Properties

Label 105.8.a.c.1.1
Level $105$
Weight $8$
Character 105.1
Self dual yes
Analytic conductor $32.800$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,8,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.8004276758\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-17.3137 q^{2} +27.0000 q^{3} +171.765 q^{4} +125.000 q^{5} -467.470 q^{6} +343.000 q^{7} -757.726 q^{8} +729.000 q^{9} -2164.21 q^{10} -6025.40 q^{11} +4637.64 q^{12} -628.668 q^{13} -5938.60 q^{14} +3375.00 q^{15} -8866.81 q^{16} -9453.79 q^{17} -12621.7 q^{18} -3239.07 q^{19} +21470.6 q^{20} +9261.00 q^{21} +104322. q^{22} -15467.1 q^{23} -20458.6 q^{24} +15625.0 q^{25} +10884.6 q^{26} +19683.0 q^{27} +58915.2 q^{28} +44459.0 q^{29} -58433.8 q^{30} +163312. q^{31} +250506. q^{32} -162686. q^{33} +163680. q^{34} +42875.0 q^{35} +125216. q^{36} +214874. q^{37} +56080.3 q^{38} -16974.0 q^{39} -94715.7 q^{40} -549784. q^{41} -160342. q^{42} -718371. q^{43} -1.03495e6 q^{44} +91125.0 q^{45} +267792. q^{46} -847994. q^{47} -239404. q^{48} +117649. q^{49} -270527. q^{50} -255252. q^{51} -107983. q^{52} -2.07211e6 q^{53} -340786. q^{54} -753175. q^{55} -259900. q^{56} -87454.9 q^{57} -769750. q^{58} -686310. q^{59} +579705. q^{60} +1.88974e6 q^{61} -2.82753e6 q^{62} +250047. q^{63} -3.20224e6 q^{64} -78583.5 q^{65} +2.81670e6 q^{66} -243851. q^{67} -1.62382e6 q^{68} -417611. q^{69} -742325. q^{70} -1.12944e6 q^{71} -552382. q^{72} +2.61957e6 q^{73} -3.72026e6 q^{74} +421875. q^{75} -556357. q^{76} -2.06671e6 q^{77} +293883. q^{78} -132486. q^{79} -1.10835e6 q^{80} +531441. q^{81} +9.51879e6 q^{82} -7.53836e6 q^{83} +1.59071e6 q^{84} -1.18172e6 q^{85} +1.24377e7 q^{86} +1.20039e6 q^{87} +4.56560e6 q^{88} -2.53142e6 q^{89} -1.57771e6 q^{90} -215633. q^{91} -2.65669e6 q^{92} +4.40942e6 q^{93} +1.46819e7 q^{94} -404884. q^{95} +6.76367e6 q^{96} -1.75138e7 q^{97} -2.03694e6 q^{98} -4.39252e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 12 q^{2} + 54 q^{3} + 72 q^{4} + 250 q^{5} - 324 q^{6} + 686 q^{7} - 1968 q^{8} + 1458 q^{9} - 1500 q^{10} - 10976 q^{11} + 1944 q^{12} - 2796 q^{13} - 4116 q^{14} + 6750 q^{15} - 2528 q^{16} - 8284 q^{17}+ \cdots - 8001504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −17.3137 −1.53033 −0.765165 0.643834i \(-0.777343\pi\)
−0.765165 + 0.643834i \(0.777343\pi\)
\(3\) 27.0000 0.577350
\(4\) 171.765 1.34191
\(5\) 125.000 0.447214
\(6\) −467.470 −0.883536
\(7\) 343.000 0.377964
\(8\) −757.726 −0.523235
\(9\) 729.000 0.333333
\(10\) −2164.21 −0.684384
\(11\) −6025.40 −1.36493 −0.682467 0.730917i \(-0.739093\pi\)
−0.682467 + 0.730917i \(0.739093\pi\)
\(12\) 4637.64 0.774752
\(13\) −628.668 −0.0793633 −0.0396816 0.999212i \(-0.512634\pi\)
−0.0396816 + 0.999212i \(0.512634\pi\)
\(14\) −5938.60 −0.578410
\(15\) 3375.00 0.258199
\(16\) −8866.81 −0.541187
\(17\) −9453.79 −0.466697 −0.233348 0.972393i \(-0.574968\pi\)
−0.233348 + 0.972393i \(0.574968\pi\)
\(18\) −12621.7 −0.510110
\(19\) −3239.07 −0.108338 −0.0541692 0.998532i \(-0.517251\pi\)
−0.0541692 + 0.998532i \(0.517251\pi\)
\(20\) 21470.6 0.600120
\(21\) 9261.00 0.218218
\(22\) 104322. 2.08880
\(23\) −15467.1 −0.265070 −0.132535 0.991178i \(-0.542312\pi\)
−0.132535 + 0.991178i \(0.542312\pi\)
\(24\) −20458.6 −0.302090
\(25\) 15625.0 0.200000
\(26\) 10884.6 0.121452
\(27\) 19683.0 0.192450
\(28\) 58915.2 0.507194
\(29\) 44459.0 0.338506 0.169253 0.985573i \(-0.445864\pi\)
0.169253 + 0.985573i \(0.445864\pi\)
\(30\) −58433.8 −0.395130
\(31\) 163312. 0.984581 0.492291 0.870431i \(-0.336160\pi\)
0.492291 + 0.870431i \(0.336160\pi\)
\(32\) 250506. 1.35143
\(33\) −162686. −0.788045
\(34\) 163680. 0.714200
\(35\) 42875.0 0.169031
\(36\) 125216. 0.447303
\(37\) 214874. 0.697393 0.348696 0.937236i \(-0.386624\pi\)
0.348696 + 0.937236i \(0.386624\pi\)
\(38\) 56080.3 0.165794
\(39\) −16974.0 −0.0458204
\(40\) −94715.7 −0.233998
\(41\) −549784. −1.24580 −0.622900 0.782301i \(-0.714046\pi\)
−0.622900 + 0.782301i \(0.714046\pi\)
\(42\) −160342. −0.333945
\(43\) −718371. −1.37787 −0.688937 0.724822i \(-0.741922\pi\)
−0.688937 + 0.724822i \(0.741922\pi\)
\(44\) −1.03495e6 −1.83162
\(45\) 91125.0 0.149071
\(46\) 267792. 0.405645
\(47\) −847994. −1.19138 −0.595690 0.803215i \(-0.703121\pi\)
−0.595690 + 0.803215i \(0.703121\pi\)
\(48\) −239404. −0.312455
\(49\) 117649. 0.142857
\(50\) −270527. −0.306066
\(51\) −255252. −0.269447
\(52\) −107983. −0.106498
\(53\) −2.07211e6 −1.91182 −0.955911 0.293655i \(-0.905128\pi\)
−0.955911 + 0.293655i \(0.905128\pi\)
\(54\) −340786. −0.294512
\(55\) −753175. −0.610417
\(56\) −259900. −0.197764
\(57\) −87454.9 −0.0625492
\(58\) −769750. −0.518026
\(59\) −686310. −0.435049 −0.217525 0.976055i \(-0.569798\pi\)
−0.217525 + 0.976055i \(0.569798\pi\)
\(60\) 579705. 0.346480
\(61\) 1.88974e6 1.06598 0.532989 0.846122i \(-0.321069\pi\)
0.532989 + 0.846122i \(0.321069\pi\)
\(62\) −2.82753e6 −1.50673
\(63\) 250047. 0.125988
\(64\) −3.20224e6 −1.52695
\(65\) −78583.5 −0.0354923
\(66\) 2.81670e6 1.20597
\(67\) −243851. −0.0990520 −0.0495260 0.998773i \(-0.515771\pi\)
−0.0495260 + 0.998773i \(0.515771\pi\)
\(68\) −1.62382e6 −0.626265
\(69\) −417611. −0.153038
\(70\) −742325. −0.258673
\(71\) −1.12944e6 −0.374506 −0.187253 0.982312i \(-0.559958\pi\)
−0.187253 + 0.982312i \(0.559958\pi\)
\(72\) −552382. −0.174412
\(73\) 2.61957e6 0.788133 0.394066 0.919082i \(-0.371068\pi\)
0.394066 + 0.919082i \(0.371068\pi\)
\(74\) −3.72026e6 −1.06724
\(75\) 421875. 0.115470
\(76\) −556357. −0.145380
\(77\) −2.06671e6 −0.515896
\(78\) 293883. 0.0701203
\(79\) −132486. −0.0302326 −0.0151163 0.999886i \(-0.504812\pi\)
−0.0151163 + 0.999886i \(0.504812\pi\)
\(80\) −1.10835e6 −0.242026
\(81\) 531441. 0.111111
\(82\) 9.51879e6 1.90649
\(83\) −7.53836e6 −1.44712 −0.723558 0.690263i \(-0.757495\pi\)
−0.723558 + 0.690263i \(0.757495\pi\)
\(84\) 1.59071e6 0.292829
\(85\) −1.18172e6 −0.208713
\(86\) 1.24377e7 2.10860
\(87\) 1.20039e6 0.195437
\(88\) 4.56560e6 0.714182
\(89\) −2.53142e6 −0.380626 −0.190313 0.981723i \(-0.560950\pi\)
−0.190313 + 0.981723i \(0.560950\pi\)
\(90\) −1.57771e6 −0.228128
\(91\) −215633. −0.0299965
\(92\) −2.65669e6 −0.355700
\(93\) 4.40942e6 0.568448
\(94\) 1.46819e7 1.82320
\(95\) −404884. −0.0484504
\(96\) 6.76367e6 0.780249
\(97\) −1.75138e7 −1.94840 −0.974202 0.225678i \(-0.927540\pi\)
−0.974202 + 0.225678i \(0.927540\pi\)
\(98\) −2.03694e6 −0.218619
\(99\) −4.39252e6 −0.454978
\(100\) 2.68382e6 0.268382
\(101\) 7.98039e6 0.770725 0.385362 0.922765i \(-0.374076\pi\)
0.385362 + 0.922765i \(0.374076\pi\)
\(102\) 4.41936e6 0.412343
\(103\) 5.45521e6 0.491905 0.245952 0.969282i \(-0.420899\pi\)
0.245952 + 0.969282i \(0.420899\pi\)
\(104\) 476358. 0.0415257
\(105\) 1.15762e6 0.0975900
\(106\) 3.58759e7 2.92572
\(107\) −5.88346e6 −0.464290 −0.232145 0.972681i \(-0.574574\pi\)
−0.232145 + 0.972681i \(0.574574\pi\)
\(108\) 3.38084e6 0.258251
\(109\) −7.47026e6 −0.552514 −0.276257 0.961084i \(-0.589094\pi\)
−0.276257 + 0.961084i \(0.589094\pi\)
\(110\) 1.30403e7 0.934139
\(111\) 5.80159e6 0.402640
\(112\) −3.04132e6 −0.204550
\(113\) 8.22846e6 0.536468 0.268234 0.963354i \(-0.413560\pi\)
0.268234 + 0.963354i \(0.413560\pi\)
\(114\) 1.51417e6 0.0957210
\(115\) −1.93338e6 −0.118543
\(116\) 7.63648e6 0.454245
\(117\) −458299. −0.0264544
\(118\) 1.18826e7 0.665769
\(119\) −3.24265e6 −0.176395
\(120\) −2.55732e6 −0.135099
\(121\) 1.68183e7 0.863044
\(122\) −3.27185e7 −1.63130
\(123\) −1.48442e7 −0.719263
\(124\) 2.80512e7 1.32122
\(125\) 1.95312e6 0.0894427
\(126\) −4.32924e6 −0.192803
\(127\) −1.66768e7 −0.722436 −0.361218 0.932481i \(-0.617639\pi\)
−0.361218 + 0.932481i \(0.617639\pi\)
\(128\) 2.33779e7 0.985303
\(129\) −1.93960e7 −0.795515
\(130\) 1.36057e6 0.0543150
\(131\) −3.05686e7 −1.18803 −0.594013 0.804455i \(-0.702457\pi\)
−0.594013 + 0.804455i \(0.702457\pi\)
\(132\) −2.79437e7 −1.05749
\(133\) −1.11100e6 −0.0409481
\(134\) 4.22197e6 0.151582
\(135\) 2.46038e6 0.0860663
\(136\) 7.16338e6 0.244192
\(137\) −4.42073e7 −1.46883 −0.734416 0.678700i \(-0.762544\pi\)
−0.734416 + 0.678700i \(0.762544\pi\)
\(138\) 7.23040e6 0.234199
\(139\) −3.27555e7 −1.03451 −0.517253 0.855833i \(-0.673045\pi\)
−0.517253 + 0.855833i \(0.673045\pi\)
\(140\) 7.36440e6 0.226824
\(141\) −2.28958e7 −0.687843
\(142\) 1.95548e7 0.573118
\(143\) 3.78798e6 0.108326
\(144\) −6.46391e6 −0.180396
\(145\) 5.55738e6 0.151385
\(146\) −4.53544e7 −1.20610
\(147\) 3.17652e6 0.0824786
\(148\) 3.69077e7 0.935839
\(149\) 4.93438e7 1.22203 0.611014 0.791620i \(-0.290762\pi\)
0.611014 + 0.791620i \(0.290762\pi\)
\(150\) −7.30422e6 −0.176707
\(151\) 4.30468e7 1.01747 0.508735 0.860923i \(-0.330113\pi\)
0.508735 + 0.860923i \(0.330113\pi\)
\(152\) 2.45433e6 0.0566865
\(153\) −6.89181e6 −0.155566
\(154\) 3.57825e7 0.789492
\(155\) 2.04140e7 0.440318
\(156\) −2.91554e6 −0.0614869
\(157\) −2.00654e7 −0.413808 −0.206904 0.978361i \(-0.566339\pi\)
−0.206904 + 0.978361i \(0.566339\pi\)
\(158\) 2.29383e6 0.0462659
\(159\) −5.59470e7 −1.10379
\(160\) 3.13133e7 0.604378
\(161\) −5.30521e6 −0.100187
\(162\) −9.20121e6 −0.170037
\(163\) 344989. 0.00623949 0.00311974 0.999995i \(-0.499007\pi\)
0.00311974 + 0.999995i \(0.499007\pi\)
\(164\) −9.44333e7 −1.67175
\(165\) −2.03357e7 −0.352424
\(166\) 1.30517e8 2.21457
\(167\) −3.11874e7 −0.518169 −0.259085 0.965855i \(-0.583421\pi\)
−0.259085 + 0.965855i \(0.583421\pi\)
\(168\) −7.01730e6 −0.114179
\(169\) −6.23533e7 −0.993701
\(170\) 2.04600e7 0.319400
\(171\) −2.36128e6 −0.0361128
\(172\) −1.23391e8 −1.84898
\(173\) −3.52528e7 −0.517646 −0.258823 0.965925i \(-0.583335\pi\)
−0.258823 + 0.965925i \(0.583335\pi\)
\(174\) −2.07833e7 −0.299083
\(175\) 5.35938e6 0.0755929
\(176\) 5.34261e7 0.738685
\(177\) −1.85304e7 −0.251176
\(178\) 4.38282e7 0.582483
\(179\) 1.02247e8 1.33249 0.666246 0.745732i \(-0.267900\pi\)
0.666246 + 0.745732i \(0.267900\pi\)
\(180\) 1.56520e7 0.200040
\(181\) −5.21416e7 −0.653596 −0.326798 0.945094i \(-0.605970\pi\)
−0.326798 + 0.945094i \(0.605970\pi\)
\(182\) 3.73341e6 0.0459045
\(183\) 5.10231e7 0.615443
\(184\) 1.17198e7 0.138694
\(185\) 2.68592e7 0.311884
\(186\) −7.63434e7 −0.869913
\(187\) 5.69629e7 0.637010
\(188\) −1.45655e8 −1.59872
\(189\) 6.75127e6 0.0727393
\(190\) 7.01004e6 0.0741452
\(191\) 1.44401e8 1.49953 0.749764 0.661705i \(-0.230167\pi\)
0.749764 + 0.661705i \(0.230167\pi\)
\(192\) −8.64605e7 −0.881584
\(193\) −3.75823e7 −0.376299 −0.188149 0.982140i \(-0.560249\pi\)
−0.188149 + 0.982140i \(0.560249\pi\)
\(194\) 3.03229e8 2.98170
\(195\) −2.12175e6 −0.0204915
\(196\) 2.02079e7 0.191701
\(197\) 1.16331e8 1.08408 0.542042 0.840351i \(-0.317651\pi\)
0.542042 + 0.840351i \(0.317651\pi\)
\(198\) 7.60508e7 0.696266
\(199\) −1.04716e8 −0.941952 −0.470976 0.882146i \(-0.656098\pi\)
−0.470976 + 0.882146i \(0.656098\pi\)
\(200\) −1.18395e7 −0.104647
\(201\) −6.58398e6 −0.0571877
\(202\) −1.38170e8 −1.17946
\(203\) 1.52494e7 0.127943
\(204\) −4.38433e7 −0.361574
\(205\) −6.87230e7 −0.557139
\(206\) −9.44498e7 −0.752776
\(207\) −1.12755e7 −0.0883567
\(208\) 5.57428e6 0.0429504
\(209\) 1.95167e7 0.147875
\(210\) −2.00428e7 −0.149345
\(211\) 2.01137e8 1.47402 0.737010 0.675882i \(-0.236237\pi\)
0.737010 + 0.675882i \(0.236237\pi\)
\(212\) −3.55915e8 −2.56549
\(213\) −3.04949e7 −0.216221
\(214\) 1.01864e8 0.710517
\(215\) −8.97964e7 −0.616204
\(216\) −1.49143e7 −0.100697
\(217\) 5.60159e7 0.372137
\(218\) 1.29338e8 0.845528
\(219\) 7.07283e7 0.455029
\(220\) −1.29369e8 −0.819125
\(221\) 5.94329e6 0.0370386
\(222\) −1.00447e8 −0.616172
\(223\) −2.75457e8 −1.66336 −0.831681 0.555254i \(-0.812621\pi\)
−0.831681 + 0.555254i \(0.812621\pi\)
\(224\) 8.59237e7 0.510793
\(225\) 1.13906e7 0.0666667
\(226\) −1.42465e8 −0.820974
\(227\) −2.52670e8 −1.43371 −0.716857 0.697220i \(-0.754420\pi\)
−0.716857 + 0.697220i \(0.754420\pi\)
\(228\) −1.50216e7 −0.0839355
\(229\) 6.00808e7 0.330607 0.165303 0.986243i \(-0.447140\pi\)
0.165303 + 0.986243i \(0.447140\pi\)
\(230\) 3.34741e7 0.181410
\(231\) −5.58012e7 −0.297853
\(232\) −3.36877e7 −0.177119
\(233\) −2.25412e8 −1.16743 −0.583716 0.811958i \(-0.698402\pi\)
−0.583716 + 0.811958i \(0.698402\pi\)
\(234\) 7.93485e6 0.0404840
\(235\) −1.05999e8 −0.532801
\(236\) −1.17884e8 −0.583797
\(237\) −3.57713e6 −0.0174548
\(238\) 5.61423e7 0.269942
\(239\) 2.80211e8 1.32768 0.663839 0.747875i \(-0.268926\pi\)
0.663839 + 0.747875i \(0.268926\pi\)
\(240\) −2.99255e7 −0.139734
\(241\) 2.24227e6 0.0103188 0.00515939 0.999987i \(-0.498358\pi\)
0.00515939 + 0.999987i \(0.498358\pi\)
\(242\) −2.91187e8 −1.32074
\(243\) 1.43489e7 0.0641500
\(244\) 3.24591e8 1.43045
\(245\) 1.47061e7 0.0638877
\(246\) 2.57007e8 1.10071
\(247\) 2.03630e6 0.00859809
\(248\) −1.23746e8 −0.515168
\(249\) −2.03536e8 −0.835493
\(250\) −3.38158e7 −0.136877
\(251\) −3.57258e8 −1.42601 −0.713007 0.701157i \(-0.752667\pi\)
−0.713007 + 0.701157i \(0.752667\pi\)
\(252\) 4.29492e7 0.169065
\(253\) 9.31953e7 0.361803
\(254\) 2.88737e8 1.10557
\(255\) −3.19065e7 −0.120501
\(256\) 5.12936e6 0.0191083
\(257\) 4.15303e8 1.52616 0.763079 0.646306i \(-0.223687\pi\)
0.763079 + 0.646306i \(0.223687\pi\)
\(258\) 3.35817e8 1.21740
\(259\) 7.37017e7 0.263590
\(260\) −1.34979e7 −0.0476275
\(261\) 3.24106e7 0.112835
\(262\) 5.29256e8 1.81807
\(263\) −2.52721e8 −0.856635 −0.428317 0.903628i \(-0.640893\pi\)
−0.428317 + 0.903628i \(0.640893\pi\)
\(264\) 1.23271e8 0.412333
\(265\) −2.59014e8 −0.854993
\(266\) 1.92355e7 0.0626641
\(267\) −6.83482e7 −0.219754
\(268\) −4.18850e7 −0.132919
\(269\) −1.43349e8 −0.449015 −0.224507 0.974472i \(-0.572077\pi\)
−0.224507 + 0.974472i \(0.572077\pi\)
\(270\) −4.25982e7 −0.131710
\(271\) 2.71250e8 0.827900 0.413950 0.910300i \(-0.364149\pi\)
0.413950 + 0.910300i \(0.364149\pi\)
\(272\) 8.38249e7 0.252570
\(273\) −5.82209e6 −0.0173185
\(274\) 7.65393e8 2.24780
\(275\) −9.41469e7 −0.272987
\(276\) −7.17307e7 −0.205364
\(277\) 3.51479e8 0.993619 0.496810 0.867860i \(-0.334505\pi\)
0.496810 + 0.867860i \(0.334505\pi\)
\(278\) 5.67120e8 1.58314
\(279\) 1.19054e8 0.328194
\(280\) −3.24875e7 −0.0884429
\(281\) −1.15053e8 −0.309334 −0.154667 0.987967i \(-0.549430\pi\)
−0.154667 + 0.987967i \(0.549430\pi\)
\(282\) 3.96412e8 1.05263
\(283\) 6.58900e8 1.72809 0.864046 0.503413i \(-0.167923\pi\)
0.864046 + 0.503413i \(0.167923\pi\)
\(284\) −1.93998e8 −0.502553
\(285\) −1.09319e7 −0.0279729
\(286\) −6.55839e7 −0.165774
\(287\) −1.88576e8 −0.470868
\(288\) 1.82619e8 0.450477
\(289\) −3.20965e8 −0.782194
\(290\) −9.62188e7 −0.231668
\(291\) −4.72872e8 −1.12491
\(292\) 4.49949e8 1.05760
\(293\) 5.98337e8 1.38966 0.694831 0.719174i \(-0.255479\pi\)
0.694831 + 0.719174i \(0.255479\pi\)
\(294\) −5.49974e7 −0.126219
\(295\) −8.57887e7 −0.194560
\(296\) −1.62815e8 −0.364901
\(297\) −1.18598e8 −0.262682
\(298\) −8.54325e8 −1.87011
\(299\) 9.72365e6 0.0210368
\(300\) 7.24631e7 0.154950
\(301\) −2.46401e8 −0.520787
\(302\) −7.45301e8 −1.55707
\(303\) 2.15470e8 0.444978
\(304\) 2.87202e7 0.0586314
\(305\) 2.36218e8 0.476720
\(306\) 1.19323e8 0.238067
\(307\) −3.68389e7 −0.0726645 −0.0363322 0.999340i \(-0.511567\pi\)
−0.0363322 + 0.999340i \(0.511567\pi\)
\(308\) −3.54988e8 −0.692287
\(309\) 1.47291e8 0.284001
\(310\) −3.53441e8 −0.673832
\(311\) 2.16416e8 0.407969 0.203985 0.978974i \(-0.434611\pi\)
0.203985 + 0.978974i \(0.434611\pi\)
\(312\) 1.28617e7 0.0239749
\(313\) 1.82287e8 0.336008 0.168004 0.985786i \(-0.446268\pi\)
0.168004 + 0.985786i \(0.446268\pi\)
\(314\) 3.47406e8 0.633262
\(315\) 3.12559e7 0.0563436
\(316\) −2.27564e7 −0.0405695
\(317\) 8.62583e8 1.52087 0.760437 0.649411i \(-0.224985\pi\)
0.760437 + 0.649411i \(0.224985\pi\)
\(318\) 9.68650e8 1.68917
\(319\) −2.67883e8 −0.462039
\(320\) −4.00280e8 −0.682872
\(321\) −1.58853e8 −0.268058
\(322\) 9.18528e7 0.153319
\(323\) 3.06215e7 0.0505612
\(324\) 9.12827e7 0.149101
\(325\) −9.82293e6 −0.0158727
\(326\) −5.97304e6 −0.00954847
\(327\) −2.01697e8 −0.318994
\(328\) 4.16585e8 0.651847
\(329\) −2.90862e8 −0.450299
\(330\) 3.52087e8 0.539326
\(331\) −2.10328e8 −0.318785 −0.159393 0.987215i \(-0.550954\pi\)
−0.159393 + 0.987215i \(0.550954\pi\)
\(332\) −1.29482e9 −1.94190
\(333\) 1.56643e8 0.232464
\(334\) 5.39970e8 0.792970
\(335\) −3.04814e7 −0.0442974
\(336\) −8.21155e7 −0.118097
\(337\) −1.21931e9 −1.73544 −0.867719 0.497055i \(-0.834415\pi\)
−0.867719 + 0.497055i \(0.834415\pi\)
\(338\) 1.07957e9 1.52069
\(339\) 2.22168e8 0.309730
\(340\) −2.02978e8 −0.280074
\(341\) −9.84019e8 −1.34389
\(342\) 4.08825e7 0.0552645
\(343\) 4.03536e7 0.0539949
\(344\) 5.44328e8 0.720952
\(345\) −5.22014e7 −0.0684408
\(346\) 6.10357e8 0.792169
\(347\) 4.29491e8 0.551824 0.275912 0.961183i \(-0.411020\pi\)
0.275912 + 0.961183i \(0.411020\pi\)
\(348\) 2.06185e8 0.262259
\(349\) 4.92205e8 0.619807 0.309904 0.950768i \(-0.399703\pi\)
0.309904 + 0.950768i \(0.399703\pi\)
\(350\) −9.27907e7 −0.115682
\(351\) −1.23741e7 −0.0152735
\(352\) −1.50940e9 −1.84461
\(353\) 8.39592e8 1.01591 0.507957 0.861382i \(-0.330401\pi\)
0.507957 + 0.861382i \(0.330401\pi\)
\(354\) 3.20829e8 0.384382
\(355\) −1.41180e8 −0.167484
\(356\) −4.34807e8 −0.510766
\(357\) −8.75515e7 −0.101842
\(358\) −1.77027e9 −2.03915
\(359\) −1.59128e8 −0.181517 −0.0907584 0.995873i \(-0.528929\pi\)
−0.0907584 + 0.995873i \(0.528929\pi\)
\(360\) −6.90478e7 −0.0779993
\(361\) −8.83380e8 −0.988263
\(362\) 9.02764e8 1.00022
\(363\) 4.54094e8 0.498279
\(364\) −3.70381e7 −0.0402526
\(365\) 3.27446e8 0.352464
\(366\) −8.83399e8 −0.941831
\(367\) 3.09960e8 0.327322 0.163661 0.986517i \(-0.447670\pi\)
0.163661 + 0.986517i \(0.447670\pi\)
\(368\) 1.37144e8 0.143453
\(369\) −4.00792e8 −0.415267
\(370\) −4.65033e8 −0.477285
\(371\) −7.10734e8 −0.722601
\(372\) 7.57381e8 0.762806
\(373\) −1.80234e9 −1.79827 −0.899137 0.437667i \(-0.855805\pi\)
−0.899137 + 0.437667i \(0.855805\pi\)
\(374\) −9.86238e8 −0.974835
\(375\) 5.27344e7 0.0516398
\(376\) 6.42547e8 0.623372
\(377\) −2.79500e7 −0.0268650
\(378\) −1.16890e8 −0.111315
\(379\) −3.82836e8 −0.361223 −0.180611 0.983555i \(-0.557808\pi\)
−0.180611 + 0.983555i \(0.557808\pi\)
\(380\) −6.95447e7 −0.0650161
\(381\) −4.50273e8 −0.417098
\(382\) −2.50013e9 −2.29477
\(383\) 1.86168e9 1.69320 0.846600 0.532230i \(-0.178646\pi\)
0.846600 + 0.532230i \(0.178646\pi\)
\(384\) 6.31202e8 0.568865
\(385\) −2.58339e8 −0.230716
\(386\) 6.50689e8 0.575862
\(387\) −5.23692e8 −0.459291
\(388\) −3.00825e9 −2.61458
\(389\) 3.85900e8 0.332393 0.166196 0.986093i \(-0.446851\pi\)
0.166196 + 0.986093i \(0.446851\pi\)
\(390\) 3.67354e7 0.0313588
\(391\) 1.46222e8 0.123707
\(392\) −8.91457e7 −0.0747479
\(393\) −8.25353e8 −0.685908
\(394\) −2.01412e9 −1.65901
\(395\) −1.65608e7 −0.0135205
\(396\) −7.54479e8 −0.610539
\(397\) 3.79655e8 0.304525 0.152262 0.988340i \(-0.451344\pi\)
0.152262 + 0.988340i \(0.451344\pi\)
\(398\) 1.81303e9 1.44150
\(399\) −2.99970e7 −0.0236414
\(400\) −1.38544e8 −0.108237
\(401\) 1.80210e7 0.0139564 0.00697821 0.999976i \(-0.497779\pi\)
0.00697821 + 0.999976i \(0.497779\pi\)
\(402\) 1.13993e8 0.0875160
\(403\) −1.02669e8 −0.0781396
\(404\) 1.37075e9 1.03424
\(405\) 6.64301e7 0.0496904
\(406\) −2.64024e8 −0.195796
\(407\) −1.29470e9 −0.951895
\(408\) 1.93411e8 0.140984
\(409\) −1.39088e9 −1.00521 −0.502605 0.864516i \(-0.667625\pi\)
−0.502605 + 0.864516i \(0.667625\pi\)
\(410\) 1.18985e9 0.852606
\(411\) −1.19360e9 −0.848031
\(412\) 9.37011e8 0.660092
\(413\) −2.35404e8 −0.164433
\(414\) 1.95221e8 0.135215
\(415\) −9.42295e8 −0.647170
\(416\) −1.57485e8 −0.107254
\(417\) −8.84399e8 −0.597272
\(418\) −3.37906e8 −0.226297
\(419\) −3.32765e8 −0.220998 −0.110499 0.993876i \(-0.535245\pi\)
−0.110499 + 0.993876i \(0.535245\pi\)
\(420\) 1.98839e8 0.130957
\(421\) 2.85745e9 1.86634 0.933172 0.359429i \(-0.117029\pi\)
0.933172 + 0.359429i \(0.117029\pi\)
\(422\) −3.48243e9 −2.25574
\(423\) −6.18187e8 −0.397127
\(424\) 1.57009e9 1.00033
\(425\) −1.47715e8 −0.0933393
\(426\) 5.27979e8 0.330890
\(427\) 6.48182e8 0.402902
\(428\) −1.01057e9 −0.623036
\(429\) 1.02275e8 0.0625418
\(430\) 1.55471e9 0.942995
\(431\) 1.95001e9 1.17318 0.586592 0.809883i \(-0.300469\pi\)
0.586592 + 0.809883i \(0.300469\pi\)
\(432\) −1.74525e8 −0.104152
\(433\) 1.51441e9 0.896472 0.448236 0.893915i \(-0.352052\pi\)
0.448236 + 0.893915i \(0.352052\pi\)
\(434\) −9.69843e8 −0.569492
\(435\) 1.50049e8 0.0874020
\(436\) −1.28313e9 −0.741424
\(437\) 5.00989e7 0.0287173
\(438\) −1.22457e9 −0.696344
\(439\) 1.21673e9 0.686383 0.343192 0.939265i \(-0.388492\pi\)
0.343192 + 0.939265i \(0.388492\pi\)
\(440\) 5.70700e8 0.319392
\(441\) 8.57661e7 0.0476190
\(442\) −1.02900e8 −0.0566812
\(443\) 2.35309e9 1.28596 0.642978 0.765884i \(-0.277699\pi\)
0.642978 + 0.765884i \(0.277699\pi\)
\(444\) 9.96508e8 0.540307
\(445\) −3.16427e8 −0.170221
\(446\) 4.76918e9 2.54549
\(447\) 1.33228e9 0.705538
\(448\) −1.09837e9 −0.577132
\(449\) −2.19434e9 −1.14404 −0.572022 0.820238i \(-0.693841\pi\)
−0.572022 + 0.820238i \(0.693841\pi\)
\(450\) −1.97214e8 −0.102022
\(451\) 3.31267e9 1.70043
\(452\) 1.41336e9 0.719892
\(453\) 1.16226e9 0.587437
\(454\) 4.37465e9 2.19406
\(455\) −2.69541e7 −0.0134148
\(456\) 6.62668e7 0.0327280
\(457\) 3.57722e9 1.75323 0.876614 0.481194i \(-0.159797\pi\)
0.876614 + 0.481194i \(0.159797\pi\)
\(458\) −1.04022e9 −0.505938
\(459\) −1.86079e8 −0.0898158
\(460\) −3.32087e8 −0.159074
\(461\) 1.75219e9 0.832967 0.416484 0.909143i \(-0.363262\pi\)
0.416484 + 0.909143i \(0.363262\pi\)
\(462\) 9.66126e8 0.455813
\(463\) −1.79793e9 −0.841861 −0.420931 0.907093i \(-0.638296\pi\)
−0.420931 + 0.907093i \(0.638296\pi\)
\(464\) −3.94210e8 −0.183195
\(465\) 5.51177e8 0.254218
\(466\) 3.90272e9 1.78656
\(467\) 7.91121e8 0.359446 0.179723 0.983717i \(-0.442480\pi\)
0.179723 + 0.983717i \(0.442480\pi\)
\(468\) −7.87195e7 −0.0354995
\(469\) −8.36410e7 −0.0374381
\(470\) 1.83524e9 0.815362
\(471\) −5.41765e8 −0.238912
\(472\) 5.20035e8 0.227633
\(473\) 4.32847e9 1.88071
\(474\) 6.19334e7 0.0267116
\(475\) −5.06105e7 −0.0216677
\(476\) −5.56972e8 −0.236706
\(477\) −1.51057e9 −0.637274
\(478\) −4.85150e9 −2.03179
\(479\) −2.30735e9 −0.959266 −0.479633 0.877469i \(-0.659230\pi\)
−0.479633 + 0.877469i \(0.659230\pi\)
\(480\) 8.45459e8 0.348938
\(481\) −1.35084e8 −0.0553474
\(482\) −3.88220e7 −0.0157911
\(483\) −1.43241e8 −0.0578430
\(484\) 2.88878e9 1.15813
\(485\) −2.18922e9 −0.871353
\(486\) −2.48433e8 −0.0981707
\(487\) −1.33253e9 −0.522789 −0.261394 0.965232i \(-0.584182\pi\)
−0.261394 + 0.965232i \(0.584182\pi\)
\(488\) −1.43191e9 −0.557758
\(489\) 9.31471e6 0.00360237
\(490\) −2.54618e8 −0.0977692
\(491\) 4.43731e9 1.69174 0.845871 0.533387i \(-0.179081\pi\)
0.845871 + 0.533387i \(0.179081\pi\)
\(492\) −2.54970e9 −0.965186
\(493\) −4.20306e8 −0.157980
\(494\) −3.52559e7 −0.0131579
\(495\) −5.49065e8 −0.203472
\(496\) −1.44805e9 −0.532843
\(497\) −3.87398e8 −0.141550
\(498\) 3.52396e9 1.27858
\(499\) 2.41786e9 0.871123 0.435561 0.900159i \(-0.356550\pi\)
0.435561 + 0.900159i \(0.356550\pi\)
\(500\) 3.35478e8 0.120024
\(501\) −8.42060e8 −0.299165
\(502\) 6.18546e9 2.18227
\(503\) −3.01913e9 −1.05778 −0.528888 0.848691i \(-0.677391\pi\)
−0.528888 + 0.848691i \(0.677391\pi\)
\(504\) −1.89467e8 −0.0659215
\(505\) 9.97548e8 0.344678
\(506\) −1.61356e9 −0.553678
\(507\) −1.68354e9 −0.573714
\(508\) −2.86448e9 −0.969444
\(509\) −3.16242e9 −1.06294 −0.531468 0.847078i \(-0.678360\pi\)
−0.531468 + 0.847078i \(0.678360\pi\)
\(510\) 5.52420e8 0.184406
\(511\) 8.98511e8 0.297886
\(512\) −3.08117e9 −1.01455
\(513\) −6.37546e7 −0.0208497
\(514\) −7.19044e9 −2.33552
\(515\) 6.81901e8 0.219986
\(516\) −3.33155e9 −1.06751
\(517\) 5.10950e9 1.62615
\(518\) −1.27605e9 −0.403379
\(519\) −9.51826e8 −0.298863
\(520\) 5.95447e7 0.0185708
\(521\) 3.23968e9 1.00362 0.501811 0.864977i \(-0.332667\pi\)
0.501811 + 0.864977i \(0.332667\pi\)
\(522\) −5.61148e8 −0.172675
\(523\) −4.98015e9 −1.52225 −0.761127 0.648603i \(-0.775353\pi\)
−0.761127 + 0.648603i \(0.775353\pi\)
\(524\) −5.25060e9 −1.59423
\(525\) 1.44703e8 0.0436436
\(526\) 4.37553e9 1.31093
\(527\) −1.54391e9 −0.459501
\(528\) 1.44250e9 0.426480
\(529\) −3.16560e9 −0.929738
\(530\) 4.48449e9 1.30842
\(531\) −5.00320e8 −0.145016
\(532\) −1.90831e8 −0.0549487
\(533\) 3.45631e8 0.0988708
\(534\) 1.18336e9 0.336297
\(535\) −7.35432e8 −0.207637
\(536\) 1.84772e8 0.0518275
\(537\) 2.76067e9 0.769315
\(538\) 2.48190e9 0.687141
\(539\) −7.08882e8 −0.194991
\(540\) 4.22605e8 0.115493
\(541\) 4.92830e9 1.33816 0.669078 0.743192i \(-0.266689\pi\)
0.669078 + 0.743192i \(0.266689\pi\)
\(542\) −4.69635e9 −1.26696
\(543\) −1.40782e9 −0.377354
\(544\) −2.36823e9 −0.630708
\(545\) −9.33782e8 −0.247092
\(546\) 1.00802e8 0.0265030
\(547\) −1.70408e9 −0.445178 −0.222589 0.974912i \(-0.571451\pi\)
−0.222589 + 0.974912i \(0.571451\pi\)
\(548\) −7.59325e9 −1.97104
\(549\) 1.37762e9 0.355326
\(550\) 1.63003e9 0.417760
\(551\) −1.44006e8 −0.0366733
\(552\) 3.16435e8 0.0800751
\(553\) −4.54428e7 −0.0114269
\(554\) −6.08540e9 −1.52057
\(555\) 7.25199e8 0.180066
\(556\) −5.62624e9 −1.38821
\(557\) 4.37024e9 1.07155 0.535774 0.844361i \(-0.320020\pi\)
0.535774 + 0.844361i \(0.320020\pi\)
\(558\) −2.06127e9 −0.502245
\(559\) 4.51617e8 0.109352
\(560\) −3.80165e8 −0.0914773
\(561\) 1.53800e9 0.367778
\(562\) 1.99200e9 0.473383
\(563\) −2.41766e9 −0.570974 −0.285487 0.958383i \(-0.592155\pi\)
−0.285487 + 0.958383i \(0.592155\pi\)
\(564\) −3.93269e9 −0.923024
\(565\) 1.02856e9 0.239916
\(566\) −1.14080e10 −2.64455
\(567\) 1.82284e8 0.0419961
\(568\) 8.55805e8 0.195955
\(569\) 4.41532e9 1.00478 0.502388 0.864642i \(-0.332455\pi\)
0.502388 + 0.864642i \(0.332455\pi\)
\(570\) 1.89271e8 0.0428077
\(571\) −5.60339e9 −1.25958 −0.629788 0.776767i \(-0.716858\pi\)
−0.629788 + 0.776767i \(0.716858\pi\)
\(572\) 6.50640e8 0.145363
\(573\) 3.89884e9 0.865753
\(574\) 3.26495e9 0.720584
\(575\) −2.41673e8 −0.0530140
\(576\) −2.33443e9 −0.508983
\(577\) 6.17027e9 1.33718 0.668589 0.743632i \(-0.266899\pi\)
0.668589 + 0.743632i \(0.266899\pi\)
\(578\) 5.55709e9 1.19702
\(579\) −1.01472e9 −0.217256
\(580\) 9.54560e8 0.203145
\(581\) −2.58566e9 −0.546959
\(582\) 8.18717e9 1.72149
\(583\) 1.24853e10 2.60951
\(584\) −1.98491e9 −0.412379
\(585\) −5.72874e7 −0.0118308
\(586\) −1.03594e10 −2.12664
\(587\) −8.17721e9 −1.66868 −0.834338 0.551254i \(-0.814150\pi\)
−0.834338 + 0.551254i \(0.814150\pi\)
\(588\) 5.45614e8 0.110679
\(589\) −5.28978e8 −0.106668
\(590\) 1.48532e9 0.297741
\(591\) 3.14093e9 0.625896
\(592\) −1.90525e9 −0.377420
\(593\) 4.01515e9 0.790698 0.395349 0.918531i \(-0.370624\pi\)
0.395349 + 0.918531i \(0.370624\pi\)
\(594\) 2.05337e9 0.401990
\(595\) −4.05331e8 −0.0788861
\(596\) 8.47552e9 1.63985
\(597\) −2.82734e9 −0.543836
\(598\) −1.68352e8 −0.0321933
\(599\) −5.38280e9 −1.02333 −0.511664 0.859186i \(-0.670971\pi\)
−0.511664 + 0.859186i \(0.670971\pi\)
\(600\) −3.19666e8 −0.0604180
\(601\) 8.50523e9 1.59818 0.799089 0.601212i \(-0.205315\pi\)
0.799089 + 0.601212i \(0.205315\pi\)
\(602\) 4.26612e9 0.796976
\(603\) −1.77768e8 −0.0330173
\(604\) 7.39392e9 1.36535
\(605\) 2.10229e9 0.385965
\(606\) −3.73059e9 −0.680963
\(607\) 1.01613e10 1.84412 0.922062 0.387041i \(-0.126503\pi\)
0.922062 + 0.387041i \(0.126503\pi\)
\(608\) −8.11407e8 −0.146412
\(609\) 4.11735e8 0.0738681
\(610\) −4.08981e9 −0.729539
\(611\) 5.33106e8 0.0945518
\(612\) −1.18377e9 −0.208755
\(613\) −5.37485e8 −0.0942441 −0.0471221 0.998889i \(-0.515005\pi\)
−0.0471221 + 0.998889i \(0.515005\pi\)
\(614\) 6.37818e8 0.111201
\(615\) −1.85552e9 −0.321664
\(616\) 1.56600e9 0.269935
\(617\) −7.57829e9 −1.29889 −0.649446 0.760407i \(-0.724999\pi\)
−0.649446 + 0.760407i \(0.724999\pi\)
\(618\) −2.55015e9 −0.434616
\(619\) −7.53812e8 −0.127746 −0.0638728 0.997958i \(-0.520345\pi\)
−0.0638728 + 0.997958i \(0.520345\pi\)
\(620\) 3.50640e9 0.590867
\(621\) −3.04438e8 −0.0510128
\(622\) −3.74696e9 −0.624328
\(623\) −8.68275e8 −0.143863
\(624\) 1.50506e8 0.0247974
\(625\) 2.44141e8 0.0400000
\(626\) −3.15606e9 −0.514204
\(627\) 5.26951e8 0.0853756
\(628\) −3.44652e9 −0.555293
\(629\) −2.03137e9 −0.325471
\(630\) −5.41155e8 −0.0862243
\(631\) 6.58609e8 0.104358 0.0521789 0.998638i \(-0.483383\pi\)
0.0521789 + 0.998638i \(0.483383\pi\)
\(632\) 1.00388e8 0.0158188
\(633\) 5.43070e9 0.851026
\(634\) −1.49345e10 −2.32744
\(635\) −2.08460e9 −0.323083
\(636\) −9.60971e9 −1.48119
\(637\) −7.39621e7 −0.0113376
\(638\) 4.63805e9 0.707072
\(639\) −8.23361e8 −0.124835
\(640\) 2.92223e9 0.440641
\(641\) −7.38378e9 −1.10733 −0.553663 0.832741i \(-0.686771\pi\)
−0.553663 + 0.832741i \(0.686771\pi\)
\(642\) 2.75034e9 0.410217
\(643\) 1.70284e9 0.252601 0.126301 0.991992i \(-0.459690\pi\)
0.126301 + 0.991992i \(0.459690\pi\)
\(644\) −9.11246e8 −0.134442
\(645\) −2.42450e9 −0.355765
\(646\) −5.30171e8 −0.0773753
\(647\) 4.71645e9 0.684622 0.342311 0.939587i \(-0.388790\pi\)
0.342311 + 0.939587i \(0.388790\pi\)
\(648\) −4.02687e8 −0.0581373
\(649\) 4.13529e9 0.593813
\(650\) 1.70071e8 0.0242904
\(651\) 1.51243e9 0.214853
\(652\) 5.92569e7 0.00837283
\(653\) −1.23963e9 −0.174220 −0.0871099 0.996199i \(-0.527763\pi\)
−0.0871099 + 0.996199i \(0.527763\pi\)
\(654\) 3.49212e9 0.488166
\(655\) −3.82108e9 −0.531302
\(656\) 4.87483e9 0.674211
\(657\) 1.90966e9 0.262711
\(658\) 5.03590e9 0.689106
\(659\) −1.40452e10 −1.91173 −0.955867 0.293799i \(-0.905080\pi\)
−0.955867 + 0.293799i \(0.905080\pi\)
\(660\) −3.49296e9 −0.472922
\(661\) 4.20603e9 0.566458 0.283229 0.959052i \(-0.408594\pi\)
0.283229 + 0.959052i \(0.408594\pi\)
\(662\) 3.64155e9 0.487847
\(663\) 1.60469e8 0.0213842
\(664\) 5.71201e9 0.757183
\(665\) −1.38875e8 −0.0183125
\(666\) −2.71207e9 −0.355747
\(667\) −6.87651e8 −0.0897279
\(668\) −5.35689e9 −0.695337
\(669\) −7.43734e9 −0.960342
\(670\) 5.27746e8 0.0677896
\(671\) −1.13865e10 −1.45499
\(672\) 2.31994e9 0.294906
\(673\) 7.56778e9 0.957009 0.478504 0.878085i \(-0.341179\pi\)
0.478504 + 0.878085i \(0.341179\pi\)
\(674\) 2.11108e10 2.65579
\(675\) 3.07547e8 0.0384900
\(676\) −1.07101e10 −1.33346
\(677\) 1.04426e10 1.29344 0.646721 0.762727i \(-0.276140\pi\)
0.646721 + 0.762727i \(0.276140\pi\)
\(678\) −3.84656e9 −0.473989
\(679\) −6.00723e9 −0.736427
\(680\) 8.95422e8 0.109206
\(681\) −6.82208e9 −0.827756
\(682\) 1.70370e10 2.05659
\(683\) −1.06039e10 −1.27349 −0.636744 0.771076i \(-0.719719\pi\)
−0.636744 + 0.771076i \(0.719719\pi\)
\(684\) −4.05584e8 −0.0484602
\(685\) −5.52591e9 −0.656882
\(686\) −6.98671e8 −0.0826301
\(687\) 1.62218e9 0.190876
\(688\) 6.36966e9 0.745687
\(689\) 1.30267e9 0.151728
\(690\) 9.03799e8 0.104737
\(691\) −4.46875e9 −0.515244 −0.257622 0.966246i \(-0.582939\pi\)
−0.257622 + 0.966246i \(0.582939\pi\)
\(692\) −6.05518e9 −0.694634
\(693\) −1.50663e9 −0.171965
\(694\) −7.43608e9 −0.844473
\(695\) −4.09444e9 −0.462645
\(696\) −9.09569e8 −0.102259
\(697\) 5.19754e9 0.581411
\(698\) −8.52189e9 −0.948510
\(699\) −6.08613e9 −0.674017
\(700\) 9.20550e8 0.101439
\(701\) −1.65190e9 −0.181122 −0.0905610 0.995891i \(-0.528866\pi\)
−0.0905610 + 0.995891i \(0.528866\pi\)
\(702\) 2.14241e8 0.0233734
\(703\) −6.95991e8 −0.0755545
\(704\) 1.92948e10 2.08418
\(705\) −2.86198e9 −0.307613
\(706\) −1.45365e10 −1.55468
\(707\) 2.73727e9 0.291306
\(708\) −3.18286e9 −0.337055
\(709\) 1.15694e10 1.21913 0.609565 0.792736i \(-0.291344\pi\)
0.609565 + 0.792736i \(0.291344\pi\)
\(710\) 2.44435e9 0.256306
\(711\) −9.65825e7 −0.0100775
\(712\) 1.91812e9 0.199157
\(713\) −2.52595e9 −0.260983
\(714\) 1.51584e9 0.155851
\(715\) 4.73497e8 0.0484447
\(716\) 1.75624e10 1.78809
\(717\) 7.56570e9 0.766536
\(718\) 2.75510e9 0.277781
\(719\) −4.84395e9 −0.486014 −0.243007 0.970025i \(-0.578134\pi\)
−0.243007 + 0.970025i \(0.578134\pi\)
\(720\) −8.07988e8 −0.0806754
\(721\) 1.87114e9 0.185922
\(722\) 1.52946e10 1.51237
\(723\) 6.05413e7 0.00595755
\(724\) −8.95607e9 −0.877067
\(725\) 6.94672e8 0.0677013
\(726\) −7.86205e9 −0.762531
\(727\) −1.17390e10 −1.13308 −0.566541 0.824033i \(-0.691719\pi\)
−0.566541 + 0.824033i \(0.691719\pi\)
\(728\) 1.63391e8 0.0156952
\(729\) 3.87420e8 0.0370370
\(730\) −5.66930e9 −0.539386
\(731\) 6.79133e9 0.643049
\(732\) 8.76395e9 0.825869
\(733\) −9.66671e9 −0.906598 −0.453299 0.891358i \(-0.649753\pi\)
−0.453299 + 0.891358i \(0.649753\pi\)
\(734\) −5.36656e9 −0.500910
\(735\) 3.97065e8 0.0368856
\(736\) −3.87460e9 −0.358224
\(737\) 1.46930e9 0.135199
\(738\) 6.93920e9 0.635495
\(739\) −8.77699e9 −0.800000 −0.400000 0.916515i \(-0.630990\pi\)
−0.400000 + 0.916515i \(0.630990\pi\)
\(740\) 4.61346e9 0.418520
\(741\) 5.49801e7 0.00496411
\(742\) 1.23054e10 1.10582
\(743\) −1.39551e10 −1.24816 −0.624082 0.781359i \(-0.714527\pi\)
−0.624082 + 0.781359i \(0.714527\pi\)
\(744\) −3.34113e9 −0.297432
\(745\) 6.16798e9 0.546507
\(746\) 3.12052e10 2.75195
\(747\) −5.49547e9 −0.482372
\(748\) 9.78420e9 0.854810
\(749\) −2.01803e9 −0.175485
\(750\) −9.13028e8 −0.0790259
\(751\) −5.46263e9 −0.470611 −0.235305 0.971922i \(-0.575609\pi\)
−0.235305 + 0.971922i \(0.575609\pi\)
\(752\) 7.51900e9 0.644760
\(753\) −9.64596e9 −0.823309
\(754\) 4.83917e8 0.0411123
\(755\) 5.38086e9 0.455027
\(756\) 1.15963e9 0.0976096
\(757\) −9.04842e9 −0.758119 −0.379059 0.925372i \(-0.623752\pi\)
−0.379059 + 0.925372i \(0.623752\pi\)
\(758\) 6.62830e9 0.552790
\(759\) 2.51627e9 0.208887
\(760\) 3.06791e8 0.0253510
\(761\) 1.02716e10 0.844876 0.422438 0.906392i \(-0.361174\pi\)
0.422438 + 0.906392i \(0.361174\pi\)
\(762\) 7.79590e9 0.638298
\(763\) −2.56230e9 −0.208831
\(764\) 2.48030e10 2.01223
\(765\) −8.61476e8 −0.0695710
\(766\) −3.22325e10 −2.59115
\(767\) 4.31461e8 0.0345269
\(768\) 1.38493e8 0.0110322
\(769\) −2.37677e9 −0.188471 −0.0942355 0.995550i \(-0.530041\pi\)
−0.0942355 + 0.995550i \(0.530041\pi\)
\(770\) 4.47281e9 0.353071
\(771\) 1.12132e10 0.881127
\(772\) −6.45531e9 −0.504959
\(773\) −2.10182e10 −1.63669 −0.818345 0.574727i \(-0.805108\pi\)
−0.818345 + 0.574727i \(0.805108\pi\)
\(774\) 9.06706e9 0.702867
\(775\) 2.55175e9 0.196916
\(776\) 1.32706e10 1.01947
\(777\) 1.98995e9 0.152184
\(778\) −6.68137e9 −0.508671
\(779\) 1.78079e9 0.134968
\(780\) −3.64442e8 −0.0274978
\(781\) 6.80532e9 0.511176
\(782\) −2.53165e9 −0.189313
\(783\) 8.75087e8 0.0651456
\(784\) −1.04317e9 −0.0773125
\(785\) −2.50817e9 −0.185060
\(786\) 1.42899e10 1.04967
\(787\) 3.87353e9 0.283266 0.141633 0.989919i \(-0.454765\pi\)
0.141633 + 0.989919i \(0.454765\pi\)
\(788\) 1.99815e10 1.45474
\(789\) −6.82346e9 −0.494578
\(790\) 2.86729e8 0.0206908
\(791\) 2.82236e9 0.202766
\(792\) 3.32832e9 0.238061
\(793\) −1.18802e9 −0.0845995
\(794\) −6.57324e9 −0.466023
\(795\) −6.99338e9 −0.493631
\(796\) −1.79866e10 −1.26401
\(797\) −2.09883e10 −1.46849 −0.734247 0.678883i \(-0.762465\pi\)
−0.734247 + 0.678883i \(0.762465\pi\)
\(798\) 5.19360e8 0.0361791
\(799\) 8.01675e9 0.556013
\(800\) 3.91416e9 0.270286
\(801\) −1.84540e9 −0.126875
\(802\) −3.12010e8 −0.0213579
\(803\) −1.57839e10 −1.07575
\(804\) −1.13089e9 −0.0767407
\(805\) −6.63151e8 −0.0448050
\(806\) 1.77758e9 0.119579
\(807\) −3.87041e9 −0.259239
\(808\) −6.04695e9 −0.403270
\(809\) 1.88503e10 1.25170 0.625849 0.779944i \(-0.284753\pi\)
0.625849 + 0.779944i \(0.284753\pi\)
\(810\) −1.15015e9 −0.0760427
\(811\) −3.84352e9 −0.253021 −0.126510 0.991965i \(-0.540378\pi\)
−0.126510 + 0.991965i \(0.540378\pi\)
\(812\) 2.61931e9 0.171689
\(813\) 7.32376e9 0.477988
\(814\) 2.24161e10 1.45671
\(815\) 4.31236e7 0.00279038
\(816\) 2.26327e9 0.145821
\(817\) 2.32685e9 0.149277
\(818\) 2.40812e10 1.53830
\(819\) −1.57197e8 −0.00999883
\(820\) −1.18042e10 −0.747630
\(821\) 1.65030e10 1.04079 0.520394 0.853926i \(-0.325785\pi\)
0.520394 + 0.853926i \(0.325785\pi\)
\(822\) 2.06656e10 1.29777
\(823\) −6.88244e9 −0.430371 −0.215186 0.976573i \(-0.569036\pi\)
−0.215186 + 0.976573i \(0.569036\pi\)
\(824\) −4.13355e9 −0.257382
\(825\) −2.54197e9 −0.157609
\(826\) 4.07572e9 0.251637
\(827\) −8.00503e9 −0.492145 −0.246073 0.969251i \(-0.579140\pi\)
−0.246073 + 0.969251i \(0.579140\pi\)
\(828\) −1.93673e9 −0.118567
\(829\) −8.15406e9 −0.497088 −0.248544 0.968621i \(-0.579952\pi\)
−0.248544 + 0.968621i \(0.579952\pi\)
\(830\) 1.63146e10 0.990384
\(831\) 9.48993e9 0.573666
\(832\) 2.01315e9 0.121184
\(833\) −1.11223e9 −0.0666709
\(834\) 1.53122e10 0.914024
\(835\) −3.89843e9 −0.231732
\(836\) 3.35228e9 0.198435
\(837\) 3.21447e9 0.189483
\(838\) 5.76140e9 0.338200
\(839\) 2.25611e9 0.131885 0.0659423 0.997823i \(-0.478995\pi\)
0.0659423 + 0.997823i \(0.478995\pi\)
\(840\) −8.77162e8 −0.0510625
\(841\) −1.52733e10 −0.885413
\(842\) −4.94731e10 −2.85612
\(843\) −3.10644e9 −0.178594
\(844\) 3.45482e10 1.97800
\(845\) −7.79416e9 −0.444397
\(846\) 1.07031e10 0.607735
\(847\) 5.76867e9 0.326200
\(848\) 1.83730e10 1.03465
\(849\) 1.77903e10 0.997714
\(850\) 2.55750e9 0.142840
\(851\) −3.32347e9 −0.184858
\(852\) −5.23793e9 −0.290149
\(853\) 3.04625e10 1.68052 0.840259 0.542185i \(-0.182403\pi\)
0.840259 + 0.542185i \(0.182403\pi\)
\(854\) −1.12224e10 −0.616573
\(855\) −2.95160e8 −0.0161501
\(856\) 4.45805e9 0.242933
\(857\) 6.49074e9 0.352259 0.176129 0.984367i \(-0.443642\pi\)
0.176129 + 0.984367i \(0.443642\pi\)
\(858\) −1.77077e9 −0.0957096
\(859\) −1.54195e10 −0.830031 −0.415016 0.909814i \(-0.636224\pi\)
−0.415016 + 0.909814i \(0.636224\pi\)
\(860\) −1.54238e10 −0.826890
\(861\) −5.09155e9 −0.271856
\(862\) −3.37619e10 −1.79536
\(863\) −6.95493e9 −0.368345 −0.184173 0.982894i \(-0.558961\pi\)
−0.184173 + 0.982894i \(0.558961\pi\)
\(864\) 4.93072e9 0.260083
\(865\) −4.40660e9 −0.231498
\(866\) −2.62201e10 −1.37190
\(867\) −8.66604e9 −0.451600
\(868\) 9.62155e9 0.499374
\(869\) 7.98283e8 0.0412656
\(870\) −2.59791e9 −0.133754
\(871\) 1.53301e8 0.00786109
\(872\) 5.66041e9 0.289095
\(873\) −1.27676e10 −0.649468
\(874\) −8.67398e8 −0.0439469
\(875\) 6.69922e8 0.0338062
\(876\) 1.21486e10 0.610608
\(877\) −2.15955e10 −1.08110 −0.540548 0.841313i \(-0.681783\pi\)
−0.540548 + 0.841313i \(0.681783\pi\)
\(878\) −2.10660e10 −1.05039
\(879\) 1.61551e10 0.802321
\(880\) 6.67826e9 0.330350
\(881\) 2.45453e10 1.20935 0.604676 0.796471i \(-0.293303\pi\)
0.604676 + 0.796471i \(0.293303\pi\)
\(882\) −1.48493e9 −0.0728729
\(883\) −3.05196e10 −1.49182 −0.745909 0.666047i \(-0.767985\pi\)
−0.745909 + 0.666047i \(0.767985\pi\)
\(884\) 1.02085e9 0.0497024
\(885\) −2.31630e9 −0.112329
\(886\) −4.07408e10 −1.96794
\(887\) −3.20420e10 −1.54165 −0.770827 0.637044i \(-0.780157\pi\)
−0.770827 + 0.637044i \(0.780157\pi\)
\(888\) −4.39602e9 −0.210676
\(889\) −5.72014e9 −0.273055
\(890\) 5.47852e9 0.260494
\(891\) −3.20215e9 −0.151659
\(892\) −4.73137e10 −2.23208
\(893\) 2.74671e9 0.129072
\(894\) −2.30668e10 −1.07971
\(895\) 1.27809e10 0.595909
\(896\) 8.01861e9 0.372410
\(897\) 2.62539e8 0.0121456
\(898\) 3.79922e10 1.75076
\(899\) 7.26068e9 0.333287
\(900\) 1.95651e9 0.0894607
\(901\) 1.95893e10 0.892241
\(902\) −5.73546e10 −2.60223
\(903\) −6.65283e9 −0.300677
\(904\) −6.23492e9 −0.280699
\(905\) −6.51770e9 −0.292297
\(906\) −2.01231e10 −0.898973
\(907\) 3.57857e10 1.59252 0.796258 0.604957i \(-0.206810\pi\)
0.796258 + 0.604957i \(0.206810\pi\)
\(908\) −4.33997e10 −1.92392
\(909\) 5.81770e9 0.256908
\(910\) 4.66676e8 0.0205291
\(911\) −2.16444e10 −0.948485 −0.474242 0.880394i \(-0.657278\pi\)
−0.474242 + 0.880394i \(0.657278\pi\)
\(912\) 7.75446e8 0.0338509
\(913\) 4.54216e10 1.97522
\(914\) −6.19349e10 −2.68302
\(915\) 6.37788e9 0.275234
\(916\) 1.03198e10 0.443645
\(917\) −1.04850e10 −0.449032
\(918\) 3.22172e9 0.137448
\(919\) −1.39988e10 −0.594957 −0.297478 0.954729i \(-0.596146\pi\)
−0.297478 + 0.954729i \(0.596146\pi\)
\(920\) 1.46498e9 0.0620259
\(921\) −9.94650e8 −0.0419528
\(922\) −3.03369e10 −1.27471
\(923\) 7.10042e8 0.0297220
\(924\) −9.58467e9 −0.399692
\(925\) 3.35740e9 0.139479
\(926\) 3.11289e10 1.28833
\(927\) 3.97685e9 0.163968
\(928\) 1.11373e10 0.457468
\(929\) −2.51280e10 −1.02826 −0.514130 0.857712i \(-0.671885\pi\)
−0.514130 + 0.857712i \(0.671885\pi\)
\(930\) −9.54292e9 −0.389037
\(931\) −3.81073e8 −0.0154769
\(932\) −3.87178e10 −1.56659
\(933\) 5.84323e9 0.235541
\(934\) −1.36972e10 −0.550071
\(935\) 7.12036e9 0.284879
\(936\) 3.47265e8 0.0138419
\(937\) −1.28582e10 −0.510611 −0.255306 0.966860i \(-0.582176\pi\)
−0.255306 + 0.966860i \(0.582176\pi\)
\(938\) 1.44814e9 0.0572927
\(939\) 4.92174e9 0.193994
\(940\) −1.82069e10 −0.714971
\(941\) 3.90470e10 1.52765 0.763824 0.645424i \(-0.223319\pi\)
0.763824 + 0.645424i \(0.223319\pi\)
\(942\) 9.37997e9 0.365614
\(943\) 8.50354e9 0.330224
\(944\) 6.08538e9 0.235443
\(945\) 8.43909e8 0.0325300
\(946\) −7.49419e10 −2.87810
\(947\) −4.98341e10 −1.90679 −0.953393 0.301731i \(-0.902435\pi\)
−0.953393 + 0.301731i \(0.902435\pi\)
\(948\) −6.14424e8 −0.0234228
\(949\) −1.64684e9 −0.0625488
\(950\) 8.76255e8 0.0331587
\(951\) 2.32897e10 0.878078
\(952\) 2.45704e9 0.0922960
\(953\) 1.99827e10 0.747876 0.373938 0.927454i \(-0.378007\pi\)
0.373938 + 0.927454i \(0.378007\pi\)
\(954\) 2.61536e10 0.975240
\(955\) 1.80502e10 0.670610
\(956\) 4.81303e10 1.78163
\(957\) −7.23285e9 −0.266758
\(958\) 3.99488e10 1.46799
\(959\) −1.51631e10 −0.555166
\(960\) −1.08076e10 −0.394256
\(961\) −8.41888e8 −0.0306001
\(962\) 2.33881e9 0.0846998
\(963\) −4.28904e9 −0.154763
\(964\) 3.85143e8 0.0138469
\(965\) −4.69779e9 −0.168286
\(966\) 2.48003e9 0.0885189
\(967\) 1.31302e10 0.466958 0.233479 0.972362i \(-0.424989\pi\)
0.233479 + 0.972362i \(0.424989\pi\)
\(968\) −1.27437e10 −0.451575
\(969\) 8.26780e8 0.0291915
\(970\) 3.79036e10 1.33346
\(971\) 3.27528e10 1.14810 0.574051 0.818819i \(-0.305371\pi\)
0.574051 + 0.818819i \(0.305371\pi\)
\(972\) 2.46463e9 0.0860836
\(973\) −1.12351e10 −0.391006
\(974\) 2.30711e10 0.800040
\(975\) −2.65219e8 −0.00916408
\(976\) −1.67560e10 −0.576894
\(977\) 1.96765e10 0.675021 0.337511 0.941322i \(-0.390415\pi\)
0.337511 + 0.941322i \(0.390415\pi\)
\(978\) −1.61272e8 −0.00551281
\(979\) 1.52528e10 0.519529
\(980\) 2.52599e9 0.0857315
\(981\) −5.44582e9 −0.184171
\(982\) −7.68262e10 −2.58892
\(983\) 1.30579e10 0.438466 0.219233 0.975673i \(-0.429644\pi\)
0.219233 + 0.975673i \(0.429644\pi\)
\(984\) 1.12478e10 0.376344
\(985\) 1.45413e10 0.484817
\(986\) 7.27706e9 0.241761
\(987\) −7.85327e9 −0.259980
\(988\) 3.49764e8 0.0115379
\(989\) 1.11111e10 0.365233
\(990\) 9.50635e9 0.311380
\(991\) 1.33714e10 0.436435 0.218218 0.975900i \(-0.429976\pi\)
0.218218 + 0.975900i \(0.429976\pi\)
\(992\) 4.09106e10 1.33059
\(993\) −5.67884e9 −0.184051
\(994\) 6.70729e9 0.216618
\(995\) −1.30895e10 −0.421254
\(996\) −3.49602e10 −1.12116
\(997\) 5.15968e10 1.64888 0.824441 0.565948i \(-0.191490\pi\)
0.824441 + 0.565948i \(0.191490\pi\)
\(998\) −4.18621e10 −1.33311
\(999\) 4.22936e9 0.134213
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.8.a.c.1.1 2
3.2 odd 2 315.8.a.d.1.2 2
5.4 even 2 525.8.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.c.1.1 2 1.1 even 1 trivial
315.8.a.d.1.2 2 3.2 odd 2
525.8.a.f.1.2 2 5.4 even 2