.2.r.a 4 35.l odd 12 1
525.2.r.f 4 5.c odd 4 1
525.2.r.f 4 35.l odd 12 1
735.2.a.g 2 7.c even 3 1
735.2.a.h 2 7.d odd 6 1
735.2.i.l 4 7.b odd 2 1
735.2.i.l 4 7.d odd 6 1
1680.2.bg.o 4 4.b odd 2 1
1680.2.bg.o 4 28.g odd 6 1
2205.2.a.z 2 21.h odd 6 1
2205.2.a.ba 2 21.g even 6 1
3675.2.a.be 2 35.i odd 6 1
3675.2.a.bg 2 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T242T23+6T22+4T2+4 T_{2}^{4} - 2T_{2}^{3} + 6T_{2}^{2} + 4T_{2} + 4 acting on S2new(105,[χ])S_{2}^{\mathrm{new}}(105, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
33 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
55 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
77 T4+11T2+49 T^{4} + 11T^{2} + 49 Copy content Toggle raw display
1111 T42T3++4 T^{4} - 2 T^{3} + \cdots + 4 Copy content Toggle raw display
1313 (T28T+13)2 (T^{2} - 8 T + 13)^{2} Copy content Toggle raw display
1717 T4+10T3++484 T^{4} + 10 T^{3} + \cdots + 484 Copy content Toggle raw display
1919 T4+2T3++121 T^{4} + 2 T^{3} + \cdots + 121 Copy content Toggle raw display
2323 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
2929 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
3131 T4+6T3++9 T^{4} + 6 T^{3} + \cdots + 9 Copy content Toggle raw display
3737 T4+4T3++529 T^{4} + 4 T^{3} + \cdots + 529 Copy content Toggle raw display
4141 (T22T2)2 (T^{2} - 2 T - 2)^{2} Copy content Toggle raw display
4343 (T2+4T23)2 (T^{2} + 4 T - 23)^{2} Copy content Toggle raw display
4747 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
5353 T4+4T3++10816 T^{4} + 4 T^{3} + \cdots + 10816 Copy content Toggle raw display
5959 T4+10T3++4 T^{4} + 10 T^{3} + \cdots + 4 Copy content Toggle raw display
6161 (T2+4T+16)2 (T^{2} + 4 T + 16)^{2} Copy content Toggle raw display
6767 T412T3++1521 T^{4} - 12 T^{3} + \cdots + 1521 Copy content Toggle raw display
7171 (T22T26)2 (T^{2} - 2 T - 26)^{2} Copy content Toggle raw display
7373 T4+8T3++3481 T^{4} + 8 T^{3} + \cdots + 3481 Copy content Toggle raw display
7979 T4+6T3++9801 T^{4} + 6 T^{3} + \cdots + 9801 Copy content Toggle raw display
8383 (T26T138)2 (T^{2} - 6 T - 138)^{2} Copy content Toggle raw display
8989 T4+6T3++19044 T^{4} + 6 T^{3} + \cdots + 19044 Copy content Toggle raw display
9797 (T216T+16)2 (T^{2} - 16 T + 16)^{2} Copy content Toggle raw display
show more
show less