Properties

Label 105.8.a.c.1.1
Level 105105
Weight 88
Character 105.1
Self dual yes
Analytic conductor 32.80032.800
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,8,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 105=357 105 = 3 \cdot 5 \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 32.800427675832.8004276758
Analytic rank: 11
Dimension: 22
Coefficient field: Q(ζ8)+\Q(\zeta_{8})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x22 x^{2} - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 1.41421-1.41421 of defining polynomial
Character χ\chi == 105.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q17.3137q2+27.0000q3+171.765q4+125.000q5467.470q6+343.000q7757.726q8+729.000q92164.21q106025.40q11+4637.64q12628.668q135938.60q14+3375.00q158866.81q169453.79q1712621.7q183239.07q19+21470.6q20+9261.00q21+104322.q2215467.1q2320458.6q24+15625.0q25+10884.6q26+19683.0q27+58915.2q28+44459.0q2958433.8q30+163312.q31+250506.q32162686.q33+163680.q34+42875.0q35+125216.q36+214874.q37+56080.3q3816974.0q3994715.7q40549784.q41160342.q42718371.q431.03495e6q44+91125.0q45+267792.q46847994.q47239404.q48+117649.q49270527.q50255252.q51107983.q522.07211e6q53340786.q54753175.q55259900.q5687454.9q57769750.q58686310.q59+579705.q60+1.88974e6q612.82753e6q62+250047.q633.20224e6q6478583.5q65+2.81670e6q66243851.q671.62382e6q68417611.q69742325.q701.12944e6q71552382.q72+2.61957e6q733.72026e6q74+421875.q75556357.q762.06671e6q77+293883.q78132486.q791.10835e6q80+531441.q81+9.51879e6q827.53836e6q83+1.59071e6q841.18172e6q85+1.24377e7q86+1.20039e6q87+4.56560e6q882.53142e6q891.57771e6q90215633.q912.65669e6q92+4.40942e6q93+1.46819e7q94404884.q95+6.76367e6q961.75138e7q972.03694e6q984.39252e6q99+O(q100)q-17.3137 q^{2} +27.0000 q^{3} +171.765 q^{4} +125.000 q^{5} -467.470 q^{6} +343.000 q^{7} -757.726 q^{8} +729.000 q^{9} -2164.21 q^{10} -6025.40 q^{11} +4637.64 q^{12} -628.668 q^{13} -5938.60 q^{14} +3375.00 q^{15} -8866.81 q^{16} -9453.79 q^{17} -12621.7 q^{18} -3239.07 q^{19} +21470.6 q^{20} +9261.00 q^{21} +104322. q^{22} -15467.1 q^{23} -20458.6 q^{24} +15625.0 q^{25} +10884.6 q^{26} +19683.0 q^{27} +58915.2 q^{28} +44459.0 q^{29} -58433.8 q^{30} +163312. q^{31} +250506. q^{32} -162686. q^{33} +163680. q^{34} +42875.0 q^{35} +125216. q^{36} +214874. q^{37} +56080.3 q^{38} -16974.0 q^{39} -94715.7 q^{40} -549784. q^{41} -160342. q^{42} -718371. q^{43} -1.03495e6 q^{44} +91125.0 q^{45} +267792. q^{46} -847994. q^{47} -239404. q^{48} +117649. q^{49} -270527. q^{50} -255252. q^{51} -107983. q^{52} -2.07211e6 q^{53} -340786. q^{54} -753175. q^{55} -259900. q^{56} -87454.9 q^{57} -769750. q^{58} -686310. q^{59} +579705. q^{60} +1.88974e6 q^{61} -2.82753e6 q^{62} +250047. q^{63} -3.20224e6 q^{64} -78583.5 q^{65} +2.81670e6 q^{66} -243851. q^{67} -1.62382e6 q^{68} -417611. q^{69} -742325. q^{70} -1.12944e6 q^{71} -552382. q^{72} +2.61957e6 q^{73} -3.72026e6 q^{74} +421875. q^{75} -556357. q^{76} -2.06671e6 q^{77} +293883. q^{78} -132486. q^{79} -1.10835e6 q^{80} +531441. q^{81} +9.51879e6 q^{82} -7.53836e6 q^{83} +1.59071e6 q^{84} -1.18172e6 q^{85} +1.24377e7 q^{86} +1.20039e6 q^{87} +4.56560e6 q^{88} -2.53142e6 q^{89} -1.57771e6 q^{90} -215633. q^{91} -2.65669e6 q^{92} +4.40942e6 q^{93} +1.46819e7 q^{94} -404884. q^{95} +6.76367e6 q^{96} -1.75138e7 q^{97} -2.03694e6 q^{98} -4.39252e6 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q12q2+54q3+72q4+250q5324q6+686q71968q8+1458q91500q1010976q11+1944q122796q134116q14+6750q152528q168284q17+8001504q99+O(q100) 2 q - 12 q^{2} + 54 q^{3} + 72 q^{4} + 250 q^{5} - 324 q^{6} + 686 q^{7} - 1968 q^{8} + 1458 q^{9} - 1500 q^{10} - 10976 q^{11} + 1944 q^{12} - 2796 q^{13} - 4116 q^{14} + 6750 q^{15} - 2528 q^{16} - 8284 q^{17}+ \cdots - 8001504 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −17.3137 −1.53033 −0.765165 0.643834i 0.777343π-0.777343\pi
−0.765165 + 0.643834i 0.777343π0.777343\pi
33 27.0000 0.577350
44 171.765 1.34191
55 125.000 0.447214
66 −467.470 −0.883536
77 343.000 0.377964
88 −757.726 −0.523235
99 729.000 0.333333
1010 −2164.21 −0.684384
1111 −6025.40 −1.36493 −0.682467 0.730917i 0.739093π-0.739093\pi
−0.682467 + 0.730917i 0.739093π0.739093\pi
1212 4637.64 0.774752
1313 −628.668 −0.0793633 −0.0396816 0.999212i 0.512634π-0.512634\pi
−0.0396816 + 0.999212i 0.512634π0.512634\pi
1414 −5938.60 −0.578410
1515 3375.00 0.258199
1616 −8866.81 −0.541187
1717 −9453.79 −0.466697 −0.233348 0.972393i 0.574968π-0.574968\pi
−0.233348 + 0.972393i 0.574968π0.574968\pi
1818 −12621.7 −0.510110
1919 −3239.07 −0.108338 −0.0541692 0.998532i 0.517251π-0.517251\pi
−0.0541692 + 0.998532i 0.517251π0.517251\pi
2020 21470.6 0.600120
2121 9261.00 0.218218
2222 104322. 2.08880
2323 −15467.1 −0.265070 −0.132535 0.991178i 0.542312π-0.542312\pi
−0.132535 + 0.991178i 0.542312π0.542312\pi
2424 −20458.6 −0.302090
2525 15625.0 0.200000
2626 10884.6 0.121452
2727 19683.0 0.192450
2828 58915.2 0.507194
2929 44459.0 0.338506 0.169253 0.985573i 0.445864π-0.445864\pi
0.169253 + 0.985573i 0.445864π0.445864\pi
3030 −58433.8 −0.395130
3131 163312. 0.984581 0.492291 0.870431i 0.336160π-0.336160\pi
0.492291 + 0.870431i 0.336160π0.336160\pi
3232 250506. 1.35143
3333 −162686. −0.788045
3434 163680. 0.714200
3535 42875.0 0.169031
3636 125216. 0.447303
3737 214874. 0.697393 0.348696 0.937236i 0.386624π-0.386624\pi
0.348696 + 0.937236i 0.386624π0.386624\pi
3838 56080.3 0.165794
3939 −16974.0 −0.0458204
4040 −94715.7 −0.233998
4141 −549784. −1.24580 −0.622900 0.782301i 0.714046π-0.714046\pi
−0.622900 + 0.782301i 0.714046π0.714046\pi
4242 −160342. −0.333945
4343 −718371. −1.37787 −0.688937 0.724822i 0.741922π-0.741922\pi
−0.688937 + 0.724822i 0.741922π0.741922\pi
4444 −1.03495e6 −1.83162
4545 91125.0 0.149071
4646 267792. 0.405645
4747 −847994. −1.19138 −0.595690 0.803215i 0.703121π-0.703121\pi
−0.595690 + 0.803215i 0.703121π0.703121\pi
4848 −239404. −0.312455
4949 117649. 0.142857
5050 −270527. −0.306066
5151 −255252. −0.269447
5252 −107983. −0.106498
5353 −2.07211e6 −1.91182 −0.955911 0.293655i 0.905128π-0.905128\pi
−0.955911 + 0.293655i 0.905128π0.905128\pi
5454 −340786. −0.294512
5555 −753175. −0.610417
5656 −259900. −0.197764
5757 −87454.9 −0.0625492
5858 −769750. −0.518026
5959 −686310. −0.435049 −0.217525 0.976055i 0.569798π-0.569798\pi
−0.217525 + 0.976055i 0.569798π0.569798\pi
6060 579705. 0.346480
6161 1.88974e6 1.06598 0.532989 0.846122i 0.321069π-0.321069\pi
0.532989 + 0.846122i 0.321069π0.321069\pi
6262 −2.82753e6 −1.50673
6363 250047. 0.125988
6464 −3.20224e6 −1.52695
6565 −78583.5 −0.0354923
6666 2.81670e6 1.20597
6767 −243851. −0.0990520 −0.0495260 0.998773i 0.515771π-0.515771\pi
−0.0495260 + 0.998773i 0.515771π0.515771\pi
6868 −1.62382e6 −0.626265
6969 −417611. −0.153038
7070 −742325. −0.258673
7171 −1.12944e6 −0.374506 −0.187253 0.982312i 0.559958π-0.559958\pi
−0.187253 + 0.982312i 0.559958π0.559958\pi
7272 −552382. −0.174412
7373 2.61957e6 0.788133 0.394066 0.919082i 0.371068π-0.371068\pi
0.394066 + 0.919082i 0.371068π0.371068\pi
7474 −3.72026e6 −1.06724
7575 421875. 0.115470
7676 −556357. −0.145380
7777 −2.06671e6 −0.515896
7878 293883. 0.0701203
7979 −132486. −0.0302326 −0.0151163 0.999886i 0.504812π-0.504812\pi
−0.0151163 + 0.999886i 0.504812π0.504812\pi
8080 −1.10835e6 −0.242026
8181 531441. 0.111111
8282 9.51879e6 1.90649
8383 −7.53836e6 −1.44712 −0.723558 0.690263i 0.757495π-0.757495\pi
−0.723558 + 0.690263i 0.757495π0.757495\pi
8484 1.59071e6 0.292829
8585 −1.18172e6 −0.208713
8686 1.24377e7 2.10860
8787 1.20039e6 0.195437
8888 4.56560e6 0.714182
8989 −2.53142e6 −0.380626 −0.190313 0.981723i 0.560950π-0.560950\pi
−0.190313 + 0.981723i 0.560950π0.560950\pi
9090 −1.57771e6 −0.228128
9191 −215633. −0.0299965
9292 −2.65669e6 −0.355700
9393 4.40942e6 0.568448
9494 1.46819e7 1.82320
9595 −404884. −0.0484504
9696 6.76367e6 0.780249
9797 −1.75138e7 −1.94840 −0.974202 0.225678i 0.927540π-0.927540\pi
−0.974202 + 0.225678i 0.927540π0.927540\pi
9898 −2.03694e6 −0.218619
9999 −4.39252e6 −0.454978
100100 2.68382e6 0.268382
101101 7.98039e6 0.770725 0.385362 0.922765i 0.374076π-0.374076\pi
0.385362 + 0.922765i 0.374076π0.374076\pi
102102 4.41936e6 0.412343
103103 5.45521e6 0.491905 0.245952 0.969282i 0.420899π-0.420899\pi
0.245952 + 0.969282i 0.420899π0.420899\pi
104104 476358. 0.0415257
105105 1.15762e6 0.0975900
106106 3.58759e7 2.92572
107107 −5.88346e6 −0.464290 −0.232145 0.972681i 0.574574π-0.574574\pi
−0.232145 + 0.972681i 0.574574π0.574574\pi
108108 3.38084e6 0.258251
109109 −7.47026e6 −0.552514 −0.276257 0.961084i 0.589094π-0.589094\pi
−0.276257 + 0.961084i 0.589094π0.589094\pi
110110 1.30403e7 0.934139
111111 5.80159e6 0.402640
112112 −3.04132e6 −0.204550
113113 8.22846e6 0.536468 0.268234 0.963354i 0.413560π-0.413560\pi
0.268234 + 0.963354i 0.413560π0.413560\pi
114114 1.51417e6 0.0957210
115115 −1.93338e6 −0.118543
116116 7.63648e6 0.454245
117117 −458299. −0.0264544
118118 1.18826e7 0.665769
119119 −3.24265e6 −0.176395
120120 −2.55732e6 −0.135099
121121 1.68183e7 0.863044
122122 −3.27185e7 −1.63130
123123 −1.48442e7 −0.719263
124124 2.80512e7 1.32122
125125 1.95312e6 0.0894427
126126 −4.32924e6 −0.192803
127127 −1.66768e7 −0.722436 −0.361218 0.932481i 0.617639π-0.617639\pi
−0.361218 + 0.932481i 0.617639π0.617639\pi
128128 2.33779e7 0.985303
129129 −1.93960e7 −0.795515
130130 1.36057e6 0.0543150
131131 −3.05686e7 −1.18803 −0.594013 0.804455i 0.702457π-0.702457\pi
−0.594013 + 0.804455i 0.702457π0.702457\pi
132132 −2.79437e7 −1.05749
133133 −1.11100e6 −0.0409481
134134 4.22197e6 0.151582
135135 2.46038e6 0.0860663
136136 7.16338e6 0.244192
137137 −4.42073e7 −1.46883 −0.734416 0.678700i 0.762544π-0.762544\pi
−0.734416 + 0.678700i 0.762544π0.762544\pi
138138 7.23040e6 0.234199
139139 −3.27555e7 −1.03451 −0.517253 0.855833i 0.673045π-0.673045\pi
−0.517253 + 0.855833i 0.673045π0.673045\pi
140140 7.36440e6 0.226824
141141 −2.28958e7 −0.687843
142142 1.95548e7 0.573118
143143 3.78798e6 0.108326
144144 −6.46391e6 −0.180396
145145 5.55738e6 0.151385
146146 −4.53544e7 −1.20610
147147 3.17652e6 0.0824786
148148 3.69077e7 0.935839
149149 4.93438e7 1.22203 0.611014 0.791620i 0.290762π-0.290762\pi
0.611014 + 0.791620i 0.290762π0.290762\pi
150150 −7.30422e6 −0.176707
151151 4.30468e7 1.01747 0.508735 0.860923i 0.330113π-0.330113\pi
0.508735 + 0.860923i 0.330113π0.330113\pi
152152 2.45433e6 0.0566865
153153 −6.89181e6 −0.155566
154154 3.57825e7 0.789492
155155 2.04140e7 0.440318
156156 −2.91554e6 −0.0614869
157157 −2.00654e7 −0.413808 −0.206904 0.978361i 0.566339π-0.566339\pi
−0.206904 + 0.978361i 0.566339π0.566339\pi
158158 2.29383e6 0.0462659
159159 −5.59470e7 −1.10379
160160 3.13133e7 0.604378
161161 −5.30521e6 −0.100187
162162 −9.20121e6 −0.170037
163163 344989. 0.00623949 0.00311974 0.999995i 0.499007π-0.499007\pi
0.00311974 + 0.999995i 0.499007π0.499007\pi
164164 −9.44333e7 −1.67175
165165 −2.03357e7 −0.352424
166166 1.30517e8 2.21457
167167 −3.11874e7 −0.518169 −0.259085 0.965855i 0.583421π-0.583421\pi
−0.259085 + 0.965855i 0.583421π0.583421\pi
168168 −7.01730e6 −0.114179
169169 −6.23533e7 −0.993701
170170 2.04600e7 0.319400
171171 −2.36128e6 −0.0361128
172172 −1.23391e8 −1.84898
173173 −3.52528e7 −0.517646 −0.258823 0.965925i 0.583335π-0.583335\pi
−0.258823 + 0.965925i 0.583335π0.583335\pi
174174 −2.07833e7 −0.299083
175175 5.35938e6 0.0755929
176176 5.34261e7 0.738685
177177 −1.85304e7 −0.251176
178178 4.38282e7 0.582483
179179 1.02247e8 1.33249 0.666246 0.745732i 0.267900π-0.267900\pi
0.666246 + 0.745732i 0.267900π0.267900\pi
180180 1.56520e7 0.200040
181181 −5.21416e7 −0.653596 −0.326798 0.945094i 0.605970π-0.605970\pi
−0.326798 + 0.945094i 0.605970π0.605970\pi
182182 3.73341e6 0.0459045
183183 5.10231e7 0.615443
184184 1.17198e7 0.138694
185185 2.68592e7 0.311884
186186 −7.63434e7 −0.869913
187187 5.69629e7 0.637010
188188 −1.45655e8 −1.59872
189189 6.75127e6 0.0727393
190190 7.01004e6 0.0741452
191191 1.44401e8 1.49953 0.749764 0.661705i 0.230167π-0.230167\pi
0.749764 + 0.661705i 0.230167π0.230167\pi
192192 −8.64605e7 −0.881584
193193 −3.75823e7 −0.376299 −0.188149 0.982140i 0.560249π-0.560249\pi
−0.188149 + 0.982140i 0.560249π0.560249\pi
194194 3.03229e8 2.98170
195195 −2.12175e6 −0.0204915
196196 2.02079e7 0.191701
197197 1.16331e8 1.08408 0.542042 0.840351i 0.317651π-0.317651\pi
0.542042 + 0.840351i 0.317651π0.317651\pi
198198 7.60508e7 0.696266
199199 −1.04716e8 −0.941952 −0.470976 0.882146i 0.656098π-0.656098\pi
−0.470976 + 0.882146i 0.656098π0.656098\pi
200200 −1.18395e7 −0.104647
201201 −6.58398e6 −0.0571877
202202 −1.38170e8 −1.17946
203203 1.52494e7 0.127943
204204 −4.38433e7 −0.361574
205205 −6.87230e7 −0.557139
206206 −9.44498e7 −0.752776
207207 −1.12755e7 −0.0883567
208208 5.57428e6 0.0429504
209209 1.95167e7 0.147875
210210 −2.00428e7 −0.149345
211211 2.01137e8 1.47402 0.737010 0.675882i 0.236237π-0.236237\pi
0.737010 + 0.675882i 0.236237π0.236237\pi
212212 −3.55915e8 −2.56549
213213 −3.04949e7 −0.216221
214214 1.01864e8 0.710517
215215 −8.97964e7 −0.616204
216216 −1.49143e7 −0.100697
217217 5.60159e7 0.372137
218218 1.29338e8 0.845528
219219 7.07283e7 0.455029
220220 −1.29369e8 −0.819125
221221 5.94329e6 0.0370386
222222 −1.00447e8 −0.616172
223223 −2.75457e8 −1.66336 −0.831681 0.555254i 0.812621π-0.812621\pi
−0.831681 + 0.555254i 0.812621π0.812621\pi
224224 8.59237e7 0.510793
225225 1.13906e7 0.0666667
226226 −1.42465e8 −0.820974
227227 −2.52670e8 −1.43371 −0.716857 0.697220i 0.754420π-0.754420\pi
−0.716857 + 0.697220i 0.754420π0.754420\pi
228228 −1.50216e7 −0.0839355
229229 6.00808e7 0.330607 0.165303 0.986243i 0.447140π-0.447140\pi
0.165303 + 0.986243i 0.447140π0.447140\pi
230230 3.34741e7 0.181410
231231 −5.58012e7 −0.297853
232232 −3.36877e7 −0.177119
233233 −2.25412e8 −1.16743 −0.583716 0.811958i 0.698402π-0.698402\pi
−0.583716 + 0.811958i 0.698402π0.698402\pi
234234 7.93485e6 0.0404840
235235 −1.05999e8 −0.532801
236236 −1.17884e8 −0.583797
237237 −3.57713e6 −0.0174548
238238 5.61423e7 0.269942
239239 2.80211e8 1.32768 0.663839 0.747875i 0.268926π-0.268926\pi
0.663839 + 0.747875i 0.268926π0.268926\pi
240240 −2.99255e7 −0.139734
241241 2.24227e6 0.0103188 0.00515939 0.999987i 0.498358π-0.498358\pi
0.00515939 + 0.999987i 0.498358π0.498358\pi
242242 −2.91187e8 −1.32074
243243 1.43489e7 0.0641500
244244 3.24591e8 1.43045
245245 1.47061e7 0.0638877
246246 2.57007e8 1.10071
247247 2.03630e6 0.00859809
248248 −1.23746e8 −0.515168
249249 −2.03536e8 −0.835493
250250 −3.38158e7 −0.136877
251251 −3.57258e8 −1.42601 −0.713007 0.701157i 0.752667π-0.752667\pi
−0.713007 + 0.701157i 0.752667π0.752667\pi
252252 4.29492e7 0.169065
253253 9.31953e7 0.361803
254254 2.88737e8 1.10557
255255 −3.19065e7 −0.120501
256256 5.12936e6 0.0191083
257257 4.15303e8 1.52616 0.763079 0.646306i 0.223687π-0.223687\pi
0.763079 + 0.646306i 0.223687π0.223687\pi
258258 3.35817e8 1.21740
259259 7.37017e7 0.263590
260260 −1.34979e7 −0.0476275
261261 3.24106e7 0.112835
262262 5.29256e8 1.81807
263263 −2.52721e8 −0.856635 −0.428317 0.903628i 0.640893π-0.640893\pi
−0.428317 + 0.903628i 0.640893π0.640893\pi
264264 1.23271e8 0.412333
265265 −2.59014e8 −0.854993
266266 1.92355e7 0.0626641
267267 −6.83482e7 −0.219754
268268 −4.18850e7 −0.132919
269269 −1.43349e8 −0.449015 −0.224507 0.974472i 0.572077π-0.572077\pi
−0.224507 + 0.974472i 0.572077π0.572077\pi
270270 −4.25982e7 −0.131710
271271 2.71250e8 0.827900 0.413950 0.910300i 0.364149π-0.364149\pi
0.413950 + 0.910300i 0.364149π0.364149\pi
272272 8.38249e7 0.252570
273273 −5.82209e6 −0.0173185
274274 7.65393e8 2.24780
275275 −9.41469e7 −0.272987
276276 −7.17307e7 −0.205364
277277 3.51479e8 0.993619 0.496810 0.867860i 0.334505π-0.334505\pi
0.496810 + 0.867860i 0.334505π0.334505\pi
278278 5.67120e8 1.58314
279279 1.19054e8 0.328194
280280 −3.24875e7 −0.0884429
281281 −1.15053e8 −0.309334 −0.154667 0.987967i 0.549430π-0.549430\pi
−0.154667 + 0.987967i 0.549430π0.549430\pi
282282 3.96412e8 1.05263
283283 6.58900e8 1.72809 0.864046 0.503413i 0.167923π-0.167923\pi
0.864046 + 0.503413i 0.167923π0.167923\pi
284284 −1.93998e8 −0.502553
285285 −1.09319e7 −0.0279729
286286 −6.55839e7 −0.165774
287287 −1.88576e8 −0.470868
288288 1.82619e8 0.450477
289289 −3.20965e8 −0.782194
290290 −9.62188e7 −0.231668
291291 −4.72872e8 −1.12491
292292 4.49949e8 1.05760
293293 5.98337e8 1.38966 0.694831 0.719174i 0.255479π-0.255479\pi
0.694831 + 0.719174i 0.255479π0.255479\pi
294294 −5.49974e7 −0.126219
295295 −8.57887e7 −0.194560
296296 −1.62815e8 −0.364901
297297 −1.18598e8 −0.262682
298298 −8.54325e8 −1.87011
299299 9.72365e6 0.0210368
300300 7.24631e7 0.154950
301301 −2.46401e8 −0.520787
302302 −7.45301e8 −1.55707
303303 2.15470e8 0.444978
304304 2.87202e7 0.0586314
305305 2.36218e8 0.476720
306306 1.19323e8 0.238067
307307 −3.68389e7 −0.0726645 −0.0363322 0.999340i 0.511567π-0.511567\pi
−0.0363322 + 0.999340i 0.511567π0.511567\pi
308308 −3.54988e8 −0.692287
309309 1.47291e8 0.284001
310310 −3.53441e8 −0.673832
311311 2.16416e8 0.407969 0.203985 0.978974i 0.434611π-0.434611\pi
0.203985 + 0.978974i 0.434611π0.434611\pi
312312 1.28617e7 0.0239749
313313 1.82287e8 0.336008 0.168004 0.985786i 0.446268π-0.446268\pi
0.168004 + 0.985786i 0.446268π0.446268\pi
314314 3.47406e8 0.633262
315315 3.12559e7 0.0563436
316316 −2.27564e7 −0.0405695
317317 8.62583e8 1.52087 0.760437 0.649411i 0.224985π-0.224985\pi
0.760437 + 0.649411i 0.224985π0.224985\pi
318318 9.68650e8 1.68917
319319 −2.67883e8 −0.462039
320320 −4.00280e8 −0.682872
321321 −1.58853e8 −0.268058
322322 9.18528e7 0.153319
323323 3.06215e7 0.0505612
324324 9.12827e7 0.149101
325325 −9.82293e6 −0.0158727
326326 −5.97304e6 −0.00954847
327327 −2.01697e8 −0.318994
328328 4.16585e8 0.651847
329329 −2.90862e8 −0.450299
330330 3.52087e8 0.539326
331331 −2.10328e8 −0.318785 −0.159393 0.987215i 0.550954π-0.550954\pi
−0.159393 + 0.987215i 0.550954π0.550954\pi
332332 −1.29482e9 −1.94190
333333 1.56643e8 0.232464
334334 5.39970e8 0.792970
335335 −3.04814e7 −0.0442974
336336 −8.21155e7 −0.118097
337337 −1.21931e9 −1.73544 −0.867719 0.497055i 0.834415π-0.834415\pi
−0.867719 + 0.497055i 0.834415π0.834415\pi
338338 1.07957e9 1.52069
339339 2.22168e8 0.309730
340340 −2.02978e8 −0.280074
341341 −9.84019e8 −1.34389
342342 4.08825e7 0.0552645
343343 4.03536e7 0.0539949
344344 5.44328e8 0.720952
345345 −5.22014e7 −0.0684408
346346 6.10357e8 0.792169
347347 4.29491e8 0.551824 0.275912 0.961183i 0.411020π-0.411020\pi
0.275912 + 0.961183i 0.411020π0.411020\pi
348348 2.06185e8 0.262259
349349 4.92205e8 0.619807 0.309904 0.950768i 0.399703π-0.399703\pi
0.309904 + 0.950768i 0.399703π0.399703\pi
350350 −9.27907e7 −0.115682
351351 −1.23741e7 −0.0152735
352352 −1.50940e9 −1.84461
353353 8.39592e8 1.01591 0.507957 0.861382i 0.330401π-0.330401\pi
0.507957 + 0.861382i 0.330401π0.330401\pi
354354 3.20829e8 0.384382
355355 −1.41180e8 −0.167484
356356 −4.34807e8 −0.510766
357357 −8.75515e7 −0.101842
358358 −1.77027e9 −2.03915
359359 −1.59128e8 −0.181517 −0.0907584 0.995873i 0.528929π-0.528929\pi
−0.0907584 + 0.995873i 0.528929π0.528929\pi
360360 −6.90478e7 −0.0779993
361361 −8.83380e8 −0.988263
362362 9.02764e8 1.00022
363363 4.54094e8 0.498279
364364 −3.70381e7 −0.0402526
365365 3.27446e8 0.352464
366366 −8.83399e8 −0.941831
367367 3.09960e8 0.327322 0.163661 0.986517i 0.447670π-0.447670\pi
0.163661 + 0.986517i 0.447670π0.447670\pi
368368 1.37144e8 0.143453
369369 −4.00792e8 −0.415267
370370 −4.65033e8 −0.477285
371371 −7.10734e8 −0.722601
372372 7.57381e8 0.762806
373373 −1.80234e9 −1.79827 −0.899137 0.437667i 0.855805π-0.855805\pi
−0.899137 + 0.437667i 0.855805π0.855805\pi
374374 −9.86238e8 −0.974835
375375 5.27344e7 0.0516398
376376 6.42547e8 0.623372
377377 −2.79500e7 −0.0268650
378378 −1.16890e8 −0.111315
379379 −3.82836e8 −0.361223 −0.180611 0.983555i 0.557808π-0.557808\pi
−0.180611 + 0.983555i 0.557808π0.557808\pi
380380 −6.95447e7 −0.0650161
381381 −4.50273e8 −0.417098
382382 −2.50013e9 −2.29477
383383 1.86168e9 1.69320 0.846600 0.532230i 0.178646π-0.178646\pi
0.846600 + 0.532230i 0.178646π0.178646\pi
384384 6.31202e8 0.568865
385385 −2.58339e8 −0.230716
386386 6.50689e8 0.575862
387387 −5.23692e8 −0.459291
388388 −3.00825e9 −2.61458
389389 3.85900e8 0.332393 0.166196 0.986093i 0.446851π-0.446851\pi
0.166196 + 0.986093i 0.446851π0.446851\pi
390390 3.67354e7 0.0313588
391391 1.46222e8 0.123707
392392 −8.91457e7 −0.0747479
393393 −8.25353e8 −0.685908
394394 −2.01412e9 −1.65901
395395 −1.65608e7 −0.0135205
396396 −7.54479e8 −0.610539
397397 3.79655e8 0.304525 0.152262 0.988340i 0.451344π-0.451344\pi
0.152262 + 0.988340i 0.451344π0.451344\pi
398398 1.81303e9 1.44150
399399 −2.99970e7 −0.0236414
400400 −1.38544e8 −0.108237
401401 1.80210e7 0.0139564 0.00697821 0.999976i 0.497779π-0.497779\pi
0.00697821 + 0.999976i 0.497779π0.497779\pi
402402 1.13993e8 0.0875160
403403 −1.02669e8 −0.0781396
404404 1.37075e9 1.03424
405405 6.64301e7 0.0496904
406406 −2.64024e8 −0.195796
407407 −1.29470e9 −0.951895
408408 1.93411e8 0.140984
409409 −1.39088e9 −1.00521 −0.502605 0.864516i 0.667625π-0.667625\pi
−0.502605 + 0.864516i 0.667625π0.667625\pi
410410 1.18985e9 0.852606
411411 −1.19360e9 −0.848031
412412 9.37011e8 0.660092
413413 −2.35404e8 −0.164433
414414 1.95221e8 0.135215
415415 −9.42295e8 −0.647170
416416 −1.57485e8 −0.107254
417417 −8.84399e8 −0.597272
418418 −3.37906e8 −0.226297
419419 −3.32765e8 −0.220998 −0.110499 0.993876i 0.535245π-0.535245\pi
−0.110499 + 0.993876i 0.535245π0.535245\pi
420420 1.98839e8 0.130957
421421 2.85745e9 1.86634 0.933172 0.359429i 0.117029π-0.117029\pi
0.933172 + 0.359429i 0.117029π0.117029\pi
422422 −3.48243e9 −2.25574
423423 −6.18187e8 −0.397127
424424 1.57009e9 1.00033
425425 −1.47715e8 −0.0933393
426426 5.27979e8 0.330890
427427 6.48182e8 0.402902
428428 −1.01057e9 −0.623036
429429 1.02275e8 0.0625418
430430 1.55471e9 0.942995
431431 1.95001e9 1.17318 0.586592 0.809883i 0.300469π-0.300469\pi
0.586592 + 0.809883i 0.300469π0.300469\pi
432432 −1.74525e8 −0.104152
433433 1.51441e9 0.896472 0.448236 0.893915i 0.352052π-0.352052\pi
0.448236 + 0.893915i 0.352052π0.352052\pi
434434 −9.69843e8 −0.569492
435435 1.50049e8 0.0874020
436436 −1.28313e9 −0.741424
437437 5.00989e7 0.0287173
438438 −1.22457e9 −0.696344
439439 1.21673e9 0.686383 0.343192 0.939265i 0.388492π-0.388492\pi
0.343192 + 0.939265i 0.388492π0.388492\pi
440440 5.70700e8 0.319392
441441 8.57661e7 0.0476190
442442 −1.02900e8 −0.0566812
443443 2.35309e9 1.28596 0.642978 0.765884i 0.277699π-0.277699\pi
0.642978 + 0.765884i 0.277699π0.277699\pi
444444 9.96508e8 0.540307
445445 −3.16427e8 −0.170221
446446 4.76918e9 2.54549
447447 1.33228e9 0.705538
448448 −1.09837e9 −0.577132
449449 −2.19434e9 −1.14404 −0.572022 0.820238i 0.693841π-0.693841\pi
−0.572022 + 0.820238i 0.693841π0.693841\pi
450450 −1.97214e8 −0.102022
451451 3.31267e9 1.70043
452452 1.41336e9 0.719892
453453 1.16226e9 0.587437
454454 4.37465e9 2.19406
455455 −2.69541e7 −0.0134148
456456 6.62668e7 0.0327280
457457 3.57722e9 1.75323 0.876614 0.481194i 0.159797π-0.159797\pi
0.876614 + 0.481194i 0.159797π0.159797\pi
458458 −1.04022e9 −0.505938
459459 −1.86079e8 −0.0898158
460460 −3.32087e8 −0.159074
461461 1.75219e9 0.832967 0.416484 0.909143i 0.363262π-0.363262\pi
0.416484 + 0.909143i 0.363262π0.363262\pi
462462 9.66126e8 0.455813
463463 −1.79793e9 −0.841861 −0.420931 0.907093i 0.638296π-0.638296\pi
−0.420931 + 0.907093i 0.638296π0.638296\pi
464464 −3.94210e8 −0.183195
465465 5.51177e8 0.254218
466466 3.90272e9 1.78656
467467 7.91121e8 0.359446 0.179723 0.983717i 0.442480π-0.442480\pi
0.179723 + 0.983717i 0.442480π0.442480\pi
468468 −7.87195e7 −0.0354995
469469 −8.36410e7 −0.0374381
470470 1.83524e9 0.815362
471471 −5.41765e8 −0.238912
472472 5.20035e8 0.227633
473473 4.32847e9 1.88071
474474 6.19334e7 0.0267116
475475 −5.06105e7 −0.0216677
476476 −5.56972e8 −0.236706
477477 −1.51057e9 −0.637274
478478 −4.85150e9 −2.03179
479479 −2.30735e9 −0.959266 −0.479633 0.877469i 0.659230π-0.659230\pi
−0.479633 + 0.877469i 0.659230π0.659230\pi
480480 8.45459e8 0.348938
481481 −1.35084e8 −0.0553474
482482 −3.88220e7 −0.0157911
483483 −1.43241e8 −0.0578430
484484 2.88878e9 1.15813
485485 −2.18922e9 −0.871353
486486 −2.48433e8 −0.0981707
487487 −1.33253e9 −0.522789 −0.261394 0.965232i 0.584182π-0.584182\pi
−0.261394 + 0.965232i 0.584182π0.584182\pi
488488 −1.43191e9 −0.557758
489489 9.31471e6 0.00360237
490490 −2.54618e8 −0.0977692
491491 4.43731e9 1.69174 0.845871 0.533387i 0.179081π-0.179081\pi
0.845871 + 0.533387i 0.179081π0.179081\pi
492492 −2.54970e9 −0.965186
493493 −4.20306e8 −0.157980
494494 −3.52559e7 −0.0131579
495495 −5.49065e8 −0.203472
496496 −1.44805e9 −0.532843
497497 −3.87398e8 −0.141550
498498 3.52396e9 1.27858
499499 2.41786e9 0.871123 0.435561 0.900159i 0.356550π-0.356550\pi
0.435561 + 0.900159i 0.356550π0.356550\pi
500500 3.35478e8 0.120024
501501 −8.42060e8 −0.299165
502502 6.18546e9 2.18227
503503 −3.01913e9 −1.05778 −0.528888 0.848691i 0.677391π-0.677391\pi
−0.528888 + 0.848691i 0.677391π0.677391\pi
504504 −1.89467e8 −0.0659215
505505 9.97548e8 0.344678
506506 −1.61356e9 −0.553678
507507 −1.68354e9 −0.573714
508508 −2.86448e9 −0.969444
509509 −3.16242e9 −1.06294 −0.531468 0.847078i 0.678360π-0.678360\pi
−0.531468 + 0.847078i 0.678360π0.678360\pi
510510 5.52420e8 0.184406
511511 8.98511e8 0.297886
512512 −3.08117e9 −1.01455
513513 −6.37546e7 −0.0208497
514514 −7.19044e9 −2.33552
515515 6.81901e8 0.219986
516516 −3.33155e9 −1.06751
517517 5.10950e9 1.62615
518518 −1.27605e9 −0.403379
519519 −9.51826e8 −0.298863
520520 5.95447e7 0.0185708
521521 3.23968e9 1.00362 0.501811 0.864977i 0.332667π-0.332667\pi
0.501811 + 0.864977i 0.332667π0.332667\pi
522522 −5.61148e8 −0.172675
523523 −4.98015e9 −1.52225 −0.761127 0.648603i 0.775353π-0.775353\pi
−0.761127 + 0.648603i 0.775353π0.775353\pi
524524 −5.25060e9 −1.59423
525525 1.44703e8 0.0436436
526526 4.37553e9 1.31093
527527 −1.54391e9 −0.459501
528528 1.44250e9 0.426480
529529 −3.16560e9 −0.929738
530530 4.48449e9 1.30842
531531 −5.00320e8 −0.145016
532532 −1.90831e8 −0.0549487
533533 3.45631e8 0.0988708
534534 1.18336e9 0.336297
535535 −7.35432e8 −0.207637
536536 1.84772e8 0.0518275
537537 2.76067e9 0.769315
538538 2.48190e9 0.687141
539539 −7.08882e8 −0.194991
540540 4.22605e8 0.115493
541541 4.92830e9 1.33816 0.669078 0.743192i 0.266689π-0.266689\pi
0.669078 + 0.743192i 0.266689π0.266689\pi
542542 −4.69635e9 −1.26696
543543 −1.40782e9 −0.377354
544544 −2.36823e9 −0.630708
545545 −9.33782e8 −0.247092
546546 1.00802e8 0.0265030
547547 −1.70408e9 −0.445178 −0.222589 0.974912i 0.571451π-0.571451\pi
−0.222589 + 0.974912i 0.571451π0.571451\pi
548548 −7.59325e9 −1.97104
549549 1.37762e9 0.355326
550550 1.63003e9 0.417760
551551 −1.44006e8 −0.0366733
552552 3.16435e8 0.0800751
553553 −4.54428e7 −0.0114269
554554 −6.08540e9 −1.52057
555555 7.25199e8 0.180066
556556 −5.62624e9 −1.38821
557557 4.37024e9 1.07155 0.535774 0.844361i 0.320020π-0.320020\pi
0.535774 + 0.844361i 0.320020π0.320020\pi
558558 −2.06127e9 −0.502245
559559 4.51617e8 0.109352
560560 −3.80165e8 −0.0914773
561561 1.53800e9 0.367778
562562 1.99200e9 0.473383
563563 −2.41766e9 −0.570974 −0.285487 0.958383i 0.592155π-0.592155\pi
−0.285487 + 0.958383i 0.592155π0.592155\pi
564564 −3.93269e9 −0.923024
565565 1.02856e9 0.239916
566566 −1.14080e10 −2.64455
567567 1.82284e8 0.0419961
568568 8.55805e8 0.195955
569569 4.41532e9 1.00478 0.502388 0.864642i 0.332455π-0.332455\pi
0.502388 + 0.864642i 0.332455π0.332455\pi
570570 1.89271e8 0.0428077
571571 −5.60339e9 −1.25958 −0.629788 0.776767i 0.716858π-0.716858\pi
−0.629788 + 0.776767i 0.716858π0.716858\pi
572572 6.50640e8 0.145363
573573 3.89884e9 0.865753
574574 3.26495e9 0.720584
575575 −2.41673e8 −0.0530140
576576 −2.33443e9 −0.508983
577577 6.17027e9 1.33718 0.668589 0.743632i 0.266899π-0.266899\pi
0.668589 + 0.743632i 0.266899π0.266899\pi
578578 5.55709e9 1.19702
579579 −1.01472e9 −0.217256
580580 9.54560e8 0.203145
581581 −2.58566e9 −0.546959
582582 8.18717e9 1.72149
583583 1.24853e10 2.60951
584584 −1.98491e9 −0.412379
585585 −5.72874e7 −0.0118308
586586 −1.03594e10 −2.12664
587587 −8.17721e9 −1.66868 −0.834338 0.551254i 0.814150π-0.814150\pi
−0.834338 + 0.551254i 0.814150π0.814150\pi
588588 5.45614e8 0.110679
589589 −5.28978e8 −0.106668
590590 1.48532e9 0.297741
591591 3.14093e9 0.625896
592592 −1.90525e9 −0.377420
593593 4.01515e9 0.790698 0.395349 0.918531i 0.370624π-0.370624\pi
0.395349 + 0.918531i 0.370624π0.370624\pi
594594 2.05337e9 0.401990
595595 −4.05331e8 −0.0788861
596596 8.47552e9 1.63985
597597 −2.82734e9 −0.543836
598598 −1.68352e8 −0.0321933
599599 −5.38280e9 −1.02333 −0.511664 0.859186i 0.670971π-0.670971\pi
−0.511664 + 0.859186i 0.670971π0.670971\pi
600600 −3.19666e8 −0.0604180
601601 8.50523e9 1.59818 0.799089 0.601212i 0.205315π-0.205315\pi
0.799089 + 0.601212i 0.205315π0.205315\pi
602602 4.26612e9 0.796976
603603 −1.77768e8 −0.0330173
604604 7.39392e9 1.36535
605605 2.10229e9 0.385965
606606 −3.73059e9 −0.680963
607607 1.01613e10 1.84412 0.922062 0.387041i 0.126503π-0.126503\pi
0.922062 + 0.387041i 0.126503π0.126503\pi
608608 −8.11407e8 −0.146412
609609 4.11735e8 0.0738681
610610 −4.08981e9 −0.729539
611611 5.33106e8 0.0945518
612612 −1.18377e9 −0.208755
613613 −5.37485e8 −0.0942441 −0.0471221 0.998889i 0.515005π-0.515005\pi
−0.0471221 + 0.998889i 0.515005π0.515005\pi
614614 6.37818e8 0.111201
615615 −1.85552e9 −0.321664
616616 1.56600e9 0.269935
617617 −7.57829e9 −1.29889 −0.649446 0.760407i 0.724999π-0.724999\pi
−0.649446 + 0.760407i 0.724999π0.724999\pi
618618 −2.55015e9 −0.434616
619619 −7.53812e8 −0.127746 −0.0638728 0.997958i 0.520345π-0.520345\pi
−0.0638728 + 0.997958i 0.520345π0.520345\pi
620620 3.50640e9 0.590867
621621 −3.04438e8 −0.0510128
622622 −3.74696e9 −0.624328
623623 −8.68275e8 −0.143863
624624 1.50506e8 0.0247974
625625 2.44141e8 0.0400000
626626 −3.15606e9 −0.514204
627627 5.26951e8 0.0853756
628628 −3.44652e9 −0.555293
629629 −2.03137e9 −0.325471
630630 −5.41155e8 −0.0862243
631631 6.58609e8 0.104358 0.0521789 0.998638i 0.483383π-0.483383\pi
0.0521789 + 0.998638i 0.483383π0.483383\pi
632632 1.00388e8 0.0158188
633633 5.43070e9 0.851026
634634 −1.49345e10 −2.32744
635635 −2.08460e9 −0.323083
636636 −9.60971e9 −1.48119
637637 −7.39621e7 −0.0113376
638638 4.63805e9 0.707072
639639 −8.23361e8 −0.124835
640640 2.92223e9 0.440641
641641 −7.38378e9 −1.10733 −0.553663 0.832741i 0.686771π-0.686771\pi
−0.553663 + 0.832741i 0.686771π0.686771\pi
642642 2.75034e9 0.410217
643643 1.70284e9 0.252601 0.126301 0.991992i 0.459690π-0.459690\pi
0.126301 + 0.991992i 0.459690π0.459690\pi
644644 −9.11246e8 −0.134442
645645 −2.42450e9 −0.355765
646646 −5.30171e8 −0.0773753
647647 4.71645e9 0.684622 0.342311 0.939587i 0.388790π-0.388790\pi
0.342311 + 0.939587i 0.388790π0.388790\pi
648648 −4.02687e8 −0.0581373
649649 4.13529e9 0.593813
650650 1.70071e8 0.0242904
651651 1.51243e9 0.214853
652652 5.92569e7 0.00837283
653653 −1.23963e9 −0.174220 −0.0871099 0.996199i 0.527763π-0.527763\pi
−0.0871099 + 0.996199i 0.527763π0.527763\pi
654654 3.49212e9 0.488166
655655 −3.82108e9 −0.531302
656656 4.87483e9 0.674211
657657 1.90966e9 0.262711
658658 5.03590e9 0.689106
659659 −1.40452e10 −1.91173 −0.955867 0.293799i 0.905080π-0.905080\pi
−0.955867 + 0.293799i 0.905080π0.905080\pi
660660 −3.49296e9 −0.472922
661661 4.20603e9 0.566458 0.283229 0.959052i 0.408594π-0.408594\pi
0.283229 + 0.959052i 0.408594π0.408594\pi
662662 3.64155e9 0.487847
663663 1.60469e8 0.0213842
664664 5.71201e9 0.757183
665665 −1.38875e8 −0.0183125
666666 −2.71207e9 −0.355747
667667 −6.87651e8 −0.0897279
668668 −5.35689e9 −0.695337
669669 −7.43734e9 −0.960342
670670 5.27746e8 0.0677896
671671 −1.13865e10 −1.45499
672672 2.31994e9 0.294906
673673 7.56778e9 0.957009 0.478504 0.878085i 0.341179π-0.341179\pi
0.478504 + 0.878085i 0.341179π0.341179\pi
674674 2.11108e10 2.65579
675675 3.07547e8 0.0384900
676676 −1.07101e10 −1.33346
677677 1.04426e10 1.29344 0.646721 0.762727i 0.276140π-0.276140\pi
0.646721 + 0.762727i 0.276140π0.276140\pi
678678 −3.84656e9 −0.473989
679679 −6.00723e9 −0.736427
680680 8.95422e8 0.109206
681681 −6.82208e9 −0.827756
682682 1.70370e10 2.05659
683683 −1.06039e10 −1.27349 −0.636744 0.771076i 0.719719π-0.719719\pi
−0.636744 + 0.771076i 0.719719π0.719719\pi
684684 −4.05584e8 −0.0484602
685685 −5.52591e9 −0.656882
686686 −6.98671e8 −0.0826301
687687 1.62218e9 0.190876
688688 6.36966e9 0.745687
689689 1.30267e9 0.151728
690690 9.03799e8 0.104737
691691 −4.46875e9 −0.515244 −0.257622 0.966246i 0.582939π-0.582939\pi
−0.257622 + 0.966246i 0.582939π0.582939\pi
692692 −6.05518e9 −0.694634
693693 −1.50663e9 −0.171965
694694 −7.43608e9 −0.844473
695695 −4.09444e9 −0.462645
696696 −9.09569e8 −0.102259
697697 5.19754e9 0.581411
698698 −8.52189e9 −0.948510
699699 −6.08613e9 −0.674017
700700 9.20550e8 0.101439
701701 −1.65190e9 −0.181122 −0.0905610 0.995891i 0.528866π-0.528866\pi
−0.0905610 + 0.995891i 0.528866π0.528866\pi
702702 2.14241e8 0.0233734
703703 −6.95991e8 −0.0755545
704704 1.92948e10 2.08418
705705 −2.86198e9 −0.307613
706706 −1.45365e10 −1.55468
707707 2.73727e9 0.291306
708708 −3.18286e9 −0.337055
709709 1.15694e10 1.21913 0.609565 0.792736i 0.291344π-0.291344\pi
0.609565 + 0.792736i 0.291344π0.291344\pi
710710 2.44435e9 0.256306
711711 −9.65825e7 −0.0100775
712712 1.91812e9 0.199157
713713 −2.52595e9 −0.260983
714714 1.51584e9 0.155851
715715 4.73497e8 0.0484447
716716 1.75624e10 1.78809
717717 7.56570e9 0.766536
718718 2.75510e9 0.277781
719719 −4.84395e9 −0.486014 −0.243007 0.970025i 0.578134π-0.578134\pi
−0.243007 + 0.970025i 0.578134π0.578134\pi
720720 −8.07988e8 −0.0806754
721721 1.87114e9 0.185922
722722 1.52946e10 1.51237
723723 6.05413e7 0.00595755
724724 −8.95607e9 −0.877067
725725 6.94672e8 0.0677013
726726 −7.86205e9 −0.762531
727727 −1.17390e10 −1.13308 −0.566541 0.824033i 0.691719π-0.691719\pi
−0.566541 + 0.824033i 0.691719π0.691719\pi
728728 1.63391e8 0.0156952
729729 3.87420e8 0.0370370
730730 −5.66930e9 −0.539386
731731 6.79133e9 0.643049
732732 8.76395e9 0.825869
733733 −9.66671e9 −0.906598 −0.453299 0.891358i 0.649753π-0.649753\pi
−0.453299 + 0.891358i 0.649753π0.649753\pi
734734 −5.36656e9 −0.500910
735735 3.97065e8 0.0368856
736736 −3.87460e9 −0.358224
737737 1.46930e9 0.135199
738738 6.93920e9 0.635495
739739 −8.77699e9 −0.800000 −0.400000 0.916515i 0.630990π-0.630990\pi
−0.400000 + 0.916515i 0.630990π0.630990\pi
740740 4.61346e9 0.418520
741741 5.49801e7 0.00496411
742742 1.23054e10 1.10582
743743 −1.39551e10 −1.24816 −0.624082 0.781359i 0.714527π-0.714527\pi
−0.624082 + 0.781359i 0.714527π0.714527\pi
744744 −3.34113e9 −0.297432
745745 6.16798e9 0.546507
746746 3.12052e10 2.75195
747747 −5.49547e9 −0.482372
748748 9.78420e9 0.854810
749749 −2.01803e9 −0.175485
750750 −9.13028e8 −0.0790259
751751 −5.46263e9 −0.470611 −0.235305 0.971922i 0.575609π-0.575609\pi
−0.235305 + 0.971922i 0.575609π0.575609\pi
752752 7.51900e9 0.644760
753753 −9.64596e9 −0.823309
754754 4.83917e8 0.0411123
755755 5.38086e9 0.455027
756756 1.15963e9 0.0976096
757757 −9.04842e9 −0.758119 −0.379059 0.925372i 0.623752π-0.623752\pi
−0.379059 + 0.925372i 0.623752π0.623752\pi
758758 6.62830e9 0.552790
759759 2.51627e9 0.208887
760760 3.06791e8 0.0253510
761761 1.02716e10 0.844876 0.422438 0.906392i 0.361174π-0.361174\pi
0.422438 + 0.906392i 0.361174π0.361174\pi
762762 7.79590e9 0.638298
763763 −2.56230e9 −0.208831
764764 2.48030e10 2.01223
765765 −8.61476e8 −0.0695710
766766 −3.22325e10 −2.59115
767767 4.31461e8 0.0345269
768768 1.38493e8 0.0110322
769769 −2.37677e9 −0.188471 −0.0942355 0.995550i 0.530041π-0.530041\pi
−0.0942355 + 0.995550i 0.530041π0.530041\pi
770770 4.47281e9 0.353071
771771 1.12132e10 0.881127
772772 −6.45531e9 −0.504959
773773 −2.10182e10 −1.63669 −0.818345 0.574727i 0.805108π-0.805108\pi
−0.818345 + 0.574727i 0.805108π0.805108\pi
774774 9.06706e9 0.702867
775775 2.55175e9 0.196916
776776 1.32706e10 1.01947
777777 1.98995e9 0.152184
778778 −6.68137e9 −0.508671
779779 1.78079e9 0.134968
780780 −3.64442e8 −0.0274978
781781 6.80532e9 0.511176
782782 −2.53165e9 −0.189313
783783 8.75087e8 0.0651456
784784 −1.04317e9 −0.0773125
785785 −2.50817e9 −0.185060
786786 1.42899e10 1.04967
787787 3.87353e9 0.283266 0.141633 0.989919i 0.454765π-0.454765\pi
0.141633 + 0.989919i 0.454765π0.454765\pi
788788 1.99815e10 1.45474
789789 −6.82346e9 −0.494578
790790 2.86729e8 0.0206908
791791 2.82236e9 0.202766
792792 3.32832e9 0.238061
793793 −1.18802e9 −0.0845995
794794 −6.57324e9 −0.466023
795795 −6.99338e9 −0.493631
796796 −1.79866e10 −1.26401
797797 −2.09883e10 −1.46849 −0.734247 0.678883i 0.762465π-0.762465\pi
−0.734247 + 0.678883i 0.762465π0.762465\pi
798798 5.19360e8 0.0361791
799799 8.01675e9 0.556013
800800 3.91416e9 0.270286
801801 −1.84540e9 −0.126875
802802 −3.12010e8 −0.0213579
803803 −1.57839e10 −1.07575
804804 −1.13089e9 −0.0767407
805805 −6.63151e8 −0.0448050
806806 1.77758e9 0.119579
807807 −3.87041e9 −0.259239
808808 −6.04695e9 −0.403270
809809 1.88503e10 1.25170 0.625849 0.779944i 0.284753π-0.284753\pi
0.625849 + 0.779944i 0.284753π0.284753\pi
810810 −1.15015e9 −0.0760427
811811 −3.84352e9 −0.253021 −0.126510 0.991965i 0.540378π-0.540378\pi
−0.126510 + 0.991965i 0.540378π0.540378\pi
812812 2.61931e9 0.171689
813813 7.32376e9 0.477988
814814 2.24161e10 1.45671
815815 4.31236e7 0.00279038
816816 2.26327e9 0.145821
817817 2.32685e9 0.149277
818818 2.40812e10 1.53830
819819 −1.57197e8 −0.00999883
820820 −1.18042e10 −0.747630
821821 1.65030e10 1.04079 0.520394 0.853926i 0.325785π-0.325785\pi
0.520394 + 0.853926i 0.325785π0.325785\pi
822822 2.06656e10 1.29777
823823 −6.88244e9 −0.430371 −0.215186 0.976573i 0.569036π-0.569036\pi
−0.215186 + 0.976573i 0.569036π0.569036\pi
824824 −4.13355e9 −0.257382
825825 −2.54197e9 −0.157609
826826 4.07572e9 0.251637
827827 −8.00503e9 −0.492145 −0.246073 0.969251i 0.579140π-0.579140\pi
−0.246073 + 0.969251i 0.579140π0.579140\pi
828828 −1.93673e9 −0.118567
829829 −8.15406e9 −0.497088 −0.248544 0.968621i 0.579952π-0.579952\pi
−0.248544 + 0.968621i 0.579952π0.579952\pi
830830 1.63146e10 0.990384
831831 9.48993e9 0.573666
832832 2.01315e9 0.121184
833833 −1.11223e9 −0.0666709
834834 1.53122e10 0.914024
835835 −3.89843e9 −0.231732
836836 3.35228e9 0.198435
837837 3.21447e9 0.189483
838838 5.76140e9 0.338200
839839 2.25611e9 0.131885 0.0659423 0.997823i 0.478995π-0.478995\pi
0.0659423 + 0.997823i 0.478995π0.478995\pi
840840 −8.77162e8 −0.0510625
841841 −1.52733e10 −0.885413
842842 −4.94731e10 −2.85612
843843 −3.10644e9 −0.178594
844844 3.45482e10 1.97800
845845 −7.79416e9 −0.444397
846846 1.07031e10 0.607735
847847 5.76867e9 0.326200
848848 1.83730e10 1.03465
849849 1.77903e10 0.997714
850850 2.55750e9 0.142840
851851 −3.32347e9 −0.184858
852852 −5.23793e9 −0.290149
853853 3.04625e10 1.68052 0.840259 0.542185i 0.182403π-0.182403\pi
0.840259 + 0.542185i 0.182403π0.182403\pi
854854 −1.12224e10 −0.616573
855855 −2.95160e8 −0.0161501
856856 4.45805e9 0.242933
857857 6.49074e9 0.352259 0.176129 0.984367i 0.443642π-0.443642\pi
0.176129 + 0.984367i 0.443642π0.443642\pi
858858 −1.77077e9 −0.0957096
859859 −1.54195e10 −0.830031 −0.415016 0.909814i 0.636224π-0.636224\pi
−0.415016 + 0.909814i 0.636224π0.636224\pi
860860 −1.54238e10 −0.826890
861861 −5.09155e9 −0.271856
862862 −3.37619e10 −1.79536
863863 −6.95493e9 −0.368345 −0.184173 0.982894i 0.558961π-0.558961\pi
−0.184173 + 0.982894i 0.558961π0.558961\pi
864864 4.93072e9 0.260083
865865 −4.40660e9 −0.231498
866866 −2.62201e10 −1.37190
867867 −8.66604e9 −0.451600
868868 9.62155e9 0.499374
869869 7.98283e8 0.0412656
870870 −2.59791e9 −0.133754
871871 1.53301e8 0.00786109
872872 5.66041e9 0.289095
873873 −1.27676e10 −0.649468
874874 −8.67398e8 −0.0439469
875875 6.69922e8 0.0338062
876876 1.21486e10 0.610608
877877 −2.15955e10 −1.08110 −0.540548 0.841313i 0.681783π-0.681783\pi
−0.540548 + 0.841313i 0.681783π0.681783\pi
878878 −2.10660e10 −1.05039
879879 1.61551e10 0.802321
880880 6.67826e9 0.330350
881881 2.45453e10 1.20935 0.604676 0.796471i 0.293303π-0.293303\pi
0.604676 + 0.796471i 0.293303π0.293303\pi
882882 −1.48493e9 −0.0728729
883883 −3.05196e10 −1.49182 −0.745909 0.666047i 0.767985π-0.767985\pi
−0.745909 + 0.666047i 0.767985π0.767985\pi
884884 1.02085e9 0.0497024
885885 −2.31630e9 −0.112329
886886 −4.07408e10 −1.96794
887887 −3.20420e10 −1.54165 −0.770827 0.637044i 0.780157π-0.780157\pi
−0.770827 + 0.637044i 0.780157π0.780157\pi
888888 −4.39602e9 −0.210676
889889 −5.72014e9 −0.273055
890890 5.47852e9 0.260494
891891 −3.20215e9 −0.151659
892892 −4.73137e10 −2.23208
893893 2.74671e9 0.129072
894894 −2.30668e10 −1.07971
895895 1.27809e10 0.595909
896896 8.01861e9 0.372410
897897 2.62539e8 0.0121456
898898 3.79922e10 1.75076
899899 7.26068e9 0.333287
900900 1.95651e9 0.0894607
901901 1.95893e10 0.892241
902902 −5.73546e10 −2.60223
903903 −6.65283e9 −0.300677
904904 −6.23492e9 −0.280699
905905 −6.51770e9 −0.292297
906906 −2.01231e10 −0.898973
907907 3.57857e10 1.59252 0.796258 0.604957i 0.206810π-0.206810\pi
0.796258 + 0.604957i 0.206810π0.206810\pi
908908 −4.33997e10 −1.92392
909909 5.81770e9 0.256908
910910 4.66676e8 0.0205291
911911 −2.16444e10 −0.948485 −0.474242 0.880394i 0.657278π-0.657278\pi
−0.474242 + 0.880394i 0.657278π0.657278\pi
912912 7.75446e8 0.0338509
913913 4.54216e10 1.97522
914914 −6.19349e10 −2.68302
915915 6.37788e9 0.275234
916916 1.03198e10 0.443645
917917 −1.04850e10 −0.449032
918918 3.22172e9 0.137448
919919 −1.39988e10 −0.594957 −0.297478 0.954729i 0.596146π-0.596146\pi
−0.297478 + 0.954729i 0.596146π0.596146\pi
920920 1.46498e9 0.0620259
921921 −9.94650e8 −0.0419528
922922 −3.03369e10 −1.27471
923923 7.10042e8 0.0297220
924924 −9.58467e9 −0.399692
925925 3.35740e9 0.139479
926926 3.11289e10 1.28833
927927 3.97685e9 0.163968
928928 1.11373e10 0.457468
929929 −2.51280e10 −1.02826 −0.514130 0.857712i 0.671885π-0.671885\pi
−0.514130 + 0.857712i 0.671885π0.671885\pi
930930 −9.54292e9 −0.389037
931931 −3.81073e8 −0.0154769
932932 −3.87178e10 −1.56659
933933 5.84323e9 0.235541
934934 −1.36972e10 −0.550071
935935 7.12036e9 0.284879
936936 3.47265e8 0.0138419
937937 −1.28582e10 −0.510611 −0.255306 0.966860i 0.582176π-0.582176\pi
−0.255306 + 0.966860i 0.582176π0.582176\pi
938938 1.44814e9 0.0572927
939939 4.92174e9 0.193994
940940 −1.82069e10 −0.714971
941941 3.90470e10 1.52765 0.763824 0.645424i 0.223319π-0.223319\pi
0.763824 + 0.645424i 0.223319π0.223319\pi
942942 9.37997e9 0.365614
943943 8.50354e9 0.330224
944944 6.08538e9 0.235443
945945 8.43909e8 0.0325300
946946 −7.49419e10 −2.87810
947947 −4.98341e10 −1.90679 −0.953393 0.301731i 0.902435π-0.902435\pi
−0.953393 + 0.301731i 0.902435π0.902435\pi
948948 −6.14424e8 −0.0234228
949949 −1.64684e9 −0.0625488
950950 8.76255e8 0.0331587
951951 2.32897e10 0.878078
952952 2.45704e9 0.0922960
953953 1.99827e10 0.747876 0.373938 0.927454i 0.378007π-0.378007\pi
0.373938 + 0.927454i 0.378007π0.378007\pi
954954 2.61536e10 0.975240
955955 1.80502e10 0.670610
956956 4.81303e10 1.78163
957957 −7.23285e9 −0.266758
958958 3.99488e10 1.46799
959959 −1.51631e10 −0.555166
960960 −1.08076e10 −0.394256
961961 −8.41888e8 −0.0306001
962962 2.33881e9 0.0846998
963963 −4.28904e9 −0.154763
964964 3.85143e8 0.0138469
965965 −4.69779e9 −0.168286
966966 2.48003e9 0.0885189
967967 1.31302e10 0.466958 0.233479 0.972362i 0.424989π-0.424989\pi
0.233479 + 0.972362i 0.424989π0.424989\pi
968968 −1.27437e10 −0.451575
969969 8.26780e8 0.0291915
970970 3.79036e10 1.33346
971971 3.27528e10 1.14810 0.574051 0.818819i 0.305371π-0.305371\pi
0.574051 + 0.818819i 0.305371π0.305371\pi
972972 2.46463e9 0.0860836
973973 −1.12351e10 −0.391006
974974 2.30711e10 0.800040
975975 −2.65219e8 −0.00916408
976976 −1.67560e10 −0.576894
977977 1.96765e10 0.675021 0.337511 0.941322i 0.390415π-0.390415\pi
0.337511 + 0.941322i 0.390415π0.390415\pi
978978 −1.61272e8 −0.00551281
979979 1.52528e10 0.519529
980980 2.52599e9 0.0857315
981981 −5.44582e9 −0.184171
982982 −7.68262e10 −2.58892
983983 1.30579e10 0.438466 0.219233 0.975673i 0.429644π-0.429644\pi
0.219233 + 0.975673i 0.429644π0.429644\pi
984984 1.12478e10 0.376344
985985 1.45413e10 0.484817
986986 7.27706e9 0.241761
987987 −7.85327e9 −0.259980
988988 3.49764e8 0.0115379
989989 1.11111e10 0.365233
990990 9.50635e9 0.311380
991991 1.33714e10 0.436435 0.218218 0.975900i 0.429976π-0.429976\pi
0.218218 + 0.975900i 0.429976π0.429976\pi
992992 4.09106e10 1.33059
993993 −5.67884e9 −0.184051
994994 6.70729e9 0.216618
995995 −1.30895e10 −0.421254
996996 −3.49602e10 −1.12116
997997 5.15968e10 1.64888 0.824441 0.565948i 0.191490π-0.191490\pi
0.824441 + 0.565948i 0.191490π0.191490\pi
998998 −4.18621e10 −1.33311
999999 4.22936e9 0.134213
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.8.a.c.1.1 2
3.2 odd 2 315.8.a.d.1.2 2
5.4 even 2 525.8.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.c.1.1 2 1.1 even 1 trivial
315.8.a.d.1.2 2 3.2 odd 2
525.8.a.f.1.2 2 5.4 even 2