Properties

Label 105.2.s.a.26.1
Level $105$
Weight $2$
Character 105.26
Analytic conductor $0.838$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,2,Mod(26,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.838429221223\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 105.26
Dual form 105.2.s.a.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(1.50000 + 2.59808i) q^{6} +(-2.50000 - 0.866025i) q^{7} +1.73205i q^{8} +(1.50000 + 2.59808i) q^{9} +(1.50000 - 0.866025i) q^{10} +(-3.00000 + 1.73205i) q^{11} -1.73205i q^{12} +3.46410i q^{13} +(3.00000 + 3.46410i) q^{14} +(1.50000 - 0.866025i) q^{15} +(2.50000 - 4.33013i) q^{16} +(-3.00000 - 5.19615i) q^{17} -5.19615i q^{18} +(-6.00000 - 3.46410i) q^{19} -1.00000 q^{20} +(3.00000 + 3.46410i) q^{21} +6.00000 q^{22} +(1.50000 + 0.866025i) q^{23} +(1.50000 - 2.59808i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(3.00000 - 5.19615i) q^{26} -5.19615i q^{27} +(-0.500000 - 2.59808i) q^{28} -1.73205i q^{29} -3.00000 q^{30} +(-3.00000 + 1.73205i) q^{31} +(-4.50000 + 2.59808i) q^{32} +6.00000 q^{33} +10.3923i q^{34} +(2.00000 - 1.73205i) q^{35} +(-1.50000 + 2.59808i) q^{36} +(-2.00000 + 3.46410i) q^{37} +(6.00000 + 10.3923i) q^{38} +(3.00000 - 5.19615i) q^{39} +(-1.50000 - 0.866025i) q^{40} -3.00000 q^{41} +(-1.50000 - 7.79423i) q^{42} +1.00000 q^{43} +(-3.00000 - 1.73205i) q^{44} -3.00000 q^{45} +(-1.50000 - 2.59808i) q^{46} +(-7.50000 + 4.33013i) q^{48} +(5.50000 + 4.33013i) q^{49} +1.73205i q^{50} +10.3923i q^{51} +(-3.00000 + 1.73205i) q^{52} +(-4.50000 + 7.79423i) q^{54} -3.46410i q^{55} +(1.50000 - 4.33013i) q^{56} +(6.00000 + 10.3923i) q^{57} +(-1.50000 + 2.59808i) q^{58} +(1.50000 + 0.866025i) q^{60} +(-4.50000 - 2.59808i) q^{61} +6.00000 q^{62} +(-1.50000 - 7.79423i) q^{63} -1.00000 q^{64} +(-3.00000 - 1.73205i) q^{65} +(-9.00000 - 5.19615i) q^{66} +(6.50000 + 11.2583i) q^{67} +(3.00000 - 5.19615i) q^{68} +(-1.50000 - 2.59808i) q^{69} +(-4.50000 + 0.866025i) q^{70} -6.92820i q^{71} +(-4.50000 + 2.59808i) q^{72} +(3.00000 - 1.73205i) q^{73} +(6.00000 - 3.46410i) q^{74} +1.73205i q^{75} -6.92820i q^{76} +(9.00000 - 1.73205i) q^{77} +(-9.00000 + 5.19615i) q^{78} +(8.00000 - 13.8564i) q^{79} +(2.50000 + 4.33013i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(4.50000 + 2.59808i) q^{82} -9.00000 q^{83} +(-1.50000 + 4.33013i) q^{84} +6.00000 q^{85} +(-1.50000 - 0.866025i) q^{86} +(-1.50000 + 2.59808i) q^{87} +(-3.00000 - 5.19615i) q^{88} +(-1.50000 + 2.59808i) q^{89} +(4.50000 + 2.59808i) q^{90} +(3.00000 - 8.66025i) q^{91} +1.73205i q^{92} +6.00000 q^{93} +(6.00000 - 3.46410i) q^{95} +9.00000 q^{96} -10.3923i q^{97} +(-4.50000 - 11.2583i) q^{98} +(-9.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} - 3 q^{3} + q^{4} - q^{5} + 3 q^{6} - 5 q^{7} + 3 q^{9} + 3 q^{10} - 6 q^{11} + 6 q^{14} + 3 q^{15} + 5 q^{16} - 6 q^{17} - 12 q^{19} - 2 q^{20} + 6 q^{21} + 12 q^{22} + 3 q^{23} + 3 q^{24}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50000 0.866025i −1.06066 0.612372i −0.135045 0.990839i \(-0.543118\pi\)
−0.925615 + 0.378467i \(0.876451\pi\)
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.50000 + 2.59808i 0.612372 + 1.06066i
\(7\) −2.50000 0.866025i −0.944911 0.327327i
\(8\) 1.73205i 0.612372i
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 1.50000 0.866025i 0.474342 0.273861i
\(11\) −3.00000 + 1.73205i −0.904534 + 0.522233i −0.878668 0.477432i \(-0.841568\pi\)
−0.0258656 + 0.999665i \(0.508234\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 3.00000 + 3.46410i 0.801784 + 0.925820i
\(15\) 1.50000 0.866025i 0.387298 0.223607i
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) −3.00000 5.19615i −0.727607 1.26025i −0.957892 0.287129i \(-0.907299\pi\)
0.230285 0.973123i \(-0.426034\pi\)
\(18\) 5.19615i 1.22474i
\(19\) −6.00000 3.46410i −1.37649 0.794719i −0.384759 0.923017i \(-0.625715\pi\)
−0.991736 + 0.128298i \(0.959049\pi\)
\(20\) −1.00000 −0.223607
\(21\) 3.00000 + 3.46410i 0.654654 + 0.755929i
\(22\) 6.00000 1.27920
\(23\) 1.50000 + 0.866025i 0.312772 + 0.180579i 0.648166 0.761499i \(-0.275536\pi\)
−0.335394 + 0.942078i \(0.608870\pi\)
\(24\) 1.50000 2.59808i 0.306186 0.530330i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 3.00000 5.19615i 0.588348 1.01905i
\(27\) 5.19615i 1.00000i
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) 1.73205i 0.321634i −0.986984 0.160817i \(-0.948587\pi\)
0.986984 0.160817i \(-0.0514129\pi\)
\(30\) −3.00000 −0.547723
\(31\) −3.00000 + 1.73205i −0.538816 + 0.311086i −0.744599 0.667512i \(-0.767359\pi\)
0.205783 + 0.978598i \(0.434026\pi\)
\(32\) −4.50000 + 2.59808i −0.795495 + 0.459279i
\(33\) 6.00000 1.04447
\(34\) 10.3923i 1.78227i
\(35\) 2.00000 1.73205i 0.338062 0.292770i
\(36\) −1.50000 + 2.59808i −0.250000 + 0.433013i
\(37\) −2.00000 + 3.46410i −0.328798 + 0.569495i −0.982274 0.187453i \(-0.939977\pi\)
0.653476 + 0.756948i \(0.273310\pi\)
\(38\) 6.00000 + 10.3923i 0.973329 + 1.68585i
\(39\) 3.00000 5.19615i 0.480384 0.832050i
\(40\) −1.50000 0.866025i −0.237171 0.136931i
\(41\) −3.00000 −0.468521 −0.234261 0.972174i \(-0.575267\pi\)
−0.234261 + 0.972174i \(0.575267\pi\)
\(42\) −1.50000 7.79423i −0.231455 1.20268i
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) −3.00000 1.73205i −0.452267 0.261116i
\(45\) −3.00000 −0.447214
\(46\) −1.50000 2.59808i −0.221163 0.383065i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −7.50000 + 4.33013i −1.08253 + 0.625000i
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 1.73205i 0.244949i
\(51\) 10.3923i 1.45521i
\(52\) −3.00000 + 1.73205i −0.416025 + 0.240192i
\(53\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(54\) −4.50000 + 7.79423i −0.612372 + 1.06066i
\(55\) 3.46410i 0.467099i
\(56\) 1.50000 4.33013i 0.200446 0.578638i
\(57\) 6.00000 + 10.3923i 0.794719 + 1.37649i
\(58\) −1.50000 + 2.59808i −0.196960 + 0.341144i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 1.50000 + 0.866025i 0.193649 + 0.111803i
\(61\) −4.50000 2.59808i −0.576166 0.332650i 0.183442 0.983030i \(-0.441276\pi\)
−0.759608 + 0.650381i \(0.774609\pi\)
\(62\) 6.00000 0.762001
\(63\) −1.50000 7.79423i −0.188982 0.981981i
\(64\) −1.00000 −0.125000
\(65\) −3.00000 1.73205i −0.372104 0.214834i
\(66\) −9.00000 5.19615i −1.10782 0.639602i
\(67\) 6.50000 + 11.2583i 0.794101 + 1.37542i 0.923408 + 0.383819i \(0.125391\pi\)
−0.129307 + 0.991605i \(0.541275\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) −1.50000 2.59808i −0.180579 0.312772i
\(70\) −4.50000 + 0.866025i −0.537853 + 0.103510i
\(71\) 6.92820i 0.822226i −0.911584 0.411113i \(-0.865140\pi\)
0.911584 0.411113i \(-0.134860\pi\)
\(72\) −4.50000 + 2.59808i −0.530330 + 0.306186i
\(73\) 3.00000 1.73205i 0.351123 0.202721i −0.314057 0.949404i \(-0.601688\pi\)
0.665180 + 0.746683i \(0.268355\pi\)
\(74\) 6.00000 3.46410i 0.697486 0.402694i
\(75\) 1.73205i 0.200000i
\(76\) 6.92820i 0.794719i
\(77\) 9.00000 1.73205i 1.02565 0.197386i
\(78\) −9.00000 + 5.19615i −1.01905 + 0.588348i
\(79\) 8.00000 13.8564i 0.900070 1.55897i 0.0726692 0.997356i \(-0.476848\pi\)
0.827401 0.561611i \(-0.189818\pi\)
\(80\) 2.50000 + 4.33013i 0.279508 + 0.484123i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 4.50000 + 2.59808i 0.496942 + 0.286910i
\(83\) −9.00000 −0.987878 −0.493939 0.869496i \(-0.664443\pi\)
−0.493939 + 0.869496i \(0.664443\pi\)
\(84\) −1.50000 + 4.33013i −0.163663 + 0.472456i
\(85\) 6.00000 0.650791
\(86\) −1.50000 0.866025i −0.161749 0.0933859i
\(87\) −1.50000 + 2.59808i −0.160817 + 0.278543i
\(88\) −3.00000 5.19615i −0.319801 0.553912i
\(89\) −1.50000 + 2.59808i −0.159000 + 0.275396i −0.934508 0.355942i \(-0.884160\pi\)
0.775509 + 0.631337i \(0.217494\pi\)
\(90\) 4.50000 + 2.59808i 0.474342 + 0.273861i
\(91\) 3.00000 8.66025i 0.314485 0.907841i
\(92\) 1.73205i 0.180579i
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 6.00000 3.46410i 0.615587 0.355409i
\(96\) 9.00000 0.918559
\(97\) 10.3923i 1.05518i −0.849500 0.527589i \(-0.823096\pi\)
0.849500 0.527589i \(-0.176904\pi\)
\(98\) −4.50000 11.2583i −0.454569 1.13726i
\(99\) −9.00000 5.19615i −0.904534 0.522233i
\(100\) 0.500000 0.866025i 0.0500000 0.0866025i
\(101\) 7.50000 + 12.9904i 0.746278 + 1.29259i 0.949595 + 0.313478i \(0.101494\pi\)
−0.203317 + 0.979113i \(0.565172\pi\)
\(102\) 9.00000 15.5885i 0.891133 1.54349i
\(103\) −4.50000 2.59808i −0.443398 0.255996i 0.261640 0.965166i \(-0.415737\pi\)
−0.705038 + 0.709170i \(0.749070\pi\)
\(104\) −6.00000 −0.588348
\(105\) −4.50000 + 0.866025i −0.439155 + 0.0845154i
\(106\) 0 0
\(107\) 4.50000 + 2.59808i 0.435031 + 0.251166i 0.701488 0.712681i \(-0.252519\pi\)
−0.266456 + 0.963847i \(0.585853\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 2.50000 + 4.33013i 0.239457 + 0.414751i 0.960558 0.278078i \(-0.0896974\pi\)
−0.721102 + 0.692829i \(0.756364\pi\)
\(110\) −3.00000 + 5.19615i −0.286039 + 0.495434i
\(111\) 6.00000 3.46410i 0.569495 0.328798i
\(112\) −10.0000 + 8.66025i −0.944911 + 0.818317i
\(113\) 6.92820i 0.651751i −0.945413 0.325875i \(-0.894341\pi\)
0.945413 0.325875i \(-0.105659\pi\)
\(114\) 20.7846i 1.94666i
\(115\) −1.50000 + 0.866025i −0.139876 + 0.0807573i
\(116\) 1.50000 0.866025i 0.139272 0.0804084i
\(117\) −9.00000 + 5.19615i −0.832050 + 0.480384i
\(118\) 0 0
\(119\) 3.00000 + 15.5885i 0.275010 + 1.42899i
\(120\) 1.50000 + 2.59808i 0.136931 + 0.237171i
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 4.50000 + 7.79423i 0.407411 + 0.705656i
\(123\) 4.50000 + 2.59808i 0.405751 + 0.234261i
\(124\) −3.00000 1.73205i −0.269408 0.155543i
\(125\) 1.00000 0.0894427
\(126\) −4.50000 + 12.9904i −0.400892 + 1.15728i
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 10.5000 + 6.06218i 0.928078 + 0.535826i
\(129\) −1.50000 0.866025i −0.132068 0.0762493i
\(130\) 3.00000 + 5.19615i 0.263117 + 0.455733i
\(131\) −6.00000 + 10.3923i −0.524222 + 0.907980i 0.475380 + 0.879781i \(0.342311\pi\)
−0.999602 + 0.0281993i \(0.991023\pi\)
\(132\) 3.00000 + 5.19615i 0.261116 + 0.452267i
\(133\) 12.0000 + 13.8564i 1.04053 + 1.20150i
\(134\) 22.5167i 1.94514i
\(135\) 4.50000 + 2.59808i 0.387298 + 0.223607i
\(136\) 9.00000 5.19615i 0.771744 0.445566i
\(137\) −18.0000 + 10.3923i −1.53784 + 0.887875i −0.538879 + 0.842383i \(0.681152\pi\)
−0.998965 + 0.0454914i \(0.985515\pi\)
\(138\) 5.19615i 0.442326i
\(139\) 10.3923i 0.881464i 0.897639 + 0.440732i \(0.145281\pi\)
−0.897639 + 0.440732i \(0.854719\pi\)
\(140\) 2.50000 + 0.866025i 0.211289 + 0.0731925i
\(141\) 0 0
\(142\) −6.00000 + 10.3923i −0.503509 + 0.872103i
\(143\) −6.00000 10.3923i −0.501745 0.869048i
\(144\) 15.0000 1.25000
\(145\) 1.50000 + 0.866025i 0.124568 + 0.0719195i
\(146\) −6.00000 −0.496564
\(147\) −4.50000 11.2583i −0.371154 0.928571i
\(148\) −4.00000 −0.328798
\(149\) −19.5000 11.2583i −1.59750 0.922318i −0.991967 0.126500i \(-0.959626\pi\)
−0.605536 0.795818i \(-0.707041\pi\)
\(150\) 1.50000 2.59808i 0.122474 0.212132i
\(151\) 1.00000 + 1.73205i 0.0813788 + 0.140952i 0.903842 0.427865i \(-0.140734\pi\)
−0.822464 + 0.568818i \(0.807401\pi\)
\(152\) 6.00000 10.3923i 0.486664 0.842927i
\(153\) 9.00000 15.5885i 0.727607 1.26025i
\(154\) −15.0000 5.19615i −1.20873 0.418718i
\(155\) 3.46410i 0.278243i
\(156\) 6.00000 0.480384
\(157\) −3.00000 + 1.73205i −0.239426 + 0.138233i −0.614913 0.788595i \(-0.710809\pi\)
0.375487 + 0.926828i \(0.377476\pi\)
\(158\) −24.0000 + 13.8564i −1.90934 + 1.10236i
\(159\) 0 0
\(160\) 5.19615i 0.410792i
\(161\) −3.00000 3.46410i −0.236433 0.273009i
\(162\) 13.5000 7.79423i 1.06066 0.612372i
\(163\) −4.00000 + 6.92820i −0.313304 + 0.542659i −0.979076 0.203497i \(-0.934769\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) −1.50000 2.59808i −0.117130 0.202876i
\(165\) −3.00000 + 5.19615i −0.233550 + 0.404520i
\(166\) 13.5000 + 7.79423i 1.04780 + 0.604949i
\(167\) 21.0000 1.62503 0.812514 0.582941i \(-0.198098\pi\)
0.812514 + 0.582941i \(0.198098\pi\)
\(168\) −6.00000 + 5.19615i −0.462910 + 0.400892i
\(169\) 1.00000 0.0769231
\(170\) −9.00000 5.19615i −0.690268 0.398527i
\(171\) 20.7846i 1.58944i
\(172\) 0.500000 + 0.866025i 0.0381246 + 0.0660338i
\(173\) 6.00000 10.3923i 0.456172 0.790112i −0.542583 0.840002i \(-0.682554\pi\)
0.998755 + 0.0498898i \(0.0158870\pi\)
\(174\) 4.50000 2.59808i 0.341144 0.196960i
\(175\) 0.500000 + 2.59808i 0.0377964 + 0.196396i
\(176\) 17.3205i 1.30558i
\(177\) 0 0
\(178\) 4.50000 2.59808i 0.337289 0.194734i
\(179\) −9.00000 + 5.19615i −0.672692 + 0.388379i −0.797096 0.603853i \(-0.793631\pi\)
0.124404 + 0.992232i \(0.460298\pi\)
\(180\) −1.50000 2.59808i −0.111803 0.193649i
\(181\) 5.19615i 0.386227i 0.981176 + 0.193113i \(0.0618586\pi\)
−0.981176 + 0.193113i \(0.938141\pi\)
\(182\) −12.0000 + 10.3923i −0.889499 + 0.770329i
\(183\) 4.50000 + 7.79423i 0.332650 + 0.576166i
\(184\) −1.50000 + 2.59808i −0.110581 + 0.191533i
\(185\) −2.00000 3.46410i −0.147043 0.254686i
\(186\) −9.00000 5.19615i −0.659912 0.381000i
\(187\) 18.0000 + 10.3923i 1.31629 + 0.759961i
\(188\) 0 0
\(189\) −4.50000 + 12.9904i −0.327327 + 0.944911i
\(190\) −12.0000 −0.870572
\(191\) 9.00000 + 5.19615i 0.651217 + 0.375980i 0.788922 0.614493i \(-0.210639\pi\)
−0.137705 + 0.990473i \(0.543973\pi\)
\(192\) 1.50000 + 0.866025i 0.108253 + 0.0625000i
\(193\) −11.0000 19.0526i −0.791797 1.37143i −0.924853 0.380325i \(-0.875812\pi\)
0.133056 0.991109i \(-0.457521\pi\)
\(194\) −9.00000 + 15.5885i −0.646162 + 1.11919i
\(195\) 3.00000 + 5.19615i 0.214834 + 0.372104i
\(196\) −1.00000 + 6.92820i −0.0714286 + 0.494872i
\(197\) 3.46410i 0.246807i −0.992357 0.123404i \(-0.960619\pi\)
0.992357 0.123404i \(-0.0393809\pi\)
\(198\) 9.00000 + 15.5885i 0.639602 + 1.10782i
\(199\) 6.00000 3.46410i 0.425329 0.245564i −0.272026 0.962290i \(-0.587694\pi\)
0.697355 + 0.716726i \(0.254360\pi\)
\(200\) 1.50000 0.866025i 0.106066 0.0612372i
\(201\) 22.5167i 1.58820i
\(202\) 25.9808i 1.82800i
\(203\) −1.50000 + 4.33013i −0.105279 + 0.303915i
\(204\) −9.00000 + 5.19615i −0.630126 + 0.363803i
\(205\) 1.50000 2.59808i 0.104765 0.181458i
\(206\) 4.50000 + 7.79423i 0.313530 + 0.543050i
\(207\) 5.19615i 0.361158i
\(208\) 15.0000 + 8.66025i 1.04006 + 0.600481i
\(209\) 24.0000 1.66011
\(210\) 7.50000 + 2.59808i 0.517549 + 0.179284i
\(211\) −20.0000 −1.37686 −0.688428 0.725304i \(-0.741699\pi\)
−0.688428 + 0.725304i \(0.741699\pi\)
\(212\) 0 0
\(213\) −6.00000 + 10.3923i −0.411113 + 0.712069i
\(214\) −4.50000 7.79423i −0.307614 0.532803i
\(215\) −0.500000 + 0.866025i −0.0340997 + 0.0590624i
\(216\) 9.00000 0.612372
\(217\) 9.00000 1.73205i 0.610960 0.117579i
\(218\) 8.66025i 0.586546i
\(219\) −6.00000 −0.405442
\(220\) 3.00000 1.73205i 0.202260 0.116775i
\(221\) 18.0000 10.3923i 1.21081 0.699062i
\(222\) −12.0000 −0.805387
\(223\) 3.46410i 0.231973i −0.993251 0.115987i \(-0.962997\pi\)
0.993251 0.115987i \(-0.0370030\pi\)
\(224\) 13.5000 2.59808i 0.902007 0.173591i
\(225\) 1.50000 2.59808i 0.100000 0.173205i
\(226\) −6.00000 + 10.3923i −0.399114 + 0.691286i
\(227\) −6.00000 10.3923i −0.398234 0.689761i 0.595274 0.803523i \(-0.297043\pi\)
−0.993508 + 0.113761i \(0.963710\pi\)
\(228\) −6.00000 + 10.3923i −0.397360 + 0.688247i
\(229\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(230\) 3.00000 0.197814
\(231\) −15.0000 5.19615i −0.986928 0.341882i
\(232\) 3.00000 0.196960
\(233\) 3.00000 + 1.73205i 0.196537 + 0.113470i 0.595039 0.803697i \(-0.297137\pi\)
−0.398502 + 0.917167i \(0.630470\pi\)
\(234\) 18.0000 1.17670
\(235\) 0 0
\(236\) 0 0
\(237\) −24.0000 + 13.8564i −1.55897 + 0.900070i
\(238\) 9.00000 25.9808i 0.583383 1.68408i
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 8.66025i 0.559017i
\(241\) −6.00000 + 3.46410i −0.386494 + 0.223142i −0.680640 0.732618i \(-0.738298\pi\)
0.294146 + 0.955761i \(0.404965\pi\)
\(242\) −1.50000 + 0.866025i −0.0964237 + 0.0556702i
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) 5.19615i 0.332650i
\(245\) −6.50000 + 2.59808i −0.415270 + 0.165985i
\(246\) −4.50000 7.79423i −0.286910 0.496942i
\(247\) 12.0000 20.7846i 0.763542 1.32249i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) 13.5000 + 7.79423i 0.855528 + 0.493939i
\(250\) −1.50000 0.866025i −0.0948683 0.0547723i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 6.00000 5.19615i 0.377964 0.327327i
\(253\) −6.00000 −0.377217
\(254\) 24.0000 + 13.8564i 1.50589 + 0.869428i
\(255\) −9.00000 5.19615i −0.563602 0.325396i
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 1.50000 + 2.59808i 0.0933859 + 0.161749i
\(259\) 8.00000 6.92820i 0.497096 0.430498i
\(260\) 3.46410i 0.214834i
\(261\) 4.50000 2.59808i 0.278543 0.160817i
\(262\) 18.0000 10.3923i 1.11204 0.642039i
\(263\) 1.50000 0.866025i 0.0924940 0.0534014i −0.453040 0.891490i \(-0.649660\pi\)
0.545534 + 0.838089i \(0.316327\pi\)
\(264\) 10.3923i 0.639602i
\(265\) 0 0
\(266\) −6.00000 31.1769i −0.367884 1.91158i
\(267\) 4.50000 2.59808i 0.275396 0.159000i
\(268\) −6.50000 + 11.2583i −0.397051 + 0.687712i
\(269\) 1.50000 + 2.59808i 0.0914566 + 0.158408i 0.908124 0.418701i \(-0.137514\pi\)
−0.816668 + 0.577108i \(0.804181\pi\)
\(270\) −4.50000 7.79423i −0.273861 0.474342i
\(271\) 6.00000 + 3.46410i 0.364474 + 0.210429i 0.671042 0.741420i \(-0.265847\pi\)
−0.306568 + 0.951849i \(0.599181\pi\)
\(272\) −30.0000 −1.81902
\(273\) −12.0000 + 10.3923i −0.726273 + 0.628971i
\(274\) 36.0000 2.17484
\(275\) 3.00000 + 1.73205i 0.180907 + 0.104447i
\(276\) 1.50000 2.59808i 0.0902894 0.156386i
\(277\) −13.0000 22.5167i −0.781094 1.35290i −0.931305 0.364241i \(-0.881328\pi\)
0.150210 0.988654i \(-0.452005\pi\)
\(278\) 9.00000 15.5885i 0.539784 0.934934i
\(279\) −9.00000 5.19615i −0.538816 0.311086i
\(280\) 3.00000 + 3.46410i 0.179284 + 0.207020i
\(281\) 6.92820i 0.413302i −0.978415 0.206651i \(-0.933744\pi\)
0.978415 0.206651i \(-0.0662565\pi\)
\(282\) 0 0
\(283\) −27.0000 + 15.5885i −1.60498 + 0.926638i −0.614514 + 0.788906i \(0.710648\pi\)
−0.990470 + 0.137732i \(0.956019\pi\)
\(284\) 6.00000 3.46410i 0.356034 0.205557i
\(285\) −12.0000 −0.710819
\(286\) 20.7846i 1.22902i
\(287\) 7.50000 + 2.59808i 0.442711 + 0.153360i
\(288\) −13.5000 7.79423i −0.795495 0.459279i
\(289\) −9.50000 + 16.4545i −0.558824 + 0.967911i
\(290\) −1.50000 2.59808i −0.0880830 0.152564i
\(291\) −9.00000 + 15.5885i −0.527589 + 0.913812i
\(292\) 3.00000 + 1.73205i 0.175562 + 0.101361i
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) −3.00000 + 20.7846i −0.174964 + 1.21218i
\(295\) 0 0
\(296\) −6.00000 3.46410i −0.348743 0.201347i
\(297\) 9.00000 + 15.5885i 0.522233 + 0.904534i
\(298\) 19.5000 + 33.7750i 1.12960 + 1.95653i
\(299\) −3.00000 + 5.19615i −0.173494 + 0.300501i
\(300\) −1.50000 + 0.866025i −0.0866025 + 0.0500000i
\(301\) −2.50000 0.866025i −0.144098 0.0499169i
\(302\) 3.46410i 0.199337i
\(303\) 25.9808i 1.49256i
\(304\) −30.0000 + 17.3205i −1.72062 + 0.993399i
\(305\) 4.50000 2.59808i 0.257669 0.148765i
\(306\) −27.0000 + 15.5885i −1.54349 + 0.891133i
\(307\) 22.5167i 1.28509i 0.766246 + 0.642547i \(0.222122\pi\)
−0.766246 + 0.642547i \(0.777878\pi\)
\(308\) 6.00000 + 6.92820i 0.341882 + 0.394771i
\(309\) 4.50000 + 7.79423i 0.255996 + 0.443398i
\(310\) −3.00000 + 5.19615i −0.170389 + 0.295122i
\(311\) 12.0000 + 20.7846i 0.680458 + 1.17859i 0.974841 + 0.222900i \(0.0715523\pi\)
−0.294384 + 0.955687i \(0.595114\pi\)
\(312\) 9.00000 + 5.19615i 0.509525 + 0.294174i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 6.00000 0.338600
\(315\) 7.50000 + 2.59808i 0.422577 + 0.146385i
\(316\) 16.0000 0.900070
\(317\) −15.0000 8.66025i −0.842484 0.486408i 0.0156238 0.999878i \(-0.495027\pi\)
−0.858108 + 0.513470i \(0.828360\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) 0.500000 0.866025i 0.0279508 0.0484123i
\(321\) −4.50000 7.79423i −0.251166 0.435031i
\(322\) 1.50000 + 7.79423i 0.0835917 + 0.434355i
\(323\) 41.5692i 2.31297i
\(324\) −9.00000 −0.500000
\(325\) 3.00000 1.73205i 0.166410 0.0960769i
\(326\) 12.0000 6.92820i 0.664619 0.383718i
\(327\) 8.66025i 0.478913i
\(328\) 5.19615i 0.286910i
\(329\) 0 0
\(330\) 9.00000 5.19615i 0.495434 0.286039i
\(331\) −5.00000 + 8.66025i −0.274825 + 0.476011i −0.970091 0.242742i \(-0.921953\pi\)
0.695266 + 0.718752i \(0.255287\pi\)
\(332\) −4.50000 7.79423i −0.246970 0.427764i
\(333\) −12.0000 −0.657596
\(334\) −31.5000 18.1865i −1.72360 0.995123i
\(335\) −13.0000 −0.710266
\(336\) 22.5000 4.33013i 1.22748 0.236228i
\(337\) −32.0000 −1.74315 −0.871576 0.490261i \(-0.836901\pi\)
−0.871576 + 0.490261i \(0.836901\pi\)
\(338\) −1.50000 0.866025i −0.0815892 0.0471056i
\(339\) −6.00000 + 10.3923i −0.325875 + 0.564433i
\(340\) 3.00000 + 5.19615i 0.162698 + 0.281801i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) −18.0000 + 31.1769i −0.973329 + 1.68585i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 1.73205i 0.0933859i
\(345\) 3.00000 0.161515
\(346\) −18.0000 + 10.3923i −0.967686 + 0.558694i
\(347\) 16.5000 9.52628i 0.885766 0.511397i 0.0132111 0.999913i \(-0.495795\pi\)
0.872555 + 0.488515i \(0.162461\pi\)
\(348\) −3.00000 −0.160817
\(349\) 8.66025i 0.463573i −0.972767 0.231786i \(-0.925543\pi\)
0.972767 0.231786i \(-0.0744570\pi\)
\(350\) 1.50000 4.33013i 0.0801784 0.231455i
\(351\) 18.0000 0.960769
\(352\) 9.00000 15.5885i 0.479702 0.830868i
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 6.00000 + 3.46410i 0.318447 + 0.183855i
\(356\) −3.00000 −0.159000
\(357\) 9.00000 25.9808i 0.476331 1.37505i
\(358\) 18.0000 0.951330
\(359\) −21.0000 12.1244i −1.10834 0.639899i −0.169939 0.985455i \(-0.554357\pi\)
−0.938398 + 0.345556i \(0.887690\pi\)
\(360\) 5.19615i 0.273861i
\(361\) 14.5000 + 25.1147i 0.763158 + 1.32183i
\(362\) 4.50000 7.79423i 0.236515 0.409656i
\(363\) −1.50000 + 0.866025i −0.0787296 + 0.0454545i
\(364\) 9.00000 1.73205i 0.471728 0.0907841i
\(365\) 3.46410i 0.181319i
\(366\) 15.5885i 0.814822i
\(367\) 13.5000 7.79423i 0.704694 0.406855i −0.104399 0.994535i \(-0.533292\pi\)
0.809093 + 0.587680i \(0.199959\pi\)
\(368\) 7.50000 4.33013i 0.390965 0.225723i
\(369\) −4.50000 7.79423i −0.234261 0.405751i
\(370\) 6.92820i 0.360180i
\(371\) 0 0
\(372\) 3.00000 + 5.19615i 0.155543 + 0.269408i
\(373\) 2.00000 3.46410i 0.103556 0.179364i −0.809591 0.586994i \(-0.800311\pi\)
0.913147 + 0.407630i \(0.133645\pi\)
\(374\) −18.0000 31.1769i −0.930758 1.61212i
\(375\) −1.50000 0.866025i −0.0774597 0.0447214i
\(376\) 0 0
\(377\) 6.00000 0.309016
\(378\) 18.0000 15.5885i 0.925820 0.801784i
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 6.00000 + 3.46410i 0.307794 + 0.177705i
\(381\) 24.0000 + 13.8564i 1.22956 + 0.709885i
\(382\) −9.00000 15.5885i −0.460480 0.797575i
\(383\) −10.5000 + 18.1865i −0.536525 + 0.929288i 0.462563 + 0.886586i \(0.346930\pi\)
−0.999088 + 0.0427020i \(0.986403\pi\)
\(384\) −10.5000 18.1865i −0.535826 0.928078i
\(385\) −3.00000 + 8.66025i −0.152894 + 0.441367i
\(386\) 38.1051i 1.93950i
\(387\) 1.50000 + 2.59808i 0.0762493 + 0.132068i
\(388\) 9.00000 5.19615i 0.456906 0.263795i
\(389\) 24.0000 13.8564i 1.21685 0.702548i 0.252606 0.967569i \(-0.418712\pi\)
0.964242 + 0.265022i \(0.0853791\pi\)
\(390\) 10.3923i 0.526235i
\(391\) 10.3923i 0.525561i
\(392\) −7.50000 + 9.52628i −0.378807 + 0.481150i
\(393\) 18.0000 10.3923i 0.907980 0.524222i
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) 8.00000 + 13.8564i 0.402524 + 0.697191i
\(396\) 10.3923i 0.522233i
\(397\) −21.0000 12.1244i −1.05396 0.608504i −0.130204 0.991487i \(-0.541563\pi\)
−0.923755 + 0.382983i \(0.874897\pi\)
\(398\) −12.0000 −0.601506
\(399\) −6.00000 31.1769i −0.300376 1.56080i
\(400\) −5.00000 −0.250000
\(401\) −16.5000 9.52628i −0.823971 0.475720i 0.0278131 0.999613i \(-0.491146\pi\)
−0.851784 + 0.523893i \(0.824479\pi\)
\(402\) −19.5000 + 33.7750i −0.972572 + 1.68454i
\(403\) −6.00000 10.3923i −0.298881 0.517678i
\(404\) −7.50000 + 12.9904i −0.373139 + 0.646296i
\(405\) −4.50000 7.79423i −0.223607 0.387298i
\(406\) 6.00000 5.19615i 0.297775 0.257881i
\(407\) 13.8564i 0.686837i
\(408\) −18.0000 −0.891133
\(409\) 19.5000 11.2583i 0.964213 0.556689i 0.0667458 0.997770i \(-0.478738\pi\)
0.897467 + 0.441081i \(0.145405\pi\)
\(410\) −4.50000 + 2.59808i −0.222239 + 0.128310i
\(411\) 36.0000 1.77575
\(412\) 5.19615i 0.255996i
\(413\) 0 0
\(414\) 4.50000 7.79423i 0.221163 0.383065i
\(415\) 4.50000 7.79423i 0.220896 0.382604i
\(416\) −9.00000 15.5885i −0.441261 0.764287i
\(417\) 9.00000 15.5885i 0.440732 0.763370i
\(418\) −36.0000 20.7846i −1.76082 1.01661i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) −3.00000 3.46410i −0.146385 0.169031i
\(421\) 35.0000 1.70580 0.852898 0.522078i \(-0.174843\pi\)
0.852898 + 0.522078i \(0.174843\pi\)
\(422\) 30.0000 + 17.3205i 1.46038 + 0.843149i
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 + 5.19615i −0.145521 + 0.252050i
\(426\) 18.0000 10.3923i 0.872103 0.503509i
\(427\) 9.00000 + 10.3923i 0.435541 + 0.502919i
\(428\) 5.19615i 0.251166i
\(429\) 20.7846i 1.00349i
\(430\) 1.50000 0.866025i 0.0723364 0.0417635i
\(431\) 9.00000 5.19615i 0.433515 0.250290i −0.267328 0.963606i \(-0.586141\pi\)
0.700843 + 0.713316i \(0.252807\pi\)
\(432\) −22.5000 12.9904i −1.08253 0.625000i
\(433\) 13.8564i 0.665896i 0.942945 + 0.332948i \(0.108043\pi\)
−0.942945 + 0.332948i \(0.891957\pi\)
\(434\) −15.0000 5.19615i −0.720023 0.249423i
\(435\) −1.50000 2.59808i −0.0719195 0.124568i
\(436\) −2.50000 + 4.33013i −0.119728 + 0.207375i
\(437\) −6.00000 10.3923i −0.287019 0.497131i
\(438\) 9.00000 + 5.19615i 0.430037 + 0.248282i
\(439\) −6.00000 3.46410i −0.286364 0.165333i 0.349937 0.936773i \(-0.386203\pi\)
−0.636301 + 0.771441i \(0.719536\pi\)
\(440\) 6.00000 0.286039
\(441\) −3.00000 + 20.7846i −0.142857 + 0.989743i
\(442\) −36.0000 −1.71235
\(443\) 13.5000 + 7.79423i 0.641404 + 0.370315i 0.785155 0.619299i \(-0.212583\pi\)
−0.143751 + 0.989614i \(0.545916\pi\)
\(444\) 6.00000 + 3.46410i 0.284747 + 0.164399i
\(445\) −1.50000 2.59808i −0.0711068 0.123161i
\(446\) −3.00000 + 5.19615i −0.142054 + 0.246045i
\(447\) 19.5000 + 33.7750i 0.922318 + 1.59750i
\(448\) 2.50000 + 0.866025i 0.118114 + 0.0409159i
\(449\) 12.1244i 0.572184i 0.958202 + 0.286092i \(0.0923563\pi\)
−0.958202 + 0.286092i \(0.907644\pi\)
\(450\) −4.50000 + 2.59808i −0.212132 + 0.122474i
\(451\) 9.00000 5.19615i 0.423793 0.244677i
\(452\) 6.00000 3.46410i 0.282216 0.162938i
\(453\) 3.46410i 0.162758i
\(454\) 20.7846i 0.975470i
\(455\) 6.00000 + 6.92820i 0.281284 + 0.324799i
\(456\) −18.0000 + 10.3923i −0.842927 + 0.486664i
\(457\) 4.00000 6.92820i 0.187112 0.324088i −0.757174 0.653213i \(-0.773421\pi\)
0.944286 + 0.329125i \(0.106754\pi\)
\(458\) 0 0
\(459\) −27.0000 + 15.5885i −1.26025 + 0.727607i
\(460\) −1.50000 0.866025i −0.0699379 0.0403786i
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 18.0000 + 20.7846i 0.837436 + 0.966988i
\(463\) 29.0000 1.34774 0.673872 0.738848i \(-0.264630\pi\)
0.673872 + 0.738848i \(0.264630\pi\)
\(464\) −7.50000 4.33013i −0.348179 0.201021i
\(465\) −3.00000 + 5.19615i −0.139122 + 0.240966i
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) −10.5000 + 18.1865i −0.485882 + 0.841572i −0.999868 0.0162260i \(-0.994835\pi\)
0.513986 + 0.857798i \(0.328168\pi\)
\(468\) −9.00000 5.19615i −0.416025 0.240192i
\(469\) −6.50000 33.7750i −0.300142 1.55958i
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) −3.00000 + 1.73205i −0.137940 + 0.0796398i
\(474\) 48.0000 2.20471
\(475\) 6.92820i 0.317888i
\(476\) −12.0000 + 10.3923i −0.550019 + 0.476331i
\(477\) 0 0
\(478\) 9.00000 15.5885i 0.411650 0.712999i
\(479\) 3.00000 + 5.19615i 0.137073 + 0.237418i 0.926388 0.376571i \(-0.122897\pi\)
−0.789314 + 0.613990i \(0.789564\pi\)
\(480\) −4.50000 + 7.79423i −0.205396 + 0.355756i
\(481\) −12.0000 6.92820i −0.547153 0.315899i
\(482\) 12.0000 0.546585
\(483\) 1.50000 + 7.79423i 0.0682524 + 0.354650i
\(484\) 1.00000 0.0454545
\(485\) 9.00000 + 5.19615i 0.408669 + 0.235945i
\(486\) −27.0000 −1.22474
\(487\) 16.0000 + 27.7128i 0.725029 + 1.25579i 0.958962 + 0.283535i \(0.0915071\pi\)
−0.233933 + 0.972253i \(0.575160\pi\)
\(488\) 4.50000 7.79423i 0.203705 0.352828i
\(489\) 12.0000 6.92820i 0.542659 0.313304i
\(490\) 12.0000 + 1.73205i 0.542105 + 0.0782461i
\(491\) 38.1051i 1.71966i −0.510581 0.859830i \(-0.670569\pi\)
0.510581 0.859830i \(-0.329431\pi\)
\(492\) 5.19615i 0.234261i
\(493\) −9.00000 + 5.19615i −0.405340 + 0.234023i
\(494\) −36.0000 + 20.7846i −1.61972 + 0.935144i
\(495\) 9.00000 5.19615i 0.404520 0.233550i
\(496\) 17.3205i 0.777714i
\(497\) −6.00000 + 17.3205i −0.269137 + 0.776931i
\(498\) −13.5000 23.3827i −0.604949 1.04780i
\(499\) 7.00000 12.1244i 0.313363 0.542761i −0.665725 0.746197i \(-0.731878\pi\)
0.979088 + 0.203436i \(0.0652110\pi\)
\(500\) 0.500000 + 0.866025i 0.0223607 + 0.0387298i
\(501\) −31.5000 18.1865i −1.40732 0.812514i
\(502\) 27.0000 + 15.5885i 1.20507 + 0.695747i
\(503\) −15.0000 −0.668817 −0.334408 0.942428i \(-0.608537\pi\)
−0.334408 + 0.942428i \(0.608537\pi\)
\(504\) 13.5000 2.59808i 0.601338 0.115728i
\(505\) −15.0000 −0.667491
\(506\) 9.00000 + 5.19615i 0.400099 + 0.230997i
\(507\) −1.50000 0.866025i −0.0666173 0.0384615i
\(508\) −8.00000 13.8564i −0.354943 0.614779i
\(509\) 22.5000 38.9711i 0.997295 1.72737i 0.434992 0.900434i \(-0.356751\pi\)
0.562303 0.826931i \(-0.309915\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) −9.00000 + 1.73205i −0.398137 + 0.0766214i
\(512\) 8.66025i 0.382733i
\(513\) −18.0000 + 31.1769i −0.794719 + 1.37649i
\(514\) 0 0
\(515\) 4.50000 2.59808i 0.198294 0.114485i
\(516\) 1.73205i 0.0762493i
\(517\) 0 0
\(518\) −18.0000 + 3.46410i −0.790875 + 0.152204i
\(519\) −18.0000 + 10.3923i −0.790112 + 0.456172i
\(520\) 3.00000 5.19615i 0.131559 0.227866i
\(521\) −15.0000 25.9808i −0.657162 1.13824i −0.981347 0.192244i \(-0.938423\pi\)
0.324185 0.945994i \(-0.394910\pi\)
\(522\) −9.00000 −0.393919
\(523\) 21.0000 + 12.1244i 0.918266 + 0.530161i 0.883081 0.469220i \(-0.155465\pi\)
0.0351845 + 0.999381i \(0.488798\pi\)
\(524\) −12.0000 −0.524222
\(525\) 1.50000 4.33013i 0.0654654 0.188982i
\(526\) −3.00000 −0.130806
\(527\) 18.0000 + 10.3923i 0.784092 + 0.452696i
\(528\) 15.0000 25.9808i 0.652791 1.13067i
\(529\) −10.0000 17.3205i −0.434783 0.753066i
\(530\) 0 0
\(531\) 0 0
\(532\) −6.00000 + 17.3205i −0.260133 + 0.750939i
\(533\) 10.3923i 0.450141i
\(534\) −9.00000 −0.389468
\(535\) −4.50000 + 2.59808i −0.194552 + 0.112325i
\(536\) −19.5000 + 11.2583i −0.842272 + 0.486286i
\(537\) 18.0000 0.776757
\(538\) 5.19615i 0.224022i
\(539\) −24.0000 3.46410i −1.03375 0.149209i
\(540\) 5.19615i 0.223607i
\(541\) −14.5000 + 25.1147i −0.623404 + 1.07977i 0.365444 + 0.930834i \(0.380917\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) −6.00000 10.3923i −0.257722 0.446388i
\(543\) 4.50000 7.79423i 0.193113 0.334482i
\(544\) 27.0000 + 15.5885i 1.15762 + 0.668350i
\(545\) −5.00000 −0.214176
\(546\) 27.0000 5.19615i 1.15549 0.222375i
\(547\) −1.00000 −0.0427569 −0.0213785 0.999771i \(-0.506805\pi\)
−0.0213785 + 0.999771i \(0.506805\pi\)
\(548\) −18.0000 10.3923i −0.768922 0.443937i
\(549\) 15.5885i 0.665299i
\(550\) −3.00000 5.19615i −0.127920 0.221565i
\(551\) −6.00000 + 10.3923i −0.255609 + 0.442727i
\(552\) 4.50000 2.59808i 0.191533 0.110581i
\(553\) −32.0000 + 27.7128i −1.36078 + 1.17847i
\(554\) 45.0333i 1.91328i
\(555\) 6.92820i 0.294086i
\(556\) −9.00000 + 5.19615i −0.381685 + 0.220366i
\(557\) −15.0000 + 8.66025i −0.635570 + 0.366947i −0.782906 0.622140i \(-0.786264\pi\)
0.147336 + 0.989087i \(0.452930\pi\)
\(558\) 9.00000 + 15.5885i 0.381000 + 0.659912i
\(559\) 3.46410i 0.146516i
\(560\) −2.50000 12.9904i −0.105644 0.548944i
\(561\) −18.0000 31.1769i −0.759961 1.31629i
\(562\) −6.00000 + 10.3923i −0.253095 + 0.438373i
\(563\) −10.5000 18.1865i −0.442522 0.766471i 0.555354 0.831614i \(-0.312583\pi\)
−0.997876 + 0.0651433i \(0.979250\pi\)
\(564\) 0 0
\(565\) 6.00000 + 3.46410i 0.252422 + 0.145736i
\(566\) 54.0000 2.26979
\(567\) 18.0000 15.5885i 0.755929 0.654654i
\(568\) 12.0000 0.503509
\(569\) 6.00000 + 3.46410i 0.251533 + 0.145223i 0.620466 0.784233i \(-0.286943\pi\)
−0.368933 + 0.929456i \(0.620277\pi\)
\(570\) 18.0000 + 10.3923i 0.753937 + 0.435286i
\(571\) 2.00000 + 3.46410i 0.0836974 + 0.144968i 0.904835 0.425762i \(-0.139994\pi\)
−0.821138 + 0.570730i \(0.806660\pi\)
\(572\) 6.00000 10.3923i 0.250873 0.434524i
\(573\) −9.00000 15.5885i −0.375980 0.651217i
\(574\) −9.00000 10.3923i −0.375653 0.433766i
\(575\) 1.73205i 0.0722315i
\(576\) −1.50000 2.59808i −0.0625000 0.108253i
\(577\) 21.0000 12.1244i 0.874241 0.504744i 0.00548605 0.999985i \(-0.498254\pi\)
0.868755 + 0.495241i \(0.164920\pi\)
\(578\) 28.5000 16.4545i 1.18544 0.684416i
\(579\) 38.1051i 1.58359i
\(580\) 1.73205i 0.0719195i
\(581\) 22.5000 + 7.79423i 0.933457 + 0.323359i
\(582\) 27.0000 15.5885i 1.11919 0.646162i
\(583\) 0 0
\(584\) 3.00000 + 5.19615i 0.124141 + 0.215018i
\(585\) 10.3923i 0.429669i
\(586\) −36.0000 20.7846i −1.48715 0.858604i
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 7.50000 9.52628i 0.309295 0.392857i
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) −3.00000 + 5.19615i −0.123404 + 0.213741i
\(592\) 10.0000 + 17.3205i 0.410997 + 0.711868i
\(593\) −24.0000 + 41.5692i −0.985562 + 1.70704i −0.346149 + 0.938179i \(0.612511\pi\)
−0.639413 + 0.768864i \(0.720822\pi\)
\(594\) 31.1769i 1.27920i
\(595\) −15.0000 5.19615i −0.614940 0.213021i
\(596\) 22.5167i 0.922318i
\(597\) −12.0000 −0.491127
\(598\) 9.00000 5.19615i 0.368037 0.212486i
\(599\) −12.0000 + 6.92820i −0.490307 + 0.283079i −0.724702 0.689063i \(-0.758022\pi\)
0.234395 + 0.972141i \(0.424689\pi\)
\(600\) −3.00000 −0.122474
\(601\) 20.7846i 0.847822i −0.905704 0.423911i \(-0.860657\pi\)
0.905704 0.423911i \(-0.139343\pi\)
\(602\) 3.00000 + 3.46410i 0.122271 + 0.141186i
\(603\) −19.5000 + 33.7750i −0.794101 + 1.37542i
\(604\) −1.00000 + 1.73205i −0.0406894 + 0.0704761i
\(605\) 0.500000 + 0.866025i 0.0203279 + 0.0352089i
\(606\) −22.5000 + 38.9711i −0.914000 + 1.58309i
\(607\) −1.50000 0.866025i −0.0608831 0.0351509i 0.469249 0.883066i \(-0.344525\pi\)
−0.530133 + 0.847915i \(0.677858\pi\)
\(608\) 36.0000 1.45999
\(609\) 6.00000 5.19615i 0.243132 0.210559i
\(610\) −9.00000 −0.364399
\(611\) 0 0
\(612\) 18.0000 0.727607
\(613\) −1.00000 1.73205i −0.0403896 0.0699569i 0.845124 0.534570i \(-0.179527\pi\)
−0.885514 + 0.464614i \(0.846193\pi\)
\(614\) 19.5000 33.7750i 0.786956 1.36305i
\(615\) −4.50000 + 2.59808i −0.181458 + 0.104765i
\(616\) 3.00000 + 15.5885i 0.120873 + 0.628077i
\(617\) 34.6410i 1.39459i 0.716782 + 0.697297i \(0.245614\pi\)
−0.716782 + 0.697297i \(0.754386\pi\)
\(618\) 15.5885i 0.627060i
\(619\) −21.0000 + 12.1244i −0.844061 + 0.487319i −0.858643 0.512575i \(-0.828692\pi\)
0.0145814 + 0.999894i \(0.495358\pi\)
\(620\) 3.00000 1.73205i 0.120483 0.0695608i
\(621\) 4.50000 7.79423i 0.180579 0.312772i
\(622\) 41.5692i 1.66677i
\(623\) 6.00000 5.19615i 0.240385 0.208179i
\(624\) −15.0000 25.9808i −0.600481 1.04006i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −36.0000 20.7846i −1.43770 0.830057i
\(628\) −3.00000 1.73205i −0.119713 0.0691164i
\(629\) 24.0000 0.956943
\(630\) −9.00000 10.3923i −0.358569 0.414039i
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) 24.0000 + 13.8564i 0.954669 + 0.551178i
\(633\) 30.0000 + 17.3205i 1.19239 + 0.688428i
\(634\) 15.0000 + 25.9808i 0.595726 + 1.03183i
\(635\) 8.00000 13.8564i 0.317470 0.549875i
\(636\) 0 0
\(637\) −15.0000 + 19.0526i −0.594322 + 0.754890i
\(638\) 10.3923i 0.411435i
\(639\) 18.0000 10.3923i 0.712069 0.411113i
\(640\) −10.5000 + 6.06218i −0.415049 + 0.239629i
\(641\) 10.5000 6.06218i 0.414725 0.239442i −0.278093 0.960554i \(-0.589702\pi\)
0.692818 + 0.721113i \(0.256369\pi\)
\(642\) 15.5885i 0.615227i
\(643\) 17.3205i 0.683054i 0.939872 + 0.341527i \(0.110944\pi\)
−0.939872 + 0.341527i \(0.889056\pi\)
\(644\) 1.50000 4.33013i 0.0591083 0.170631i
\(645\) 1.50000 0.866025i 0.0590624 0.0340997i
\(646\) 36.0000 62.3538i 1.41640 2.45328i
\(647\) −1.50000 2.59808i −0.0589711 0.102141i 0.835033 0.550200i \(-0.185449\pi\)
−0.894004 + 0.448059i \(0.852115\pi\)
\(648\) −13.5000 7.79423i −0.530330 0.306186i
\(649\) 0 0
\(650\) −6.00000 −0.235339
\(651\) −15.0000 5.19615i −0.587896 0.203653i
\(652\) −8.00000 −0.313304
\(653\) −27.0000 15.5885i −1.05659 0.610023i −0.132104 0.991236i \(-0.542173\pi\)
−0.924487 + 0.381212i \(0.875507\pi\)
\(654\) −7.50000 + 12.9904i −0.293273 + 0.507964i
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) −7.50000 + 12.9904i −0.292826 + 0.507189i
\(657\) 9.00000 + 5.19615i 0.351123 + 0.202721i
\(658\) 0 0
\(659\) 41.5692i 1.61931i −0.586908 0.809653i \(-0.699655\pi\)
0.586908 0.809653i \(-0.300345\pi\)
\(660\) −6.00000 −0.233550
\(661\) 28.5000 16.4545i 1.10852 0.640005i 0.170075 0.985431i \(-0.445599\pi\)
0.938446 + 0.345426i \(0.112266\pi\)
\(662\) 15.0000 8.66025i 0.582992 0.336590i
\(663\) −36.0000 −1.39812
\(664\) 15.5885i 0.604949i
\(665\) −18.0000 + 3.46410i −0.698010 + 0.134332i
\(666\) 18.0000 + 10.3923i 0.697486 + 0.402694i
\(667\) 1.50000 2.59808i 0.0580802 0.100598i
\(668\) 10.5000 + 18.1865i 0.406257 + 0.703658i
\(669\) −3.00000 + 5.19615i −0.115987 + 0.200895i
\(670\) 19.5000 + 11.2583i 0.753351 + 0.434947i
\(671\) 18.0000 0.694882
\(672\) −22.5000 7.79423i −0.867956 0.300669i
\(673\) 4.00000 0.154189 0.0770943 0.997024i \(-0.475436\pi\)
0.0770943 + 0.997024i \(0.475436\pi\)
\(674\) 48.0000 + 27.7128i 1.84889 + 1.06746i
\(675\) −4.50000 + 2.59808i −0.173205 + 0.100000i
\(676\) 0.500000 + 0.866025i 0.0192308 + 0.0333087i
\(677\) −3.00000 + 5.19615i −0.115299 + 0.199704i −0.917899 0.396813i \(-0.870116\pi\)
0.802600 + 0.596518i \(0.203449\pi\)
\(678\) 18.0000 10.3923i 0.691286 0.399114i
\(679\) −9.00000 + 25.9808i −0.345388 + 0.997050i
\(680\) 10.3923i 0.398527i
\(681\) 20.7846i 0.796468i
\(682\) −18.0000 + 10.3923i −0.689256 + 0.397942i
\(683\) 34.5000 19.9186i 1.32011 0.762163i 0.336361 0.941733i \(-0.390804\pi\)
0.983745 + 0.179570i \(0.0574706\pi\)
\(684\) 18.0000 10.3923i 0.688247 0.397360i
\(685\) 20.7846i 0.794139i
\(686\) 1.50000 + 32.0429i 0.0572703 + 1.22341i
\(687\) 0 0
\(688\) 2.50000 4.33013i 0.0953116 0.165085i
\(689\) 0 0
\(690\) −4.50000 2.59808i −0.171312 0.0989071i
\(691\) 3.00000 + 1.73205i 0.114125 + 0.0658903i 0.555976 0.831198i \(-0.312345\pi\)
−0.441851 + 0.897089i \(0.645678\pi\)
\(692\) 12.0000 0.456172
\(693\) 18.0000 + 20.7846i 0.683763 + 0.789542i
\(694\) −33.0000 −1.25266
\(695\) −9.00000 5.19615i −0.341389 0.197101i
\(696\) −4.50000 2.59808i −0.170572 0.0984798i
\(697\) 9.00000 + 15.5885i 0.340899 + 0.590455i
\(698\) −7.50000 + 12.9904i −0.283879 + 0.491693i
\(699\) −3.00000 5.19615i −0.113470 0.196537i
\(700\) −2.00000 + 1.73205i −0.0755929 + 0.0654654i
\(701\) 25.9808i 0.981280i 0.871362 + 0.490640i \(0.163237\pi\)
−0.871362 + 0.490640i \(0.836763\pi\)
\(702\) −27.0000 15.5885i −1.01905 0.588348i
\(703\) 24.0000 13.8564i 0.905177 0.522604i
\(704\) 3.00000 1.73205i 0.113067 0.0652791i
\(705\) 0 0
\(706\) 0 0
\(707\) −7.50000 38.9711i −0.282067 1.46566i
\(708\) 0 0
\(709\) −9.50000 + 16.4545i −0.356780 + 0.617961i −0.987421 0.158114i \(-0.949459\pi\)
0.630641 + 0.776075i \(0.282792\pi\)
\(710\) −6.00000 10.3923i −0.225176 0.390016i
\(711\) 48.0000 1.80014
\(712\) −4.50000 2.59808i −0.168645 0.0973670i
\(713\) −6.00000 −0.224702
\(714\) −36.0000 + 31.1769i −1.34727 + 1.16677i
\(715\) 12.0000 0.448775
\(716\) −9.00000 5.19615i −0.336346 0.194189i
\(717\) 9.00000 15.5885i 0.336111 0.582162i
\(718\) 21.0000 + 36.3731i 0.783713 + 1.35743i
\(719\) −3.00000 + 5.19615i −0.111881 + 0.193784i −0.916529 0.399969i \(-0.869021\pi\)
0.804648 + 0.593753i \(0.202354\pi\)
\(720\) −7.50000 + 12.9904i −0.279508 + 0.484123i
\(721\) 9.00000 + 10.3923i 0.335178 + 0.387030i
\(722\) 50.2295i 1.86935i
\(723\) 12.0000 0.446285
\(724\) −4.50000 + 2.59808i −0.167241 + 0.0965567i
\(725\) −1.50000 + 0.866025i −0.0557086 + 0.0321634i
\(726\) 3.00000 0.111340
\(727\) 5.19615i 0.192715i −0.995347 0.0963573i \(-0.969281\pi\)
0.995347 0.0963573i \(-0.0307191\pi\)
\(728\) 15.0000 + 5.19615i 0.555937 + 0.192582i
\(729\) −27.0000 −1.00000
\(730\) 3.00000 5.19615i 0.111035 0.192318i
\(731\) −3.00000 5.19615i −0.110959 0.192187i
\(732\) −4.50000 + 7.79423i −0.166325 + 0.288083i
\(733\) −15.0000 8.66025i −0.554038 0.319874i 0.196711 0.980461i \(-0.436974\pi\)
−0.750749 + 0.660588i \(0.770307\pi\)
\(734\) −27.0000 −0.996588
\(735\) 12.0000 + 1.73205i 0.442627 + 0.0638877i
\(736\) −9.00000 −0.331744
\(737\) −39.0000 22.5167i −1.43658 0.829412i
\(738\) 15.5885i 0.573819i
\(739\) −19.0000 32.9090i −0.698926 1.21058i −0.968839 0.247691i \(-0.920328\pi\)
0.269913 0.962885i \(-0.413005\pi\)
\(740\) 2.00000 3.46410i 0.0735215 0.127343i
\(741\) −36.0000 + 20.7846i −1.32249 + 0.763542i
\(742\) 0 0
\(743\) 46.7654i 1.71566i −0.513938 0.857828i \(-0.671814\pi\)
0.513938 0.857828i \(-0.328186\pi\)
\(744\) 10.3923i 0.381000i
\(745\) 19.5000 11.2583i 0.714425 0.412473i
\(746\) −6.00000 + 3.46410i −0.219676 + 0.126830i
\(747\) −13.5000 23.3827i −0.493939 0.855528i
\(748\) 20.7846i 0.759961i
\(749\) −9.00000 10.3923i −0.328853 0.379727i
\(750\) 1.50000 + 2.59808i 0.0547723 + 0.0948683i
\(751\) 10.0000 17.3205i 0.364905 0.632034i −0.623856 0.781540i \(-0.714435\pi\)
0.988761 + 0.149505i \(0.0477681\pi\)
\(752\) 0 0
\(753\) 27.0000 + 15.5885i 0.983935 + 0.568075i
\(754\) −9.00000 5.19615i −0.327761 0.189233i
\(755\) −2.00000 −0.0727875
\(756\) −13.5000 + 2.59808i −0.490990 + 0.0944911i
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) −24.0000 13.8564i −0.871719 0.503287i
\(759\) 9.00000 + 5.19615i 0.326679 + 0.188608i
\(760\) 6.00000 + 10.3923i 0.217643 + 0.376969i
\(761\) −9.00000 + 15.5885i −0.326250 + 0.565081i −0.981764 0.190101i \(-0.939118\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(762\) −24.0000 41.5692i −0.869428 1.50589i
\(763\) −2.50000 12.9904i −0.0905061 0.470283i
\(764\) 10.3923i 0.375980i
\(765\) 9.00000 + 15.5885i 0.325396 + 0.563602i
\(766\) 31.5000 18.1865i 1.13814 0.657106i
\(767\) 0 0
\(768\) 32.9090i 1.18750i
\(769\) 41.5692i 1.49902i 0.661991 + 0.749512i \(0.269712\pi\)
−0.661991 + 0.749512i \(0.730288\pi\)
\(770\) 12.0000 10.3923i 0.432450 0.374513i
\(771\) 0 0
\(772\) 11.0000 19.0526i 0.395899 0.685717i
\(773\) 9.00000 + 15.5885i 0.323708 + 0.560678i 0.981250 0.192740i \(-0.0617373\pi\)
−0.657542 + 0.753418i \(0.728404\pi\)
\(774\) 5.19615i 0.186772i
\(775\) 3.00000 + 1.73205i 0.107763 + 0.0622171i
\(776\) 18.0000 0.646162
\(777\) −18.0000 + 3.46410i −0.645746 + 0.124274i
\(778\) −48.0000 −1.72088
\(779\) 18.0000 + 10.3923i 0.644917 + 0.372343i
\(780\) −3.00000 + 5.19615i −0.107417 + 0.186052i
\(781\) 12.0000 + 20.7846i 0.429394 + 0.743732i
\(782\) −9.00000 + 15.5885i −0.321839 + 0.557442i
\(783\) −9.00000 −0.321634
\(784\) 32.5000 12.9904i 1.16071 0.463942i
\(785\) 3.46410i 0.123639i
\(786\) −36.0000 −1.28408
\(787\) −22.5000 + 12.9904i −0.802038 + 0.463057i −0.844183 0.536054i \(-0.819914\pi\)
0.0421450 + 0.999112i \(0.486581\pi\)
\(788\) 3.00000 1.73205i 0.106871 0.0617018i
\(789\) −3.00000 −0.106803
\(790\) 27.7128i 0.985978i
\(791\) −6.00000 + 17.3205i −0.213335 + 0.615846i
\(792\) 9.00000 15.5885i 0.319801 0.553912i
\(793\) 9.00000 15.5885i 0.319599 0.553562i
\(794\) 21.0000 + 36.3731i 0.745262 + 1.29083i
\(795\) 0 0
\(796\) 6.00000 + 3.46410i 0.212664 + 0.122782i
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) −18.0000 + 51.9615i −0.637193 + 1.83942i
\(799\) 0 0
\(800\) 4.50000 + 2.59808i 0.159099 + 0.0918559i
\(801\) −9.00000 −0.317999
\(802\) 16.5000 + 28.5788i 0.582635 + 1.00915i
\(803\) −6.00000 + 10.3923i −0.211735 + 0.366736i
\(804\) 19.5000 11.2583i 0.687712 0.397051i
\(805\) 4.50000 0.866025i 0.158604 0.0305234i
\(806\) 20.7846i 0.732107i
\(807\) 5.19615i 0.182913i
\(808\) −22.5000 + 12.9904i −0.791547 + 0.457000i
\(809\) 16.5000 9.52628i 0.580109 0.334926i −0.181068 0.983471i \(-0.557955\pi\)
0.761177 + 0.648544i \(0.224622\pi\)
\(810\) 15.5885i 0.547723i
\(811\) 45.0333i 1.58133i −0.612247 0.790667i \(-0.709734\pi\)
0.612247 0.790667i \(-0.290266\pi\)
\(812\) −4.50000 + 0.866025i −0.157919 + 0.0303915i
\(813\) −6.00000 10.3923i −0.210429 0.364474i
\(814\) −12.0000 + 20.7846i −0.420600 + 0.728500i
\(815\) −4.00000 6.92820i −0.140114 0.242684i
\(816\) 45.0000 + 25.9808i 1.57532 + 0.909509i
\(817\) −6.00000 3.46410i −0.209913 0.121194i
\(818\) −39.0000 −1.36360
\(819\) 27.0000 5.19615i 0.943456 0.181568i
\(820\) 3.00000 0.104765
\(821\) 36.0000 + 20.7846i 1.25641 + 0.725388i 0.972375 0.233426i \(-0.0749938\pi\)
0.284034 + 0.958814i \(0.408327\pi\)
\(822\) −54.0000 31.1769i −1.88347 1.08742i
\(823\) −11.5000 19.9186i −0.400865 0.694318i 0.592966 0.805228i \(-0.297957\pi\)
−0.993831 + 0.110910i \(0.964624\pi\)
\(824\) 4.50000 7.79423i 0.156765 0.271525i
\(825\) −3.00000 5.19615i −0.104447 0.180907i
\(826\) 0 0
\(827\) 22.5167i 0.782981i 0.920182 + 0.391491i \(0.128040\pi\)
−0.920182 + 0.391491i \(0.871960\pi\)
\(828\) −4.50000 + 2.59808i −0.156386 + 0.0902894i
\(829\) −12.0000 + 6.92820i −0.416777 + 0.240626i −0.693698 0.720266i \(-0.744020\pi\)
0.276920 + 0.960893i \(0.410686\pi\)
\(830\) −13.5000 + 7.79423i −0.468592 + 0.270542i
\(831\) 45.0333i 1.56219i
\(832\) 3.46410i 0.120096i
\(833\) 6.00000 41.5692i 0.207888 1.44029i
\(834\) −27.0000 + 15.5885i −0.934934 + 0.539784i
\(835\) −10.5000 + 18.1865i −0.363367 + 0.629371i
\(836\) 12.0000 + 20.7846i 0.415029 + 0.718851i
\(837\) 9.00000 + 15.5885i 0.311086 + 0.538816i
\(838\) 0 0
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) −1.50000 7.79423i −0.0517549 0.268926i
\(841\) 26.0000 0.896552
\(842\) −52.5000 30.3109i −1.80927 1.04458i
\(843\) −6.00000 + 10.3923i −0.206651 + 0.357930i
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) −0.500000 + 0.866025i −0.0172005 + 0.0297922i
\(846\) 0 0
\(847\) −2.00000 + 1.73205i −0.0687208 + 0.0595140i
\(848\) 0 0
\(849\) 54.0000 1.85328
\(850\) 9.00000 5.19615i 0.308697 0.178227i
\(851\) −6.00000 + 3.46410i −0.205677 + 0.118748i
\(852\) −12.0000 −0.411113
\(853\) 20.7846i 0.711651i 0.934552 + 0.355826i \(0.115800\pi\)
−0.934552 + 0.355826i \(0.884200\pi\)
\(854\) −4.50000 23.3827i −0.153987 0.800139i
\(855\) 18.0000 + 10.3923i 0.615587 + 0.355409i
\(856\) −4.50000 + 7.79423i −0.153807 + 0.266401i
\(857\) 21.0000 + 36.3731i 0.717346 + 1.24248i 0.962048 + 0.272882i \(0.0879768\pi\)
−0.244701 + 0.969599i \(0.578690\pi\)
\(858\) 18.0000 31.1769i 0.614510 1.06436i
\(859\) 24.0000 + 13.8564i 0.818869 + 0.472774i 0.850026 0.526740i \(-0.176586\pi\)
−0.0311570 + 0.999515i \(0.509919\pi\)
\(860\) −1.00000 −0.0340997
\(861\) −9.00000 10.3923i −0.306719 0.354169i
\(862\) −18.0000 −0.613082
\(863\) 7.50000 + 4.33013i 0.255303 + 0.147399i 0.622190 0.782866i \(-0.286243\pi\)
−0.366887 + 0.930265i \(0.619576\pi\)
\(864\) 13.5000 + 23.3827i 0.459279 + 0.795495i
\(865\) 6.00000 + 10.3923i 0.204006 + 0.353349i
\(866\) 12.0000 20.7846i 0.407777 0.706290i
\(867\) 28.5000 16.4545i 0.967911 0.558824i
\(868\) 6.00000 + 6.92820i 0.203653 + 0.235159i
\(869\) 55.4256i 1.88019i
\(870\) 5.19615i 0.176166i
\(871\) −39.0000 + 22.5167i −1.32146 + 0.762948i
\(872\) −7.50000 + 4.33013i −0.253982 + 0.146637i
\(873\) 27.0000 15.5885i 0.913812 0.527589i
\(874\) 20.7846i 0.703050i
\(875\) −2.50000 0.866025i −0.0845154 0.0292770i
\(876\) −3.00000 5.19615i −0.101361 0.175562i
\(877\) −16.0000 + 27.7128i −0.540282 + 0.935795i 0.458606 + 0.888640i \(0.348349\pi\)
−0.998888 + 0.0471555i \(0.984984\pi\)
\(878\) 6.00000 + 10.3923i 0.202490 + 0.350723i
\(879\) −36.0000 20.7846i −1.21425 0.701047i
\(880\) −15.0000 8.66025i −0.505650 0.291937i
\(881\) −9.00000 −0.303218 −0.151609 0.988441i \(-0.548445\pi\)
−0.151609 + 0.988441i \(0.548445\pi\)
\(882\) 22.5000 28.5788i 0.757614 0.962300i
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 18.0000 + 10.3923i 0.605406 + 0.349531i
\(885\) 0 0
\(886\) −13.5000 23.3827i −0.453541 0.785557i
\(887\) −4.50000 + 7.79423i −0.151095 + 0.261705i −0.931630 0.363407i \(-0.881613\pi\)
0.780535 + 0.625112i \(0.214947\pi\)
\(888\) 6.00000 + 10.3923i 0.201347 + 0.348743i
\(889\) 40.0000 + 13.8564i 1.34156 + 0.464729i
\(890\) 5.19615i 0.174175i
\(891\) 31.1769i 1.04447i
\(892\) 3.00000 1.73205i 0.100447 0.0579934i
\(893\) 0 0
\(894\) 67.5500i 2.25921i
\(895\) 10.3923i 0.347376i
\(896\) −21.0000 24.2487i −0.701561 0.810093i
\(897\) 9.00000 5.19615i 0.300501 0.173494i
\(898\) 10.5000 18.1865i 0.350390 0.606892i
\(899\) 3.00000 + 5.19615i 0.100056 + 0.173301i
\(900\) 3.00000 0.100000
\(901\) 0 0
\(902\) −18.0000 −0.599334
\(903\) 3.00000 + 3.46410i 0.0998337 + 0.115278i
\(904\) 12.0000 0.399114
\(905\) −4.50000 2.59808i −0.149585 0.0863630i
\(906\) −3.00000 + 5.19615i −0.0996683 + 0.172631i
\(907\) −18.5000 32.0429i −0.614282 1.06397i −0.990510 0.137441i \(-0.956112\pi\)
0.376228 0.926527i \(-0.377221\pi\)
\(908\) 6.00000 10.3923i 0.199117 0.344881i
\(909\) −22.5000 + 38.9711i −0.746278 + 1.29259i
\(910\) −3.00000 15.5885i −0.0994490 0.516752i
\(911\) 24.2487i 0.803396i −0.915772 0.401698i \(-0.868420\pi\)
0.915772 0.401698i \(-0.131580\pi\)
\(912\) 60.0000 1.98680
\(913\) 27.0000 15.5885i 0.893570 0.515903i
\(914\) −12.0000 + 6.92820i −0.396925 + 0.229165i
\(915\) −9.00000 −0.297531
\(916\) 0 0
\(917\) 24.0000 20.7846i 0.792550 0.686368i
\(918\) 54.0000 1.78227
\(919\) −8.00000 + 13.8564i −0.263896 + 0.457081i −0.967274 0.253735i \(-0.918341\pi\)
0.703378 + 0.710816i \(0.251674\pi\)
\(920\) −1.50000 2.59808i −0.0494535 0.0856560i
\(921\) 19.5000 33.7750i 0.642547 1.11292i
\(922\) 45.0000 + 25.9808i 1.48200 + 0.855631i
\(923\) 24.0000 0.789970
\(924\) −3.00000 15.5885i −0.0986928 0.512823i
\(925\) 4.00000 0.131519
\(926\) −43.5000 25.1147i −1.42950 0.825321i
\(927\) 15.5885i 0.511992i
\(928\) 4.50000 + 7.79423i 0.147720 + 0.255858i
\(929\) −10.5000 + 18.1865i −0.344494 + 0.596681i −0.985262 0.171054i \(-0.945283\pi\)
0.640768 + 0.767735i \(0.278616\pi\)
\(930\) 9.00000 5.19615i 0.295122 0.170389i
\(931\) −18.0000 45.0333i −0.589926 1.47591i
\(932\) 3.46410i 0.113470i
\(933\) 41.5692i 1.36092i
\(934\) 31.5000 18.1865i 1.03071 0.595082i
\(935\) −18.0000 + 10.3923i −0.588663 + 0.339865i
\(936\) −9.00000 15.5885i −0.294174 0.509525i
\(937\) 48.4974i 1.58434i −0.610299 0.792171i \(-0.708951\pi\)
0.610299 0.792171i \(-0.291049\pi\)
\(938\) −19.5000 + 56.2917i −0.636698 + 1.83799i
\(939\) 0 0
\(940\) 0 0
\(941\) −9.00000 15.5885i −0.293392 0.508169i 0.681218 0.732081i \(-0.261451\pi\)
−0.974609 + 0.223912i \(0.928117\pi\)
\(942\) −9.00000 5.19615i −0.293236 0.169300i
\(943\) −4.50000 2.59808i −0.146540 0.0846050i
\(944\) 0 0
\(945\) −9.00000 10.3923i −0.292770 0.338062i
\(946\) 6.00000 0.195077
\(947\) −22.5000 12.9904i −0.731152 0.422131i 0.0876916 0.996148i \(-0.472051\pi\)
−0.818843 + 0.574017i \(0.805384\pi\)
\(948\) −24.0000 13.8564i −0.779484 0.450035i
\(949\) 6.00000 + 10.3923i 0.194768 + 0.337348i
\(950\) 6.00000 10.3923i 0.194666 0.337171i
\(951\) 15.0000 + 25.9808i 0.486408 + 0.842484i
\(952\) −27.0000 + 5.19615i −0.875075 + 0.168408i
\(953\) 6.92820i 0.224427i −0.993684 0.112213i \(-0.964206\pi\)
0.993684 0.112213i \(-0.0357940\pi\)
\(954\) 0 0
\(955\) −9.00000 + 5.19615i −0.291233 + 0.168144i
\(956\) −9.00000 + 5.19615i −0.291081 + 0.168056i
\(957\) 10.3923i 0.335936i
\(958\) 10.3923i 0.335760i
\(959\) 54.0000 10.3923i 1.74375 0.335585i
\(960\) −1.50000 + 0.866025i −0.0484123 + 0.0279508i
\(961\) −9.50000 + 16.4545i −0.306452 + 0.530790i
\(962\) 12.0000 + 20.7846i 0.386896 + 0.670123i
\(963\) 15.5885i 0.502331i
\(964\) −6.00000 3.46410i −0.193247 0.111571i
\(965\) 22.0000 0.708205
\(966\) 4.50000 12.9904i 0.144785 0.417959i
\(967\) 23.0000 0.739630 0.369815 0.929105i \(-0.379421\pi\)
0.369815 + 0.929105i \(0.379421\pi\)
\(968\) 1.50000 + 0.866025i 0.0482118 + 0.0278351i
\(969\) 36.0000 62.3538i 1.15649 2.00309i
\(970\) −9.00000 15.5885i −0.288973 0.500515i
\(971\) 6.00000 10.3923i 0.192549 0.333505i −0.753545 0.657396i \(-0.771658\pi\)
0.946094 + 0.323891i \(0.104991\pi\)
\(972\) 13.5000 + 7.79423i 0.433013 + 0.250000i
\(973\) 9.00000 25.9808i 0.288527 0.832905i
\(974\) 55.4256i 1.77595i
\(975\) −6.00000 −0.192154
\(976\) −22.5000 + 12.9904i −0.720207 + 0.415812i
\(977\) −21.0000 + 12.1244i −0.671850 + 0.387893i −0.796777 0.604273i \(-0.793463\pi\)
0.124928 + 0.992166i \(0.460130\pi\)
\(978\) −24.0000 −0.767435
\(979\) 10.3923i 0.332140i
\(980\) −5.50000 4.33013i −0.175691 0.138321i
\(981\) −7.50000 + 12.9904i −0.239457 + 0.414751i
\(982\) −33.0000 + 57.1577i −1.05307 + 1.82397i
\(983\) −28.5000 49.3634i −0.909009 1.57445i −0.815444 0.578836i \(-0.803507\pi\)
−0.0935651 0.995613i \(-0.529826\pi\)
\(984\) −4.50000 + 7.79423i −0.143455 + 0.248471i
\(985\) 3.00000 + 1.73205i 0.0955879 + 0.0551877i
\(986\) 18.0000 0.573237
\(987\) 0 0
\(988\) 24.0000 0.763542
\(989\) 1.50000 + 0.866025i 0.0476972 + 0.0275380i
\(990\) −18.0000 −0.572078
\(991\) −17.0000 29.4449i −0.540023 0.935347i −0.998902 0.0468483i \(-0.985082\pi\)
0.458879 0.888499i \(-0.348251\pi\)
\(992\) 9.00000 15.5885i 0.285750 0.494934i
\(993\) 15.0000 8.66025i 0.476011 0.274825i
\(994\) 24.0000 20.7846i 0.761234 0.659248i
\(995\) 6.92820i 0.219639i
\(996\) 15.5885i 0.493939i
\(997\) 6.00000 3.46410i 0.190022 0.109709i −0.401971 0.915652i \(-0.631675\pi\)
0.591993 + 0.805943i \(0.298341\pi\)
\(998\) −21.0000 + 12.1244i −0.664743 + 0.383790i
\(999\) 18.0000 + 10.3923i 0.569495 + 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.2.s.a.26.1 2
3.2 odd 2 105.2.s.b.26.1 yes 2
5.2 odd 4 525.2.q.b.299.2 4
5.3 odd 4 525.2.q.b.299.1 4
5.4 even 2 525.2.t.e.26.1 2
7.2 even 3 735.2.b.b.146.2 2
7.3 odd 6 105.2.s.b.101.1 yes 2
7.4 even 3 735.2.s.e.521.1 2
7.5 odd 6 735.2.b.a.146.2 2
7.6 odd 2 735.2.s.c.656.1 2
15.2 even 4 525.2.q.a.299.1 4
15.8 even 4 525.2.q.a.299.2 4
15.14 odd 2 525.2.t.a.26.1 2
21.2 odd 6 735.2.b.a.146.1 2
21.5 even 6 735.2.b.b.146.1 2
21.11 odd 6 735.2.s.c.521.1 2
21.17 even 6 inner 105.2.s.a.101.1 yes 2
21.20 even 2 735.2.s.e.656.1 2
35.3 even 12 525.2.q.a.374.1 4
35.17 even 12 525.2.q.a.374.2 4
35.24 odd 6 525.2.t.a.101.1 2
105.17 odd 12 525.2.q.b.374.1 4
105.38 odd 12 525.2.q.b.374.2 4
105.59 even 6 525.2.t.e.101.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.s.a.26.1 2 1.1 even 1 trivial
105.2.s.a.101.1 yes 2 21.17 even 6 inner
105.2.s.b.26.1 yes 2 3.2 odd 2
105.2.s.b.101.1 yes 2 7.3 odd 6
525.2.q.a.299.1 4 15.2 even 4
525.2.q.a.299.2 4 15.8 even 4
525.2.q.a.374.1 4 35.3 even 12
525.2.q.a.374.2 4 35.17 even 12
525.2.q.b.299.1 4 5.3 odd 4
525.2.q.b.299.2 4 5.2 odd 4
525.2.q.b.374.1 4 105.17 odd 12
525.2.q.b.374.2 4 105.38 odd 12
525.2.t.a.26.1 2 15.14 odd 2
525.2.t.a.101.1 2 35.24 odd 6
525.2.t.e.26.1 2 5.4 even 2
525.2.t.e.101.1 2 105.59 even 6
735.2.b.a.146.1 2 21.2 odd 6
735.2.b.a.146.2 2 7.5 odd 6
735.2.b.b.146.1 2 21.5 even 6
735.2.b.b.146.2 2 7.2 even 3
735.2.s.c.521.1 2 21.11 odd 6
735.2.s.c.656.1 2 7.6 odd 2
735.2.s.e.521.1 2 7.4 even 3
735.2.s.e.656.1 2 21.20 even 2