Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,2,Mod(16,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 105.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 |
|
−0.366025 | + | 0.633975i | 0.500000 | + | 0.866025i | 0.732051 | + | 1.26795i | −0.500000 | + | 0.866025i | −0.732051 | −0.866025 | − | 2.50000i | −2.53590 | −0.500000 | + | 0.866025i | −0.366025 | − | 0.633975i | ||||||||||||||||
16.2 | 1.36603 | − | 2.36603i | 0.500000 | + | 0.866025i | −2.73205 | − | 4.73205i | −0.500000 | + | 0.866025i | 2.73205 | 0.866025 | + | 2.50000i | −9.46410 | −0.500000 | + | 0.866025i | 1.36603 | + | 2.36603i | |||||||||||||||||
46.1 | −0.366025 | − | 0.633975i | 0.500000 | − | 0.866025i | 0.732051 | − | 1.26795i | −0.500000 | − | 0.866025i | −0.732051 | −0.866025 | + | 2.50000i | −2.53590 | −0.500000 | − | 0.866025i | −0.366025 | + | 0.633975i | |||||||||||||||||
46.2 | 1.36603 | + | 2.36603i | 0.500000 | − | 0.866025i | −2.73205 | + | 4.73205i | −0.500000 | − | 0.866025i | 2.73205 | 0.866025 | − | 2.50000i | −9.46410 | −0.500000 | − | 0.866025i | 1.36603 | − | 2.36603i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.2.i.d | ✓ | 4 |
3.b | odd | 2 | 1 | 315.2.j.c | 4 | ||
4.b | odd | 2 | 1 | 1680.2.bg.o | 4 | ||
5.b | even | 2 | 1 | 525.2.i.f | 4 | ||
5.c | odd | 4 | 1 | 525.2.r.a | 4 | ||
5.c | odd | 4 | 1 | 525.2.r.f | 4 | ||
7.b | odd | 2 | 1 | 735.2.i.l | 4 | ||
7.c | even | 3 | 1 | inner | 105.2.i.d | ✓ | 4 |
7.c | even | 3 | 1 | 735.2.a.g | 2 | ||
7.d | odd | 6 | 1 | 735.2.a.h | 2 | ||
7.d | odd | 6 | 1 | 735.2.i.l | 4 | ||
21.g | even | 6 | 1 | 2205.2.a.ba | 2 | ||
21.h | odd | 6 | 1 | 315.2.j.c | 4 | ||
21.h | odd | 6 | 1 | 2205.2.a.z | 2 | ||
28.g | odd | 6 | 1 | 1680.2.bg.o | 4 | ||
35.i | odd | 6 | 1 | 3675.2.a.be | 2 | ||
35.j | even | 6 | 1 | 525.2.i.f | 4 | ||
35.j | even | 6 | 1 | 3675.2.a.bg | 2 | ||
35.l | odd | 12 | 1 | 525.2.r.a | 4 | ||
35.l | odd | 12 | 1 | 525.2.r.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.2.i.d | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
105.2.i.d | ✓ | 4 | 7.c | even | 3 | 1 | inner |
315.2.j.c | 4 | 3.b | odd | 2 | 1 | ||
315.2.j.c | 4 | 21.h | odd | 6 | 1 | ||
525.2.i.f | 4 | 5.b | even | 2 | 1 | ||
525.2.i.f | 4 | 35.j | even | 6 | 1 | ||
525.2.r.a | 4 | 5.c | odd | 4 | 1 | ||
525.2.r.a | 4 | 35.l | odd | 12 | 1 | ||
525.2.r.f | 4 | 5.c | odd | 4 | 1 | ||
525.2.r.f | 4 | 35.l | odd | 12 | 1 | ||
735.2.a.g | 2 | 7.c | even | 3 | 1 | ||
735.2.a.h | 2 | 7.d | odd | 6 | 1 | ||
735.2.i.l | 4 | 7.b | odd | 2 | 1 | ||
735.2.i.l | 4 | 7.d | odd | 6 | 1 | ||
1680.2.bg.o | 4 | 4.b | odd | 2 | 1 | ||
1680.2.bg.o | 4 | 28.g | odd | 6 | 1 | ||
2205.2.a.z | 2 | 21.h | odd | 6 | 1 | ||
2205.2.a.ba | 2 | 21.g | even | 6 | 1 | ||
3675.2.a.be | 2 | 35.i | odd | 6 | 1 | ||
3675.2.a.bg | 2 | 35.j | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .