Properties

Label 1050.2.a.e
Level $1050$
Weight $2$
Character orbit 1050.a
Self dual yes
Analytic conductor $8.384$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,2,Mod(1,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} + 2 q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + q^{17} - q^{18} + 4 q^{19} - q^{21} - 2 q^{22} - 7 q^{23} + q^{24} + q^{26} - q^{27}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 −1.00000 1.00000 0 1.00000 1.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.a.e 1
3.b odd 2 1 3150.2.a.bl 1
4.b odd 2 1 8400.2.a.bt 1
5.b even 2 1 1050.2.a.o yes 1
5.c odd 4 2 1050.2.g.j 2
7.b odd 2 1 7350.2.a.bj 1
15.d odd 2 1 3150.2.a.c 1
15.e even 4 2 3150.2.g.g 2
20.d odd 2 1 8400.2.a.t 1
35.c odd 2 1 7350.2.a.ca 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.a.e 1 1.a even 1 1 trivial
1050.2.a.o yes 1 5.b even 2 1
1050.2.g.j 2 5.c odd 4 2
3150.2.a.c 1 15.d odd 2 1
3150.2.a.bl 1 3.b odd 2 1
3150.2.g.g 2 15.e even 4 2
7350.2.a.bj 1 7.b odd 2 1
7350.2.a.ca 1 35.c odd 2 1
8400.2.a.t 1 20.d odd 2 1
8400.2.a.bt 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\):

\( T_{11} - 2 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display
\( T_{17} - 1 \) Copy content Toggle raw display
\( T_{19} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 2 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T - 4 \) Copy content Toggle raw display
$23$ \( T + 7 \) Copy content Toggle raw display
$29$ \( T - 1 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T + 3 \) Copy content Toggle raw display
$43$ \( T - 1 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T + 11 \) Copy content Toggle raw display
$59$ \( T + 3 \) Copy content Toggle raw display
$61$ \( T - 5 \) Copy content Toggle raw display
$67$ \( T - 12 \) Copy content Toggle raw display
$71$ \( T - 4 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T - 3 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T - 10 \) Copy content Toggle raw display
show more
show less