Properties

Label 1050.2.s.i.101.8
Level $1050$
Weight $2$
Character 1050.101
Analytic conductor $8.384$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,2,Mod(101,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.101");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.s (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.11007531417600000000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.8
Root \(-0.159959 - 0.596975i\) of defining polynomial
Character \(\chi\) \(=\) 1050.101
Dual form 1050.2.s.i.551.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(1.40294 - 1.01575i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.707107 - 1.58114i) q^{6} +(2.23607 - 1.41421i) q^{7} -1.00000i q^{8} +(0.936492 - 2.85008i) q^{9} +(4.05781 + 2.34278i) q^{11} +(-0.178197 - 1.72286i) q^{12} +1.04456i q^{13} +(1.22938 - 2.34278i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.58114 + 2.73861i) q^{17} +(-0.614017 - 2.93649i) q^{18} +(1.23861 - 0.715113i) q^{19} +(1.70058 - 4.25535i) q^{21} +4.68556 q^{22} +(-3.87739 + 2.23861i) q^{23} +(-1.01575 - 1.40294i) q^{24} +(0.522278 + 0.904612i) q^{26} +(-1.58114 - 4.94975i) q^{27} +(-0.106711 - 2.64360i) q^{28} +6.92163i q^{29} +(-5.73861 - 3.31319i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(8.07256 - 0.834952i) q^{33} +3.16228i q^{34} +(-2.00000 - 2.23607i) q^{36} +(-1.33146 - 2.30615i) q^{37} +(0.715113 - 1.23861i) q^{38} +(1.06101 + 1.46545i) q^{39} +1.04456 q^{41} +(-0.654929 - 4.53553i) q^{42} -6.92163 q^{43} +(4.05781 - 2.34278i) q^{44} +(-2.23861 + 3.87739i) q^{46} +(-5.60944 - 9.71584i) q^{47} +(-1.58114 - 0.707107i) q^{48} +(3.00000 - 6.32456i) q^{49} +(0.563508 + 5.44816i) q^{51} +(0.904612 + 0.522278i) q^{52} +(4.33013 + 2.50000i) q^{53} +(-3.84418 - 3.49604i) q^{54} +(-1.41421 - 2.23607i) q^{56} +(1.01132 - 2.26139i) q^{57} +(3.46081 + 5.99430i) q^{58} +(-5.28720 + 9.15769i) q^{59} +(3.00000 - 1.73205i) q^{61} -6.62638 q^{62} +(-1.93657 - 7.69738i) q^{63} -1.00000 q^{64} +(6.57357 - 4.75937i) q^{66} +(7.13505 - 12.3583i) q^{67} +(1.58114 + 2.73861i) q^{68} +(-3.16588 + 7.07912i) q^{69} +6.92163i q^{71} +(-2.85008 - 0.936492i) q^{72} +(3.03397 + 1.75166i) q^{73} +(-2.30615 - 1.33146i) q^{74} -1.43023i q^{76} +(12.3867 - 0.500000i) q^{77} +(1.65159 + 0.738613i) q^{78} +(5.73861 + 9.93957i) q^{79} +(-7.24597 - 5.33816i) q^{81} +(0.904612 - 0.522278i) q^{82} -4.06775 q^{83} +(-2.83495 - 3.60042i) q^{84} +(-5.99430 + 3.46081i) q^{86} +(7.03066 + 9.71064i) q^{87} +(2.34278 - 4.05781i) q^{88} +(-2.45877 - 4.25871i) q^{89} +(1.47723 + 2.33570i) q^{91} +4.47723i q^{92} +(-11.4163 + 1.18080i) q^{93} +(-9.71584 - 5.60944i) q^{94} +(-1.72286 + 0.178197i) q^{96} +11.9886i q^{97} +(-0.564201 - 6.97723i) q^{98} +(10.4772 - 9.37112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} - 16 q^{9} - 8 q^{16} - 24 q^{19} + 8 q^{21} - 48 q^{31} - 32 q^{36} + 16 q^{39} + 8 q^{46} + 48 q^{49} + 40 q^{51} + 48 q^{61} - 16 q^{64} + 24 q^{66} + 48 q^{79} + 8 q^{81} - 8 q^{84} - 64 q^{91}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 1.40294 1.01575i 0.809989 0.586445i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 0.707107 1.58114i 0.288675 0.645497i
\(7\) 2.23607 1.41421i 0.845154 0.534522i
\(8\) 1.00000i 0.353553i
\(9\) 0.936492 2.85008i 0.312164 0.950028i
\(10\) 0 0
\(11\) 4.05781 + 2.34278i 1.22348 + 0.706374i 0.965657 0.259819i \(-0.0836628\pi\)
0.257819 + 0.966193i \(0.416996\pi\)
\(12\) −0.178197 1.72286i −0.0514410 0.497347i
\(13\) 1.04456i 0.289708i 0.989453 + 0.144854i \(0.0462712\pi\)
−0.989453 + 0.144854i \(0.953729\pi\)
\(14\) 1.22938 2.34278i 0.328567 0.626134i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.58114 + 2.73861i −0.383482 + 0.664211i −0.991557 0.129668i \(-0.958609\pi\)
0.608075 + 0.793880i \(0.291942\pi\)
\(18\) −0.614017 2.93649i −0.144725 0.692138i
\(19\) 1.23861 0.715113i 0.284157 0.164058i −0.351147 0.936320i \(-0.614208\pi\)
0.635304 + 0.772262i \(0.280875\pi\)
\(20\) 0 0
\(21\) 1.70058 4.25535i 0.371097 0.928594i
\(22\) 4.68556 0.998964
\(23\) −3.87739 + 2.23861i −0.808492 + 0.466783i −0.846432 0.532497i \(-0.821254\pi\)
0.0379400 + 0.999280i \(0.487920\pi\)
\(24\) −1.01575 1.40294i −0.207340 0.286374i
\(25\) 0 0
\(26\) 0.522278 + 0.904612i 0.102427 + 0.177409i
\(27\) −1.58114 4.94975i −0.304290 0.952579i
\(28\) −0.106711 2.64360i −0.0201665 0.499593i
\(29\) 6.92163i 1.28531i 0.766154 + 0.642657i \(0.222168\pi\)
−0.766154 + 0.642657i \(0.777832\pi\)
\(30\) 0 0
\(31\) −5.73861 3.31319i −1.03069 0.595066i −0.113504 0.993537i \(-0.536208\pi\)
−0.917181 + 0.398471i \(0.869541\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 8.07256 0.834952i 1.40525 0.145347i
\(34\) 3.16228i 0.542326i
\(35\) 0 0
\(36\) −2.00000 2.23607i −0.333333 0.372678i
\(37\) −1.33146 2.30615i −0.218890 0.379129i 0.735579 0.677439i \(-0.236910\pi\)
−0.954469 + 0.298310i \(0.903577\pi\)
\(38\) 0.715113 1.23861i 0.116007 0.200930i
\(39\) 1.06101 + 1.46545i 0.169898 + 0.234660i
\(40\) 0 0
\(41\) 1.04456 0.163132 0.0815661 0.996668i \(-0.474008\pi\)
0.0815661 + 0.996668i \(0.474008\pi\)
\(42\) −0.654929 4.53553i −0.101058 0.699848i
\(43\) −6.92163 −1.05554 −0.527769 0.849388i \(-0.676971\pi\)
−0.527769 + 0.849388i \(0.676971\pi\)
\(44\) 4.05781 2.34278i 0.611738 0.353187i
\(45\) 0 0
\(46\) −2.23861 + 3.87739i −0.330065 + 0.571690i
\(47\) −5.60944 9.71584i −0.818221 1.41720i −0.906992 0.421149i \(-0.861627\pi\)
0.0887705 0.996052i \(-0.471706\pi\)
\(48\) −1.58114 0.707107i −0.228218 0.102062i
\(49\) 3.00000 6.32456i 0.428571 0.903508i
\(50\) 0 0
\(51\) 0.563508 + 5.44816i 0.0789069 + 0.762895i
\(52\) 0.904612 + 0.522278i 0.125447 + 0.0724269i
\(53\) 4.33013 + 2.50000i 0.594789 + 0.343401i 0.766989 0.641661i \(-0.221754\pi\)
−0.172200 + 0.985062i \(0.555088\pi\)
\(54\) −3.84418 3.49604i −0.523127 0.475750i
\(55\) 0 0
\(56\) −1.41421 2.23607i −0.188982 0.298807i
\(57\) 1.01132 2.26139i 0.133953 0.299528i
\(58\) 3.46081 + 5.99430i 0.454427 + 0.787091i
\(59\) −5.28720 + 9.15769i −0.688334 + 1.19223i 0.284042 + 0.958812i \(0.408324\pi\)
−0.972376 + 0.233418i \(0.925009\pi\)
\(60\) 0 0
\(61\) 3.00000 1.73205i 0.384111 0.221766i −0.295495 0.955344i \(-0.595484\pi\)
0.679605 + 0.733578i \(0.262151\pi\)
\(62\) −6.62638 −0.841551
\(63\) −1.93657 7.69738i −0.243985 0.969779i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 6.57357 4.75937i 0.809150 0.585838i
\(67\) 7.13505 12.3583i 0.871685 1.50980i 0.0114319 0.999935i \(-0.496361\pi\)
0.860253 0.509868i \(-0.170306\pi\)
\(68\) 1.58114 + 2.73861i 0.191741 + 0.332106i
\(69\) −3.16588 + 7.07912i −0.381127 + 0.852225i
\(70\) 0 0
\(71\) 6.92163i 0.821446i 0.911760 + 0.410723i \(0.134724\pi\)
−0.911760 + 0.410723i \(0.865276\pi\)
\(72\) −2.85008 0.936492i −0.335886 0.110367i
\(73\) 3.03397 + 1.75166i 0.355099 + 0.205017i 0.666929 0.745121i \(-0.267608\pi\)
−0.311830 + 0.950138i \(0.600942\pi\)
\(74\) −2.30615 1.33146i −0.268084 0.154779i
\(75\) 0 0
\(76\) 1.43023i 0.164058i
\(77\) 12.3867 0.500000i 1.41160 0.0569803i
\(78\) 1.65159 + 0.738613i 0.187006 + 0.0836314i
\(79\) 5.73861 + 9.93957i 0.645644 + 1.11829i 0.984152 + 0.177325i \(0.0567445\pi\)
−0.338508 + 0.940964i \(0.609922\pi\)
\(80\) 0 0
\(81\) −7.24597 5.33816i −0.805107 0.593129i
\(82\) 0.904612 0.522278i 0.0998977 0.0576760i
\(83\) −4.06775 −0.446494 −0.223247 0.974762i \(-0.571666\pi\)
−0.223247 + 0.974762i \(0.571666\pi\)
\(84\) −2.83495 3.60042i −0.309319 0.392838i
\(85\) 0 0
\(86\) −5.99430 + 3.46081i −0.646382 + 0.373189i
\(87\) 7.03066 + 9.71064i 0.753766 + 1.04109i
\(88\) 2.34278 4.05781i 0.249741 0.432564i
\(89\) −2.45877 4.25871i −0.260629 0.451423i 0.705780 0.708431i \(-0.250597\pi\)
−0.966409 + 0.257008i \(0.917263\pi\)
\(90\) 0 0
\(91\) 1.47723 + 2.33570i 0.154855 + 0.244848i
\(92\) 4.47723i 0.466783i
\(93\) −11.4163 + 1.18080i −1.18382 + 0.122443i
\(94\) −9.71584 5.60944i −1.00211 0.578570i
\(95\) 0 0
\(96\) −1.72286 + 0.178197i −0.175839 + 0.0181872i
\(97\) 11.9886i 1.21726i 0.793455 + 0.608629i \(0.208280\pi\)
−0.793455 + 0.608629i \(0.791720\pi\)
\(98\) −0.564201 6.97723i −0.0569930 0.704806i
\(99\) 10.4772 9.37112i 1.05300 0.941833i
\(100\) 0 0
\(101\) −5.65685 + 9.79796i −0.562878 + 0.974933i 0.434366 + 0.900737i \(0.356973\pi\)
−0.997244 + 0.0741967i \(0.976361\pi\)
\(102\) 3.21209 + 4.43649i 0.318045 + 0.439278i
\(103\) 4.25871 2.45877i 0.419624 0.242270i −0.275293 0.961360i \(-0.588775\pi\)
0.694916 + 0.719091i \(0.255441\pi\)
\(104\) 1.04456 0.102427
\(105\) 0 0
\(106\) 5.00000 0.485643
\(107\) −4.74342 + 2.73861i −0.458563 + 0.264752i −0.711440 0.702747i \(-0.751957\pi\)
0.252877 + 0.967499i \(0.418623\pi\)
\(108\) −5.07718 1.10557i −0.488552 0.106383i
\(109\) −10.2158 + 17.6944i −0.978500 + 1.69481i −0.310634 + 0.950529i \(0.600541\pi\)
−0.667866 + 0.744282i \(0.732792\pi\)
\(110\) 0 0
\(111\) −4.21043 1.88296i −0.399637 0.178723i
\(112\) −2.34278 1.22938i −0.221372 0.116166i
\(113\) 17.4772i 1.64412i −0.569402 0.822060i \(-0.692825\pi\)
0.569402 0.822060i \(-0.307175\pi\)
\(114\) −0.254862 2.46408i −0.0238700 0.230782i
\(115\) 0 0
\(116\) 5.99430 + 3.46081i 0.556557 + 0.321328i
\(117\) 2.97707 + 0.978218i 0.275231 + 0.0904363i
\(118\) 10.5744i 0.973452i
\(119\) 0.337449 + 8.35979i 0.0309339 + 0.766341i
\(120\) 0 0
\(121\) 5.47723 + 9.48683i 0.497930 + 0.862439i
\(122\) 1.73205 3.00000i 0.156813 0.271607i
\(123\) 1.46545 1.06101i 0.132135 0.0956682i
\(124\) −5.73861 + 3.31319i −0.515343 + 0.297533i
\(125\) 0 0
\(126\) −5.52581 5.69784i −0.492278 0.507604i
\(127\) −8.73085 −0.774738 −0.387369 0.921925i \(-0.626616\pi\)
−0.387369 + 0.921925i \(0.626616\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −9.71064 + 7.03066i −0.854974 + 0.619015i
\(130\) 0 0
\(131\) 6.88624 + 11.9273i 0.601654 + 1.04209i 0.992571 + 0.121669i \(0.0388245\pi\)
−0.390917 + 0.920426i \(0.627842\pi\)
\(132\) 3.31319 7.40852i 0.288376 0.644829i
\(133\) 1.75830 3.35071i 0.152464 0.290543i
\(134\) 14.2701i 1.23275i
\(135\) 0 0
\(136\) 2.73861 + 1.58114i 0.234834 + 0.135582i
\(137\) 3.01137 + 1.73861i 0.257278 + 0.148540i 0.623092 0.782148i \(-0.285876\pi\)
−0.365814 + 0.930688i \(0.619209\pi\)
\(138\) 0.797828 + 7.71363i 0.0679156 + 0.656628i
\(139\) 20.1810i 1.71173i −0.517202 0.855863i \(-0.673026\pi\)
0.517202 0.855863i \(-0.326974\pi\)
\(140\) 0 0
\(141\) −17.7386 7.93295i −1.49386 0.668075i
\(142\) 3.46081 + 5.99430i 0.290425 + 0.503031i
\(143\) −2.44716 + 4.23861i −0.204642 + 0.354451i
\(144\) −2.93649 + 0.614017i −0.244708 + 0.0511681i
\(145\) 0 0
\(146\) 3.50333 0.289937
\(147\) −2.21536 11.9202i −0.182720 0.983165i
\(148\) −2.66291 −0.218890
\(149\) −2.12132 + 1.22474i −0.173785 + 0.100335i −0.584370 0.811488i \(-0.698658\pi\)
0.410584 + 0.911823i \(0.365325\pi\)
\(150\) 0 0
\(151\) 1.00000 1.73205i 0.0813788 0.140952i −0.822464 0.568818i \(-0.807401\pi\)
0.903842 + 0.427865i \(0.140734\pi\)
\(152\) −0.715113 1.23861i −0.0580034 0.100465i
\(153\) 6.32456 + 7.07107i 0.511310 + 0.571662i
\(154\) 10.4772 6.62638i 0.844279 0.533969i
\(155\) 0 0
\(156\) 1.79962 0.186137i 0.144085 0.0149029i
\(157\) −12.5118 7.22369i −0.998550 0.576513i −0.0907311 0.995875i \(-0.528920\pi\)
−0.907819 + 0.419362i \(0.862254\pi\)
\(158\) 9.93957 + 5.73861i 0.790750 + 0.456540i
\(159\) 8.61430 0.890985i 0.683158 0.0706597i
\(160\) 0 0
\(161\) −5.50423 + 10.4891i −0.433794 + 0.826661i
\(162\) −8.94427 1.00000i −0.702728 0.0785674i
\(163\) 7.34847 + 12.7279i 0.575577 + 0.996928i 0.995979 + 0.0895899i \(0.0285557\pi\)
−0.420402 + 0.907338i \(0.638111\pi\)
\(164\) 0.522278 0.904612i 0.0407831 0.0706383i
\(165\) 0 0
\(166\) −3.52277 + 2.03387i −0.273420 + 0.157859i
\(167\) 4.29068 0.332023 0.166011 0.986124i \(-0.446911\pi\)
0.166011 + 0.986124i \(0.446911\pi\)
\(168\) −4.25535 1.70058i −0.328308 0.131203i
\(169\) 11.9089 0.916069
\(170\) 0 0
\(171\) −0.878183 4.19985i −0.0671564 0.321170i
\(172\) −3.46081 + 5.99430i −0.263885 + 0.457061i
\(173\) −0.564201 0.977226i −0.0428954 0.0742971i 0.843781 0.536688i \(-0.180325\pi\)
−0.886676 + 0.462391i \(0.846992\pi\)
\(174\) 10.9441 + 4.89433i 0.829666 + 0.371038i
\(175\) 0 0
\(176\) 4.68556i 0.353187i
\(177\) 1.88433 + 18.2182i 0.141635 + 1.36936i
\(178\) −4.25871 2.45877i −0.319204 0.184293i
\(179\) 16.7857 + 9.69125i 1.25462 + 0.724358i 0.972024 0.234880i \(-0.0754697\pi\)
0.282600 + 0.959238i \(0.408803\pi\)
\(180\) 0 0
\(181\) 3.16228i 0.235050i 0.993070 + 0.117525i \(0.0374961\pi\)
−0.993070 + 0.117525i \(0.962504\pi\)
\(182\) 2.44716 + 1.28416i 0.181396 + 0.0951884i
\(183\) 2.44949 5.47723i 0.181071 0.404888i
\(184\) 2.23861 + 3.87739i 0.165033 + 0.285845i
\(185\) 0 0
\(186\) −9.29642 + 6.73076i −0.681647 + 0.493524i
\(187\) −12.8319 + 7.40852i −0.938364 + 0.541764i
\(188\) −11.2189 −0.818221
\(189\) −10.5355 8.83190i −0.766347 0.642426i
\(190\) 0 0
\(191\) 14.1099 8.14637i 1.02096 0.589451i 0.106577 0.994304i \(-0.466011\pi\)
0.914381 + 0.404854i \(0.132678\pi\)
\(192\) −1.40294 + 1.01575i −0.101249 + 0.0733057i
\(193\) −3.67423 + 6.36396i −0.264477 + 0.458088i −0.967427 0.253152i \(-0.918533\pi\)
0.702949 + 0.711240i \(0.251866\pi\)
\(194\) 5.99430 + 10.3824i 0.430366 + 0.745416i
\(195\) 0 0
\(196\) −3.97723 5.76035i −0.284088 0.411454i
\(197\) 9.00000i 0.641223i 0.947211 + 0.320612i \(0.103888\pi\)
−0.947211 + 0.320612i \(0.896112\pi\)
\(198\) 4.38799 13.3542i 0.311841 0.949044i
\(199\) −13.4317 7.75478i −0.952146 0.549722i −0.0583993 0.998293i \(-0.518600\pi\)
−0.893747 + 0.448571i \(0.851933\pi\)
\(200\) 0 0
\(201\) −2.54289 24.5854i −0.179361 1.73412i
\(202\) 11.3137i 0.796030i
\(203\) 9.78866 + 15.4772i 0.687029 + 1.08629i
\(204\) 5.00000 + 2.23607i 0.350070 + 0.156556i
\(205\) 0 0
\(206\) 2.45877 4.25871i 0.171311 0.296719i
\(207\) 2.74909 + 13.1473i 0.191075 + 0.913803i
\(208\) 0.904612 0.522278i 0.0627236 0.0362135i
\(209\) 6.70141 0.463546
\(210\) 0 0
\(211\) 24.4772 1.68508 0.842541 0.538632i \(-0.181059\pi\)
0.842541 + 0.538632i \(0.181059\pi\)
\(212\) 4.33013 2.50000i 0.297394 0.171701i
\(213\) 7.03066 + 9.71064i 0.481733 + 0.665362i
\(214\) −2.73861 + 4.74342i −0.187208 + 0.324253i
\(215\) 0 0
\(216\) −4.94975 + 1.58114i −0.336788 + 0.107583i
\(217\) −17.5175 + 0.707107i −1.18916 + 0.0480015i
\(218\) 20.4317i 1.38381i
\(219\) 6.03574 0.624282i 0.407857 0.0421851i
\(220\) 0 0
\(221\) −2.86064 1.65159i −0.192427 0.111098i
\(222\) −4.58782 + 0.474523i −0.307915 + 0.0318479i
\(223\) 21.8881i 1.46574i −0.680371 0.732868i \(-0.738181\pi\)
0.680371 0.732868i \(-0.261819\pi\)
\(224\) −2.64360 + 0.106711i −0.176633 + 0.00712992i
\(225\) 0 0
\(226\) −8.73861 15.1357i −0.581284 1.00681i
\(227\) −5.19615 + 9.00000i −0.344881 + 0.597351i −0.985332 0.170648i \(-0.945414\pi\)
0.640451 + 0.767999i \(0.278747\pi\)
\(228\) −1.45276 2.00653i −0.0962112 0.132885i
\(229\) 11.7386 6.77729i 0.775709 0.447856i −0.0591982 0.998246i \(-0.518854\pi\)
0.834908 + 0.550390i \(0.185521\pi\)
\(230\) 0 0
\(231\) 16.8700 13.2833i 1.10996 0.873979i
\(232\) 6.92163 0.454427
\(233\) 3.46410 2.00000i 0.226941 0.131024i −0.382219 0.924072i \(-0.624840\pi\)
0.609160 + 0.793047i \(0.291507\pi\)
\(234\) 3.06733 0.641375i 0.200518 0.0419280i
\(235\) 0 0
\(236\) 5.28720 + 9.15769i 0.344167 + 0.596115i
\(237\) 18.1471 + 8.11562i 1.17878 + 0.527166i
\(238\) 4.47214 + 7.07107i 0.289886 + 0.458349i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −18.4545 10.6547i −1.18876 0.686328i −0.230732 0.973017i \(-0.574112\pi\)
−0.958024 + 0.286689i \(0.907445\pi\)
\(242\) 9.48683 + 5.47723i 0.609837 + 0.352089i
\(243\) −15.5879 0.129018i −0.999966 0.00827648i
\(244\) 3.46410i 0.221766i
\(245\) 0 0
\(246\) 0.738613 1.65159i 0.0470922 0.105301i
\(247\) 0.746976 + 1.29380i 0.0475290 + 0.0823226i
\(248\) −3.31319 + 5.73861i −0.210388 + 0.364402i
\(249\) −5.70682 + 4.13183i −0.361655 + 0.261844i
\(250\) 0 0
\(251\) 8.85494 0.558919 0.279459 0.960158i \(-0.409845\pi\)
0.279459 + 0.960158i \(0.409845\pi\)
\(252\) −7.63441 2.17157i −0.480923 0.136796i
\(253\) −20.9783 −1.31889
\(254\) −7.56114 + 4.36543i −0.474428 + 0.273911i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −5.49798 9.52277i −0.342954 0.594014i 0.642026 0.766683i \(-0.278094\pi\)
−0.984980 + 0.172669i \(0.944761\pi\)
\(258\) −4.89433 + 10.9441i −0.304708 + 0.681347i
\(259\) −6.23861 3.27374i −0.387649 0.203421i
\(260\) 0 0
\(261\) 19.7272 + 6.48204i 1.22108 + 0.401229i
\(262\) 11.9273 + 6.88624i 0.736872 + 0.425433i
\(263\) −1.73205 1.00000i −0.106803 0.0616626i 0.445647 0.895209i \(-0.352974\pi\)
−0.552450 + 0.833546i \(0.686307\pi\)
\(264\) −0.834952 8.07256i −0.0513878 0.496832i
\(265\) 0 0
\(266\) −0.152621 3.78095i −0.00935778 0.231825i
\(267\) −7.77531 3.47723i −0.475841 0.212803i
\(268\) −7.13505 12.3583i −0.435842 0.754901i
\(269\) 8.79052 15.2256i 0.535968 0.928323i −0.463148 0.886281i \(-0.653280\pi\)
0.999116 0.0420423i \(-0.0133864\pi\)
\(270\) 0 0
\(271\) −5.47723 + 3.16228i −0.332718 + 0.192095i −0.657047 0.753850i \(-0.728195\pi\)
0.324329 + 0.945944i \(0.394861\pi\)
\(272\) 3.16228 0.191741
\(273\) 4.44495 + 1.77635i 0.269021 + 0.107510i
\(274\) 3.47723 0.210067
\(275\) 0 0
\(276\) 4.54776 + 6.28129i 0.273743 + 0.378089i
\(277\) −4.89898 + 8.48528i −0.294351 + 0.509831i −0.974834 0.222933i \(-0.928437\pi\)
0.680483 + 0.732764i \(0.261770\pi\)
\(278\) −10.0905 17.4772i −0.605187 1.04821i
\(279\) −14.8170 + 13.2528i −0.887073 + 0.793422i
\(280\) 0 0
\(281\) 1.80922i 0.107929i 0.998543 + 0.0539646i \(0.0171858\pi\)
−0.998543 + 0.0539646i \(0.982814\pi\)
\(282\) −19.3286 + 1.99917i −1.15100 + 0.119049i
\(283\) 7.98873 + 4.61230i 0.474881 + 0.274173i 0.718281 0.695753i \(-0.244929\pi\)
−0.243400 + 0.969926i \(0.578263\pi\)
\(284\) 5.99430 + 3.46081i 0.355696 + 0.205361i
\(285\) 0 0
\(286\) 4.89433i 0.289408i
\(287\) 2.33570 1.47723i 0.137872 0.0871979i
\(288\) −2.23607 + 2.00000i −0.131762 + 0.117851i
\(289\) 3.50000 + 6.06218i 0.205882 + 0.356599i
\(290\) 0 0
\(291\) 12.1775 + 16.8193i 0.713856 + 0.985966i
\(292\) 3.03397 1.75166i 0.177550 0.102508i
\(293\) 8.05661 0.470672 0.235336 0.971914i \(-0.424381\pi\)
0.235336 + 0.971914i \(0.424381\pi\)
\(294\) −7.87868 9.21555i −0.459494 0.537462i
\(295\) 0 0
\(296\) −2.30615 + 1.33146i −0.134042 + 0.0773893i
\(297\) 5.18020 23.7894i 0.300586 1.38040i
\(298\) −1.22474 + 2.12132i −0.0709476 + 0.122885i
\(299\) −2.33836 4.05015i −0.135231 0.234226i
\(300\) 0 0
\(301\) −15.4772 + 9.78866i −0.892092 + 0.564209i
\(302\) 2.00000i 0.115087i
\(303\) 2.01607 + 19.4919i 0.115820 + 1.11978i
\(304\) −1.23861 0.715113i −0.0710393 0.0410146i
\(305\) 0 0
\(306\) 9.01276 + 2.96145i 0.515225 + 0.169295i
\(307\) 11.9886i 0.684226i −0.939659 0.342113i \(-0.888857\pi\)
0.939659 0.342113i \(-0.111143\pi\)
\(308\) 5.76035 10.9772i 0.328227 0.625485i
\(309\) 3.47723 7.77531i 0.197812 0.442322i
\(310\) 0 0
\(311\) −8.79052 + 15.2256i −0.498465 + 0.863366i −0.999998 0.00177176i \(-0.999436\pi\)
0.501534 + 0.865138i \(0.332769\pi\)
\(312\) 1.46545 1.06101i 0.0829649 0.0600679i
\(313\) −20.1246 + 11.6190i −1.13751 + 0.656742i −0.945813 0.324712i \(-0.894733\pi\)
−0.191697 + 0.981454i \(0.561399\pi\)
\(314\) −14.4474 −0.815313
\(315\) 0 0
\(316\) 11.4772 0.645644
\(317\) −8.58136 + 4.95445i −0.481977 + 0.278270i −0.721240 0.692685i \(-0.756428\pi\)
0.239263 + 0.970955i \(0.423094\pi\)
\(318\) 7.01471 5.07877i 0.393365 0.284803i
\(319\) −16.2158 + 28.0867i −0.907913 + 1.57255i
\(320\) 0 0
\(321\) −3.87298 + 8.66025i −0.216169 + 0.483368i
\(322\) 0.477769 + 11.8360i 0.0266250 + 0.659594i
\(323\) 4.52277i 0.251654i
\(324\) −8.24597 + 3.60611i −0.458109 + 0.200339i
\(325\) 0 0
\(326\) 12.7279 + 7.34847i 0.704934 + 0.406994i
\(327\) 3.64086 + 35.2009i 0.201340 + 1.94662i
\(328\) 1.04456i 0.0576760i
\(329\) −26.2834 13.7923i −1.44905 0.760396i
\(330\) 0 0
\(331\) −10.7158 18.5604i −0.588996 1.02017i −0.994364 0.106017i \(-0.966190\pi\)
0.405369 0.914153i \(-0.367143\pi\)
\(332\) −2.03387 + 3.52277i −0.111623 + 0.193337i
\(333\) −7.81962 + 1.63507i −0.428512 + 0.0896014i
\(334\) 3.71584 2.14534i 0.203322 0.117388i
\(335\) 0 0
\(336\) −4.53553 + 0.654929i −0.247434 + 0.0357293i
\(337\) 17.1464 0.934025 0.467013 0.884251i \(-0.345330\pi\)
0.467013 + 0.884251i \(0.345330\pi\)
\(338\) 10.3134 5.95445i 0.560976 0.323879i
\(339\) −17.7525 24.5195i −0.964186 1.33172i
\(340\) 0 0
\(341\) −15.5241 26.8886i −0.840679 1.45610i
\(342\) −2.86045 3.19808i −0.154676 0.172933i
\(343\) −2.23607 18.3848i −0.120736 0.992685i
\(344\) 6.92163i 0.373189i
\(345\) 0 0
\(346\) −0.977226 0.564201i −0.0525360 0.0303317i
\(347\) 15.1357 + 8.73861i 0.812528 + 0.469113i 0.847833 0.530263i \(-0.177907\pi\)
−0.0353049 + 0.999377i \(0.511240\pi\)
\(348\) 11.9250 1.23341i 0.639247 0.0661179i
\(349\) 11.7436i 0.628623i 0.949320 + 0.314311i \(0.101774\pi\)
−0.949320 + 0.314311i \(0.898226\pi\)
\(350\) 0 0
\(351\) 5.17029 1.65159i 0.275970 0.0881553i
\(352\) −2.34278 4.05781i −0.124871 0.216282i
\(353\) 0.301824 0.522774i 0.0160645 0.0278245i −0.857881 0.513848i \(-0.828220\pi\)
0.873946 + 0.486023i \(0.161553\pi\)
\(354\) 10.7410 + 14.8353i 0.570876 + 0.788485i
\(355\) 0 0
\(356\) −4.91754 −0.260629
\(357\) 8.96491 + 11.3855i 0.474473 + 0.602587i
\(358\) 19.3825 1.02440
\(359\) 9.86729 5.69688i 0.520775 0.300670i −0.216476 0.976288i \(-0.569456\pi\)
0.737252 + 0.675618i \(0.236123\pi\)
\(360\) 0 0
\(361\) −8.47723 + 14.6830i −0.446170 + 0.772789i
\(362\) 1.58114 + 2.73861i 0.0831028 + 0.143938i
\(363\) 17.3205 + 7.74597i 0.909091 + 0.406558i
\(364\) 2.76139 0.111466i 0.144736 0.00584238i
\(365\) 0 0
\(366\) −0.617292 5.96816i −0.0322664 0.311961i
\(367\) −0.320133 0.184829i −0.0167108 0.00964798i 0.491621 0.870809i \(-0.336404\pi\)
−0.508332 + 0.861161i \(0.669738\pi\)
\(368\) 3.87739 + 2.23861i 0.202123 + 0.116696i
\(369\) 0.978218 2.97707i 0.0509240 0.154980i
\(370\) 0 0
\(371\) 13.2180 0.533554i 0.686244 0.0277008i
\(372\) −4.68556 + 10.4772i −0.242935 + 0.543219i
\(373\) −11.6072 20.1042i −0.600997 1.04096i −0.992670 0.120853i \(-0.961437\pi\)
0.391673 0.920104i \(-0.371896\pi\)
\(374\) −7.40852 + 12.8319i −0.383085 + 0.663523i
\(375\) 0 0
\(376\) −9.71584 + 5.60944i −0.501056 + 0.289285i
\(377\) −7.23003 −0.372365
\(378\) −13.5400 2.38089i −0.696422 0.122460i
\(379\) 20.4772 1.05184 0.525922 0.850533i \(-0.323720\pi\)
0.525922 + 0.850533i \(0.323720\pi\)
\(380\) 0 0
\(381\) −12.2489 + 8.86839i −0.627529 + 0.454341i
\(382\) 8.14637 14.1099i 0.416805 0.721927i
\(383\) −9.07354 15.7158i −0.463636 0.803042i 0.535502 0.844534i \(-0.320122\pi\)
−0.999139 + 0.0414919i \(0.986789\pi\)
\(384\) −0.707107 + 1.58114i −0.0360844 + 0.0806872i
\(385\) 0 0
\(386\) 7.34847i 0.374027i
\(387\) −6.48204 + 19.7272i −0.329501 + 1.00279i
\(388\) 10.3824 + 5.99430i 0.527088 + 0.304315i
\(389\) 6.36396 + 3.67423i 0.322666 + 0.186291i 0.652580 0.757720i \(-0.273687\pi\)
−0.329914 + 0.944011i \(0.607020\pi\)
\(390\) 0 0
\(391\) 14.1582i 0.716012i
\(392\) −6.32456 3.00000i −0.319438 0.151523i
\(393\) 21.7762 + 9.73861i 1.09846 + 0.491248i
\(394\) 4.50000 + 7.79423i 0.226707 + 0.392668i
\(395\) 0 0
\(396\) −2.87701 13.7591i −0.144575 0.691421i
\(397\) 12.8877 7.44073i 0.646816 0.373439i −0.140419 0.990092i \(-0.544845\pi\)
0.787235 + 0.616653i \(0.211512\pi\)
\(398\) −15.5096 −0.777424
\(399\) −0.936697 6.48684i −0.0468935 0.324748i
\(400\) 0 0
\(401\) 0.827520 0.477769i 0.0413244 0.0238586i −0.479195 0.877708i \(-0.659072\pi\)
0.520520 + 0.853850i \(0.325738\pi\)
\(402\) −14.4949 20.0201i −0.722939 0.998513i
\(403\) 3.46081 5.99430i 0.172395 0.298598i
\(404\) 5.65685 + 9.79796i 0.281439 + 0.487467i
\(405\) 0 0
\(406\) 16.2158 + 8.50934i 0.804779 + 0.422312i
\(407\) 12.4772i 0.618473i
\(408\) 5.44816 0.563508i 0.269724 0.0278978i
\(409\) −13.4317 7.75478i −0.664154 0.383449i 0.129704 0.991553i \(-0.458597\pi\)
−0.793858 + 0.608103i \(0.791931\pi\)
\(410\) 0 0
\(411\) 5.99077 0.619631i 0.295503 0.0305641i
\(412\) 4.91754i 0.242270i
\(413\) 1.12840 + 27.9545i 0.0555251 + 1.37555i
\(414\) 8.95445 + 10.0114i 0.440087 + 0.492033i
\(415\) 0 0
\(416\) 0.522278 0.904612i 0.0256068 0.0443523i
\(417\) −20.4989 28.3127i −1.00383 1.38648i
\(418\) 5.80359 3.35071i 0.283863 0.163888i
\(419\) 8.85494 0.432592 0.216296 0.976328i \(-0.430602\pi\)
0.216296 + 0.976328i \(0.430602\pi\)
\(420\) 0 0
\(421\) 18.9545 0.923783 0.461892 0.886936i \(-0.347171\pi\)
0.461892 + 0.886936i \(0.347171\pi\)
\(422\) 21.1979 12.2386i 1.03190 0.595766i
\(423\) −32.9442 + 6.88858i −1.60180 + 0.334934i
\(424\) 2.50000 4.33013i 0.121411 0.210290i
\(425\) 0 0
\(426\) 10.9441 + 4.89433i 0.530241 + 0.237131i
\(427\) 4.25871 8.11562i 0.206094 0.392743i
\(428\) 5.47723i 0.264752i
\(429\) 0.872155 + 8.43224i 0.0421080 + 0.407112i
\(430\) 0 0
\(431\) −6.63699 3.83187i −0.319693 0.184575i 0.331563 0.943433i \(-0.392424\pi\)
−0.651256 + 0.758858i \(0.725757\pi\)
\(432\) −3.49604 + 3.84418i −0.168203 + 0.184953i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) −14.8170 + 9.37112i −0.711240 + 0.449828i
\(435\) 0 0
\(436\) 10.2158 + 17.6944i 0.489250 + 0.847406i
\(437\) −3.20172 + 5.54555i −0.153159 + 0.265280i
\(438\) 4.91496 3.55851i 0.234846 0.170032i
\(439\) 7.69306 4.44159i 0.367170 0.211986i −0.305051 0.952336i \(-0.598674\pi\)
0.672221 + 0.740350i \(0.265340\pi\)
\(440\) 0 0
\(441\) −15.2160 14.4731i −0.724574 0.689198i
\(442\) −3.30318 −0.157116
\(443\) 13.0298 7.52277i 0.619066 0.357418i −0.157439 0.987529i \(-0.550324\pi\)
0.776505 + 0.630111i \(0.216991\pi\)
\(444\) −3.73591 + 2.70486i −0.177298 + 0.128367i
\(445\) 0 0
\(446\) −10.9441 18.9557i −0.518216 0.897576i
\(447\) −1.73205 + 3.87298i −0.0819232 + 0.183186i
\(448\) −2.23607 + 1.41421i −0.105644 + 0.0668153i
\(449\) 25.8773i 1.22122i −0.791930 0.610612i \(-0.790923\pi\)
0.791930 0.610612i \(-0.209077\pi\)
\(450\) 0 0
\(451\) 4.23861 + 2.44716i 0.199588 + 0.115232i
\(452\) −15.1357 8.73861i −0.711924 0.411030i
\(453\) −0.356394 3.44572i −0.0167448 0.161894i
\(454\) 10.3923i 0.487735i
\(455\) 0 0
\(456\) −2.26139 1.01132i −0.105899 0.0473595i
\(457\) −5.53924 9.59425i −0.259115 0.448800i 0.706890 0.707323i \(-0.250098\pi\)
−0.966005 + 0.258523i \(0.916764\pi\)
\(458\) 6.77729 11.7386i 0.316682 0.548509i
\(459\) 16.0554 + 3.49611i 0.749404 + 0.163184i
\(460\) 0 0
\(461\) −31.7876 −1.48050 −0.740248 0.672334i \(-0.765292\pi\)
−0.740248 + 0.672334i \(0.765292\pi\)
\(462\) 7.96817 19.9387i 0.370713 0.927632i
\(463\) 22.5741 1.04911 0.524554 0.851377i \(-0.324232\pi\)
0.524554 + 0.851377i \(0.324232\pi\)
\(464\) 5.99430 3.46081i 0.278279 0.160664i
\(465\) 0 0
\(466\) 2.00000 3.46410i 0.0926482 0.160471i
\(467\) −14.0073 24.2614i −0.648181 1.12268i −0.983557 0.180599i \(-0.942197\pi\)
0.335375 0.942085i \(-0.391137\pi\)
\(468\) 2.33570 2.08911i 0.107968 0.0965693i
\(469\) −1.52277 37.7244i −0.0703152 1.74195i
\(470\) 0 0
\(471\) −24.8908 + 2.57448i −1.14691 + 0.118626i
\(472\) 9.15769 + 5.28720i 0.421517 + 0.243363i
\(473\) −28.0867 16.2158i −1.29143 0.745605i
\(474\) 19.7737 2.04521i 0.908234 0.0939395i
\(475\) 0 0
\(476\) 7.40852 + 3.88766i 0.339569 + 0.178190i
\(477\) 11.1803 10.0000i 0.511913 0.457869i
\(478\) 0 0
\(479\) −21.1810 + 36.6866i −0.967784 + 1.67625i −0.265844 + 0.964016i \(0.585651\pi\)
−0.701940 + 0.712236i \(0.747683\pi\)
\(480\) 0 0
\(481\) 2.40890 1.39078i 0.109836 0.0634141i
\(482\) −21.3094 −0.970615
\(483\) 2.93227 + 20.3066i 0.133423 + 0.923983i
\(484\) 10.9545 0.497930
\(485\) 0 0
\(486\) −13.5640 + 7.68223i −0.615278 + 0.348473i
\(487\) −8.51743 + 14.7526i −0.385962 + 0.668505i −0.991902 0.127005i \(-0.959464\pi\)
0.605941 + 0.795510i \(0.292797\pi\)
\(488\) −1.73205 3.00000i −0.0784063 0.135804i
\(489\) 23.2379 + 10.3923i 1.05085 + 0.469956i
\(490\) 0 0
\(491\) 13.8433i 0.624737i −0.949961 0.312369i \(-0.898878\pi\)
0.949961 0.312369i \(-0.101122\pi\)
\(492\) −0.186137 1.79962i −0.00839169 0.0811333i
\(493\) −18.9557 10.9441i −0.853720 0.492895i
\(494\) 1.29380 + 0.746976i 0.0582108 + 0.0336080i
\(495\) 0 0
\(496\) 6.62638i 0.297533i
\(497\) 9.78866 + 15.4772i 0.439081 + 0.694248i
\(498\) −2.87633 + 6.43168i −0.128892 + 0.288210i
\(499\) 0.954451 + 1.65316i 0.0427271 + 0.0740055i 0.886598 0.462541i \(-0.153062\pi\)
−0.843871 + 0.536546i \(0.819729\pi\)
\(500\) 0 0
\(501\) 6.01958 4.35827i 0.268935 0.194713i
\(502\) 7.66860 4.42747i 0.342266 0.197608i
\(503\) 15.5096 0.691537 0.345769 0.938320i \(-0.387618\pi\)
0.345769 + 0.938320i \(0.387618\pi\)
\(504\) −7.69738 + 1.93657i −0.342869 + 0.0862617i
\(505\) 0 0
\(506\) −18.1677 + 10.4891i −0.807655 + 0.466300i
\(507\) 16.7075 12.0965i 0.742006 0.537225i
\(508\) −4.36543 + 7.56114i −0.193684 + 0.335471i
\(509\) −12.3583 21.4051i −0.547770 0.948766i −0.998427 0.0560688i \(-0.982143\pi\)
0.450656 0.892697i \(-0.351190\pi\)
\(510\) 0 0
\(511\) 9.26139 0.373843i 0.409700 0.0165378i
\(512\) 1.00000i 0.0441942i
\(513\) −5.49805 5.00013i −0.242745 0.220761i
\(514\) −9.52277 5.49798i −0.420032 0.242505i
\(515\) 0 0
\(516\) 1.23341 + 11.9250i 0.0542980 + 0.524968i
\(517\) 52.5667i 2.31188i
\(518\) −7.03967 + 0.284162i −0.309305 + 0.0124853i
\(519\) −1.78416 0.797901i −0.0783160 0.0350240i
\(520\) 0 0
\(521\) 17.7981 30.8272i 0.779748 1.35056i −0.152339 0.988328i \(-0.548680\pi\)
0.932087 0.362235i \(-0.117986\pi\)
\(522\) 20.3253 4.24999i 0.889614 0.186017i
\(523\) 14.6412 8.45307i 0.640213 0.369627i −0.144484 0.989507i \(-0.546152\pi\)
0.784697 + 0.619880i \(0.212819\pi\)
\(524\) 13.7725 0.601654
\(525\) 0 0
\(526\) −2.00000 −0.0872041
\(527\) 18.1471 10.4772i 0.790500 0.456395i
\(528\) −4.75937 6.57357i −0.207125 0.286078i
\(529\) −1.47723 + 2.55863i −0.0642272 + 0.111245i
\(530\) 0 0
\(531\) 21.1488 + 23.6451i 0.917779 + 1.02611i
\(532\) −2.02265 3.19808i −0.0876928 0.138655i
\(533\) 1.09110i 0.0472607i
\(534\) −8.47223 + 0.876291i −0.366629 + 0.0379208i
\(535\) 0 0
\(536\) −12.3583 7.13505i −0.533796 0.308187i
\(537\) 33.3933 3.45390i 1.44103 0.149047i
\(538\) 17.5810i 0.757973i
\(539\) 26.9905 18.6355i 1.16256 0.802689i
\(540\) 0 0
\(541\) −4.26139 7.38094i −0.183211 0.317331i 0.759761 0.650202i \(-0.225316\pi\)
−0.942972 + 0.332871i \(0.891983\pi\)
\(542\) −3.16228 + 5.47723i −0.135831 + 0.235267i
\(543\) 3.21209 + 4.43649i 0.137844 + 0.190388i
\(544\) 2.73861 1.58114i 0.117417 0.0677908i
\(545\) 0 0
\(546\) 4.73762 0.684110i 0.202751 0.0292772i
\(547\) 3.61845 0.154714 0.0773569 0.997003i \(-0.475352\pi\)
0.0773569 + 0.997003i \(0.475352\pi\)
\(548\) 3.01137 1.73861i 0.128639 0.0742699i
\(549\) −2.12702 10.1723i −0.0907789 0.434143i
\(550\) 0 0
\(551\) 4.94975 + 8.57321i 0.210866 + 0.365231i
\(552\) 7.07912 + 3.16588i 0.301307 + 0.134749i
\(553\) 26.8886 + 14.1099i 1.14342 + 0.600015i
\(554\) 9.79796i 0.416275i
\(555\) 0 0
\(556\) −17.4772 10.0905i −0.741199 0.427932i
\(557\) −24.1304 13.9317i −1.02244 0.590304i −0.107628 0.994191i \(-0.534326\pi\)
−0.914809 + 0.403887i \(0.867659\pi\)
\(558\) −6.20555 + 18.8857i −0.262702 + 0.799497i
\(559\) 7.23003i 0.305798i
\(560\) 0 0
\(561\) −10.4772 + 23.4278i −0.442349 + 0.989122i
\(562\) 0.904612 + 1.56683i 0.0381588 + 0.0660929i
\(563\) 5.19615 9.00000i 0.218992 0.379305i −0.735508 0.677516i \(-0.763057\pi\)
0.954500 + 0.298211i \(0.0963899\pi\)
\(564\) −15.7394 + 11.3956i −0.662750 + 0.479842i
\(565\) 0 0
\(566\) 9.22460 0.387739
\(567\) −23.7518 1.68915i −0.997481 0.0709375i
\(568\) 6.92163 0.290425
\(569\) −6.54879 + 3.78095i −0.274540 + 0.158505i −0.630949 0.775824i \(-0.717334\pi\)
0.356409 + 0.934330i \(0.384001\pi\)
\(570\) 0 0
\(571\) −7.47723 + 12.9509i −0.312912 + 0.541980i −0.978991 0.203901i \(-0.934638\pi\)
0.666079 + 0.745881i \(0.267971\pi\)
\(572\) 2.44716 + 4.23861i 0.102321 + 0.177225i
\(573\) 11.5207 25.7611i 0.481284 1.07618i
\(574\) 1.28416 2.44716i 0.0535999 0.102143i
\(575\) 0 0
\(576\) −0.936492 + 2.85008i −0.0390205 + 0.118754i
\(577\) 0.584480 + 0.337449i 0.0243322 + 0.0140482i 0.512117 0.858916i \(-0.328862\pi\)
−0.487785 + 0.872964i \(0.662195\pi\)
\(578\) 6.06218 + 3.50000i 0.252153 + 0.145581i
\(579\) 1.30948 + 12.6604i 0.0544199 + 0.526148i
\(580\) 0 0
\(581\) −9.09576 + 5.75267i −0.377356 + 0.238661i
\(582\) 18.9557 + 8.47723i 0.785737 + 0.351392i
\(583\) 11.7139 + 20.2891i 0.485140 + 0.840287i
\(584\) 1.75166 3.03397i 0.0724843 0.125547i
\(585\) 0 0
\(586\) 6.97723 4.02830i 0.288227 0.166408i
\(587\) 21.0864 0.870330 0.435165 0.900351i \(-0.356690\pi\)
0.435165 + 0.900351i \(0.356690\pi\)
\(588\) −11.4309 4.04156i −0.471403 0.166671i
\(589\) −9.47723 −0.390502
\(590\) 0 0
\(591\) 9.14178 + 12.6265i 0.376042 + 0.519384i
\(592\) −1.33146 + 2.30615i −0.0547225 + 0.0947821i
\(593\) 0.826579 + 1.43168i 0.0339435 + 0.0587919i 0.882498 0.470316i \(-0.155860\pi\)
−0.848555 + 0.529108i \(0.822527\pi\)
\(594\) −7.40852 23.1923i −0.303975 0.951593i
\(595\) 0 0
\(596\) 2.44949i 0.100335i
\(597\) −26.7208 + 2.76376i −1.09361 + 0.113113i
\(598\) −4.05015 2.33836i −0.165623 0.0956225i
\(599\) −20.4739 11.8206i −0.836540 0.482977i 0.0195464 0.999809i \(-0.493778\pi\)
−0.856087 + 0.516832i \(0.827111\pi\)
\(600\) 0 0
\(601\) 4.06775i 0.165927i −0.996553 0.0829635i \(-0.973562\pi\)
0.996553 0.0829635i \(-0.0264385\pi\)
\(602\) −8.50934 + 16.2158i −0.346815 + 0.660908i
\(603\) −28.5402 31.9089i −1.16225 1.29943i
\(604\) −1.00000 1.73205i −0.0406894 0.0704761i
\(605\) 0 0
\(606\) 11.4919 + 15.8725i 0.466828 + 0.644775i
\(607\) 10.6468 6.14692i 0.432140 0.249496i −0.268118 0.963386i \(-0.586402\pi\)
0.700258 + 0.713890i \(0.253068\pi\)
\(608\) −1.43023 −0.0580034
\(609\) 29.4540 + 11.7708i 1.19353 + 0.476976i
\(610\) 0 0
\(611\) 10.1487 5.85938i 0.410574 0.237045i
\(612\) 9.28600 1.94169i 0.375364 0.0784882i
\(613\) −2.92726 + 5.07016i −0.118231 + 0.204782i −0.919067 0.394102i \(-0.871056\pi\)
0.800836 + 0.598884i \(0.204389\pi\)
\(614\) −5.99430 10.3824i −0.241910 0.419001i
\(615\) 0 0
\(616\) −0.500000 12.3867i −0.0201456 0.499076i
\(617\) 14.5228i 0.584665i 0.956317 + 0.292332i \(0.0944314\pi\)
−0.956317 + 0.292332i \(0.905569\pi\)
\(618\) −0.876291 8.47223i −0.0352496 0.340803i
\(619\) −26.1475 15.0963i −1.05096 0.606771i −0.128040 0.991769i \(-0.540869\pi\)
−0.922917 + 0.384998i \(0.874202\pi\)
\(620\) 0 0
\(621\) 17.2113 + 15.6525i 0.690664 + 0.628115i
\(622\) 17.5810i 0.704936i
\(623\) −11.5207 6.04555i −0.461567 0.242210i
\(624\) 0.738613 1.65159i 0.0295682 0.0661165i
\(625\) 0 0
\(626\) −11.6190 + 20.1246i −0.464387 + 0.804341i
\(627\) 9.40169 6.80698i 0.375467 0.271845i
\(628\) −12.5118 + 7.22369i −0.499275 + 0.288257i
\(629\) 8.42087 0.335762
\(630\) 0 0
\(631\) 3.47723 0.138426 0.0692131 0.997602i \(-0.477951\pi\)
0.0692131 + 0.997602i \(0.477951\pi\)
\(632\) 9.93957 5.73861i 0.395375 0.228270i
\(633\) 34.3401 24.8628i 1.36490 0.988208i
\(634\) −4.95445 + 8.58136i −0.196766 + 0.340809i
\(635\) 0 0
\(636\) 3.53553 7.90569i 0.140193 0.313481i
\(637\) 6.60635 + 3.13367i 0.261753 + 0.124160i
\(638\) 32.4317i 1.28398i
\(639\) 19.7272 + 6.48204i 0.780397 + 0.256426i
\(640\) 0 0
\(641\) −13.9251 8.03966i −0.550008 0.317547i 0.199117 0.979976i \(-0.436193\pi\)
−0.749125 + 0.662428i \(0.769526\pi\)
\(642\) 0.976025 + 9.43649i 0.0385206 + 0.372429i
\(643\) 26.0663i 1.02796i −0.857803 0.513978i \(-0.828171\pi\)
0.857803 0.513978i \(-0.171829\pi\)
\(644\) 6.33175 + 10.0114i 0.249506 + 0.394504i
\(645\) 0 0
\(646\) 2.26139 + 3.91684i 0.0889731 + 0.154106i
\(647\) −10.2019 + 17.6703i −0.401080 + 0.694691i −0.993857 0.110676i \(-0.964698\pi\)
0.592777 + 0.805367i \(0.298032\pi\)
\(648\) −5.33816 + 7.24597i −0.209703 + 0.284648i
\(649\) −42.9089 + 24.7735i −1.68432 + 0.972444i
\(650\) 0 0
\(651\) −23.8578 + 18.7855i −0.935060 + 0.736261i
\(652\) 14.6969 0.575577
\(653\) −34.5227 + 19.9317i −1.35098 + 0.779987i −0.988386 0.151962i \(-0.951441\pi\)
−0.362590 + 0.931949i \(0.618108\pi\)
\(654\) 20.7535 + 28.6645i 0.811528 + 1.12087i
\(655\) 0 0
\(656\) −0.522278 0.904612i −0.0203915 0.0353192i
\(657\) 7.83368 7.00665i 0.305621 0.273356i
\(658\) −29.6582 + 1.19718i −1.15620 + 0.0466708i
\(659\) 34.2929i 1.33586i −0.744224 0.667930i \(-0.767181\pi\)
0.744224 0.667930i \(-0.232819\pi\)
\(660\) 0 0
\(661\) 0.522774 + 0.301824i 0.0203336 + 0.0117396i 0.510132 0.860096i \(-0.329596\pi\)
−0.489799 + 0.871836i \(0.662930\pi\)
\(662\) −18.5604 10.7158i −0.721370 0.416483i
\(663\) −5.69091 + 0.588616i −0.221017 + 0.0228600i
\(664\) 4.06775i 0.157859i
\(665\) 0 0
\(666\) −5.95445 + 5.32582i −0.230730 + 0.206371i
\(667\) −15.4948 26.8378i −0.599963 1.03917i
\(668\) 2.14534 3.71584i 0.0830057 0.143770i
\(669\) −22.2329 30.7077i −0.859574 1.18723i
\(670\) 0 0
\(671\) 16.2312 0.626600
\(672\) −3.60042 + 2.83495i −0.138889 + 0.109361i
\(673\) 14.1585 0.545771 0.272885 0.962047i \(-0.412022\pi\)
0.272885 + 0.962047i \(0.412022\pi\)
\(674\) 14.8492 8.57321i 0.571971 0.330228i
\(675\) 0 0
\(676\) 5.95445 10.3134i 0.229017 0.396670i
\(677\) −16.4545 28.5000i −0.632397 1.09534i −0.987060 0.160350i \(-0.948738\pi\)
0.354663 0.934994i \(-0.384596\pi\)
\(678\) −27.6339 12.3583i −1.06127 0.474616i
\(679\) 16.9545 + 26.8073i 0.650652 + 1.02877i
\(680\) 0 0
\(681\) 1.85188 + 17.9045i 0.0709641 + 0.686101i
\(682\) −26.8886 15.5241i −1.02962 0.594450i
\(683\) −16.4150 9.47723i −0.628104 0.362636i 0.151913 0.988394i \(-0.451456\pi\)
−0.780017 + 0.625758i \(0.784790\pi\)
\(684\) −4.07627 1.33940i −0.155860 0.0512131i
\(685\) 0 0
\(686\) −11.1289 14.8036i −0.424903 0.565206i
\(687\) 9.58454 21.4317i 0.365673 0.817669i
\(688\) 3.46081 + 5.99430i 0.131942 + 0.228531i
\(689\) −2.61139 + 4.52306i −0.0994861 + 0.172315i
\(690\) 0 0
\(691\) 3.00000 1.73205i 0.114125 0.0658903i −0.441851 0.897089i \(-0.645678\pi\)
0.555976 + 0.831198i \(0.312345\pi\)
\(692\) −1.12840 −0.0428954
\(693\) 10.1750 35.7715i 0.386517 1.35885i
\(694\) 17.4772 0.663426
\(695\) 0 0
\(696\) 9.71064 7.03066i 0.368081 0.266497i
\(697\) −1.65159 + 2.86064i −0.0625584 + 0.108354i
\(698\) 5.87182 + 10.1703i 0.222252 + 0.384951i
\(699\) 2.82843 6.32456i 0.106981 0.239217i
\(700\) 0 0
\(701\) 51.7546i 1.95474i −0.211531 0.977371i \(-0.567845\pi\)
0.211531 0.977371i \(-0.432155\pi\)
\(702\) 3.65181 4.01546i 0.137829 0.151554i
\(703\) −3.29832 1.90428i −0.124398 0.0718214i
\(704\) −4.05781 2.34278i −0.152935 0.0882968i
\(705\) 0 0
\(706\) 0.603648i 0.0227186i
\(707\) 1.20730 + 29.9089i 0.0454050 + 1.12484i
\(708\) 16.7196 + 7.47723i 0.628360 + 0.281011i
\(709\) −11.2158 19.4264i −0.421220 0.729574i 0.574839 0.818266i \(-0.305065\pi\)
−0.996059 + 0.0886924i \(0.971731\pi\)
\(710\) 0 0
\(711\) 33.7028 7.04721i 1.26395 0.264291i
\(712\) −4.25871 + 2.45877i −0.159602 + 0.0921463i
\(713\) 29.6678 1.11107
\(714\) 13.4566 + 5.37771i 0.503601 + 0.201256i
\(715\) 0 0
\(716\) 16.7857 9.69125i 0.627312 0.362179i
\(717\) 0 0
\(718\) 5.69688 9.86729i 0.212606 0.368244i
\(719\) 0.401865 + 0.696051i 0.0149870 + 0.0259583i 0.873422 0.486965i \(-0.161896\pi\)
−0.858435 + 0.512923i \(0.828563\pi\)
\(720\) 0 0
\(721\) 6.04555 11.5207i 0.225148 0.429054i
\(722\) 16.9545i 0.630979i
\(723\) −36.7130 + 3.79726i −1.36537 + 0.141222i
\(724\) 2.73861 + 1.58114i 0.101780 + 0.0587626i
\(725\) 0 0
\(726\) 18.8730 1.95205i 0.700442 0.0724474i
\(727\) 15.1223i 0.560854i 0.959875 + 0.280427i \(0.0904761\pi\)
−0.959875 + 0.280427i \(0.909524\pi\)
\(728\) 2.33570 1.47723i 0.0865668 0.0547496i
\(729\) −22.0000 + 15.6525i −0.814815 + 0.579721i
\(730\) 0 0
\(731\) 10.9441 18.9557i 0.404780 0.701100i
\(732\) −3.51867 4.85993i −0.130054 0.179628i
\(733\) −2.07357 + 1.19718i −0.0765891 + 0.0442187i −0.537805 0.843069i \(-0.680747\pi\)
0.461216 + 0.887288i \(0.347413\pi\)
\(734\) −0.369657 −0.0136443
\(735\) 0 0
\(736\) 4.47723 0.165033
\(737\) 57.9054 33.4317i 2.13297 1.23147i
\(738\) −0.641375 3.06733i −0.0236093 0.112910i
\(739\) 3.23861 5.60944i 0.119134 0.206347i −0.800291 0.599612i \(-0.795321\pi\)
0.919425 + 0.393266i \(0.128655\pi\)
\(740\) 0 0
\(741\) 2.36215 + 1.05638i 0.0867756 + 0.0388072i
\(742\) 11.1803 7.07107i 0.410443 0.259587i
\(743\) 13.4317i 0.492760i −0.969173 0.246380i \(-0.920759\pi\)
0.969173 0.246380i \(-0.0792412\pi\)
\(744\) 1.18080 + 11.4163i 0.0432903 + 0.418543i
\(745\) 0 0
\(746\) −20.1042 11.6072i −0.736068 0.424969i
\(747\) −3.80941 + 11.5934i −0.139379 + 0.424181i
\(748\) 14.8170i 0.541764i
\(749\) −6.73362 + 12.8319i −0.246041 + 0.468868i
\(750\) 0 0
\(751\) 16.0000 + 27.7128i 0.583848 + 1.01125i 0.995018 + 0.0996961i \(0.0317870\pi\)
−0.411170 + 0.911559i \(0.634880\pi\)
\(752\) −5.60944 + 9.71584i −0.204555 + 0.354300i
\(753\) 12.4230 8.99443i 0.452718 0.327775i
\(754\) −6.26139 + 3.61501i −0.228026 + 0.131651i
\(755\) 0 0
\(756\) −12.9164 + 4.70809i −0.469766 + 0.171232i
\(757\) −48.1361 −1.74954 −0.874768 0.484541i \(-0.838986\pi\)
−0.874768 + 0.484541i \(0.838986\pi\)
\(758\) 17.7338 10.2386i 0.644121 0.371883i
\(759\) −29.4313 + 21.3088i −1.06829 + 0.773459i
\(760\) 0 0
\(761\) 0.891935 + 1.54488i 0.0323326 + 0.0560018i 0.881739 0.471738i \(-0.156373\pi\)
−0.849406 + 0.527739i \(0.823040\pi\)
\(762\) −6.17364 + 13.8047i −0.223648 + 0.500091i
\(763\) 2.18028 + 54.0131i 0.0789315 + 1.95541i
\(764\) 16.2927i 0.589451i
\(765\) 0 0
\(766\) −15.7158 9.07354i −0.567836 0.327840i
\(767\) −9.56573 5.52277i −0.345398 0.199416i
\(768\) 0.178197 + 1.72286i 0.00643013 + 0.0621683i
\(769\) 16.1921i 0.583902i 0.956433 + 0.291951i \(0.0943045\pi\)
−0.956433 + 0.291951i \(0.905696\pi\)
\(770\) 0 0
\(771\) −17.3861 7.77531i −0.626146 0.280021i
\(772\) 3.67423 + 6.36396i 0.132239 + 0.229044i
\(773\) −8.09605 + 14.0228i −0.291195 + 0.504364i −0.974093 0.226150i \(-0.927386\pi\)
0.682898 + 0.730514i \(0.260719\pi\)
\(774\) 4.24999 + 20.3253i 0.152763 + 0.730578i
\(775\) 0 0
\(776\) 11.9886 0.430366
\(777\) −12.0777 + 1.74402i −0.433286 + 0.0625663i
\(778\) 7.34847 0.263455
\(779\) 1.29380 0.746976i 0.0463552 0.0267632i
\(780\) 0 0
\(781\) −16.2158 + 28.0867i −0.580248 + 1.00502i
\(782\) −7.07912 12.2614i −0.253149 0.438466i
\(783\) 34.2603 10.9441i 1.22436 0.391108i
\(784\) −6.97723 + 0.564201i −0.249187 + 0.0201501i
\(785\) 0 0
\(786\) 23.7280 2.45421i 0.846351 0.0875389i
\(787\) 43.4506 + 25.0862i 1.54884 + 0.894226i 0.998230 + 0.0594664i \(0.0189399\pi\)
0.550615 + 0.834760i \(0.314393\pi\)
\(788\) 7.79423 + 4.50000i 0.277658 + 0.160306i
\(789\) −3.44572 + 0.356394i −0.122671 + 0.0126880i
\(790\) 0 0
\(791\) −24.7165 39.0803i −0.878819 1.38953i
\(792\) −9.37112 10.4772i −0.332988 0.372292i
\(793\) 1.80922 + 3.13367i 0.0642474 + 0.111280i
\(794\) 7.44073 12.8877i 0.264061 0.457368i
\(795\) 0 0
\(796\) −13.4317 + 7.75478i −0.476073 + 0.274861i
\(797\) −54.2183 −1.92051 −0.960256 0.279121i \(-0.909957\pi\)
−0.960256 + 0.279121i \(0.909957\pi\)
\(798\) −4.05462 5.14942i −0.143532 0.182288i
\(799\) 35.4772 1.25509
\(800\) 0 0
\(801\) −14.4403 + 3.01945i −0.510223 + 0.106687i
\(802\) 0.477769 0.827520i 0.0168706 0.0292207i
\(803\) 8.20752 + 14.2158i 0.289637 + 0.501666i
\(804\) −22.5630 10.0905i −0.795736 0.355864i
\(805\) 0 0
\(806\) 6.92163i 0.243804i
\(807\) −3.13289 30.2897i −0.110283 1.06625i
\(808\) 9.79796 + 5.65685i 0.344691 + 0.199007i
\(809\) 7.65776 + 4.42121i 0.269233 + 0.155441i 0.628539 0.777778i \(-0.283653\pi\)
−0.359306 + 0.933220i \(0.616987\pi\)
\(810\) 0 0
\(811\) 38.3280i 1.34588i −0.739697 0.672940i \(-0.765031\pi\)
0.739697 0.672940i \(-0.234969\pi\)
\(812\) 18.2980 0.738613i 0.642134 0.0259202i
\(813\) −4.47214 + 10.0000i −0.156845 + 0.350715i
\(814\) −6.23861 10.8056i −0.218663 0.378736i
\(815\) 0 0
\(816\) 4.43649 3.21209i 0.155308 0.112446i
\(817\) −8.57321 + 4.94975i −0.299939 + 0.173170i
\(818\) −15.5096 −0.542279
\(819\) 8.04035 2.02286i 0.280953 0.0706843i
\(820\) 0 0
\(821\) −10.1403 + 5.85452i −0.353900 + 0.204324i −0.666401 0.745593i \(-0.732166\pi\)
0.312502 + 0.949917i \(0.398833\pi\)
\(822\) 4.87835 3.53200i 0.170152 0.123193i
\(823\) 1.59580 2.76401i 0.0556262 0.0963474i −0.836871 0.547400i \(-0.815618\pi\)
0.892498 + 0.451052i \(0.148951\pi\)
\(824\) −2.45877 4.25871i −0.0856553 0.148359i
\(825\) 0 0
\(826\) 14.9545 + 23.6451i 0.520332 + 0.822717i
\(827\) 3.90890i 0.135926i −0.997688 0.0679629i \(-0.978350\pi\)
0.997688 0.0679629i \(-0.0216500\pi\)
\(828\) 12.7605 + 4.19288i 0.443457 + 0.145713i
\(829\) 43.6931 + 25.2262i 1.51752 + 0.876142i 0.999788 + 0.0206012i \(0.00655803\pi\)
0.517735 + 0.855541i \(0.326775\pi\)
\(830\) 0 0
\(831\) 1.74597 + 16.8805i 0.0605669 + 0.585578i
\(832\) 1.04456i 0.0362135i
\(833\) 12.5771 + 18.2158i 0.435770 + 0.631141i
\(834\) −31.9089 14.2701i −1.10491 0.494133i
\(835\) 0 0
\(836\) 3.35071 5.80359i 0.115887 0.200721i
\(837\) −7.32591 + 33.6433i −0.253220 + 1.16288i
\(838\) 7.66860 4.42747i 0.264907 0.152944i
\(839\) −40.1440 −1.38593 −0.692963 0.720973i \(-0.743695\pi\)
−0.692963 + 0.720973i \(0.743695\pi\)
\(840\) 0 0
\(841\) −18.9089 −0.652031
\(842\) 16.4150 9.47723i 0.565700 0.326607i
\(843\) 1.83773 + 2.53824i 0.0632946 + 0.0874215i
\(844\) 12.2386 21.1979i 0.421270 0.729662i
\(845\) 0 0
\(846\) −25.0862 + 22.4378i −0.862481 + 0.771426i
\(847\) 25.6639 + 13.4672i 0.881821 + 0.462740i
\(848\) 5.00000i 0.171701i
\(849\) 15.8927 1.64380i 0.545436 0.0564149i
\(850\) 0 0
\(851\) 10.3251 + 5.96123i 0.353942 + 0.204348i
\(852\) 11.9250 1.23341i 0.408543 0.0422560i
\(853\) 31.2891i 1.07132i 0.844434 + 0.535659i \(0.179937\pi\)
−0.844434 + 0.535659i \(0.820063\pi\)
\(854\) −0.369657 9.15769i −0.0126494 0.313370i
\(855\) 0 0
\(856\) 2.73861 + 4.74342i 0.0936039 + 0.162127i
\(857\) −7.53185 + 13.0455i −0.257283 + 0.445627i −0.965513 0.260354i \(-0.916161\pi\)
0.708230 + 0.705982i \(0.249494\pi\)
\(858\) 4.97143 + 6.86646i 0.169722 + 0.234417i
\(859\) 26.4772 15.2866i 0.903391 0.521573i 0.0250924 0.999685i \(-0.492012\pi\)
0.878299 + 0.478112i \(0.158679\pi\)
\(860\) 0 0
\(861\) 1.77635 4.44495i 0.0605380 0.151484i
\(862\) −7.66374 −0.261028
\(863\) 22.9299 13.2386i 0.780545 0.450648i −0.0560787 0.998426i \(-0.517860\pi\)
0.836623 + 0.547779i \(0.184526\pi\)
\(864\) −1.10557 + 5.07718i −0.0376122 + 0.172729i
\(865\) 0 0
\(866\) 0 0
\(867\) 11.0680 + 4.94975i 0.375888 + 0.168102i
\(868\) −8.14637 + 15.5241i −0.276506 + 0.526924i
\(869\) 53.7772i 1.82427i
\(870\) 0 0
\(871\) 12.9089 + 7.45296i 0.437401 + 0.252534i
\(872\) 17.6944 + 10.2158i 0.599206 + 0.345952i
\(873\) 34.1685 + 11.2272i 1.15643 + 0.379984i
\(874\) 6.40345i 0.216600i
\(875\) 0 0
\(876\) 2.47723 5.53924i 0.0836977 0.187154i
\(877\) 27.8490 + 48.2359i 0.940394 + 1.62881i 0.764721 + 0.644361i \(0.222877\pi\)
0.175673 + 0.984449i \(0.443790\pi\)
\(878\) 4.44159 7.69306i 0.149896 0.259628i
\(879\) 11.3029 8.18352i 0.381239 0.276023i
\(880\) 0 0
\(881\) 18.7544 0.631853 0.315926 0.948784i \(-0.397685\pi\)
0.315926 + 0.948784i \(0.397685\pi\)
\(882\) −20.4141 4.92609i −0.687377 0.165870i
\(883\) −24.3833 −0.820564 −0.410282 0.911959i \(-0.634570\pi\)
−0.410282 + 0.911959i \(0.634570\pi\)
\(884\) −2.86064 + 1.65159i −0.0962136 + 0.0555489i
\(885\) 0 0
\(886\) 7.52277 13.0298i 0.252733 0.437746i
\(887\) 1.73205 + 3.00000i 0.0581566 + 0.100730i 0.893638 0.448789i \(-0.148144\pi\)
−0.835481 + 0.549519i \(0.814811\pi\)
\(888\) −1.88296 + 4.21043i −0.0631881 + 0.141293i
\(889\) −19.5228 + 12.3473i −0.654773 + 0.414115i
\(890\) 0 0
\(891\) −16.8966 38.6370i −0.566059 1.29439i
\(892\) −18.9557 10.9441i −0.634682 0.366434i
\(893\) −13.8959 8.02277i −0.465007 0.268472i
\(894\) 0.436492 + 4.22013i 0.0145985 + 0.141142i
\(895\) 0 0
\(896\) −1.22938 + 2.34278i −0.0410709 + 0.0782667i
\(897\) −7.39453 3.30694i −0.246896 0.110415i
\(898\) −12.9386 22.4104i −0.431768 0.747844i
\(899\) 22.9327 39.7205i 0.764847 1.32475i
\(900\) 0 0
\(901\) −13.6931 + 7.90569i −0.456182 + 0.263377i
\(902\) 4.89433 0.162963
\(903\) −11.7708 + 29.4540i −0.391707 + 0.980166i
\(904\) −17.4772 −0.581284
\(905\) 0 0
\(906\) −2.03151 2.80588i −0.0674923 0.0932192i
\(907\) −4.89898 + 8.48528i −0.162668 + 0.281749i −0.935825 0.352466i \(-0.885343\pi\)
0.773157 + 0.634215i \(0.218677\pi\)
\(908\) 5.19615 + 9.00000i 0.172440 + 0.298675i
\(909\) 22.6274 + 25.2982i 0.750504 + 0.839089i
\(910\) 0 0
\(911\) 24.0681i 0.797410i 0.917079 + 0.398705i \(0.130540\pi\)
−0.917079 + 0.398705i \(0.869460\pi\)
\(912\) −2.46408 + 0.254862i −0.0815939 + 0.00843933i
\(913\) −16.5062 9.52984i −0.546274 0.315392i
\(914\) −9.59425 5.53924i −0.317350 0.183222i
\(915\) 0 0
\(916\) 13.5546i 0.447856i
\(917\) 32.2659 + 16.9317i 1.06551 + 0.559133i
\(918\) 15.6525 5.00000i 0.516609 0.165025i
\(919\) 0.215838 + 0.373843i 0.00711985 + 0.0123319i 0.869563 0.493821i \(-0.164400\pi\)
−0.862444 + 0.506153i \(0.831067\pi\)
\(920\) 0 0
\(921\) −12.1775 16.8193i −0.401261 0.554215i
\(922\) −27.5289 + 15.8938i −0.906615 + 0.523434i
\(923\) −7.23003 −0.237979
\(924\) −3.06871 21.2515i −0.100953 0.699123i
\(925\) 0 0
\(926\) 19.5497 11.2871i 0.642444 0.370916i
\(927\) −3.01945 14.4403i −0.0991718 0.474282i
\(928\) 3.46081 5.99430i 0.113607 0.196773i
\(929\) 7.96300 + 13.7923i 0.261258 + 0.452512i 0.966576 0.256379i \(-0.0825294\pi\)
−0.705319 + 0.708890i \(0.749196\pi\)
\(930\) 0 0
\(931\) −0.806936 9.97902i −0.0264463 0.327049i
\(932\) 4.00000i 0.131024i
\(933\) 3.13289 + 30.2897i 0.102566 + 0.991640i
\(934\) −24.2614 14.0073i −0.793857 0.458333i
\(935\) 0 0
\(936\) 0.978218 2.97707i 0.0319741 0.0973087i
\(937\) 53.6757i 1.75351i 0.480938 + 0.876754i \(0.340296\pi\)
−0.480938 + 0.876754i \(0.659704\pi\)
\(938\) −20.1810 31.9089i −0.658932 1.04186i
\(939\) −16.4317 + 36.7423i −0.536228 + 1.19904i
\(940\) 0 0
\(941\) 10.2369 17.7309i 0.333715 0.578011i −0.649522 0.760343i \(-0.725031\pi\)
0.983237 + 0.182331i \(0.0583644\pi\)
\(942\) −20.2688 + 14.6750i −0.660394 + 0.478136i
\(943\) −4.05015 + 2.33836i −0.131891 + 0.0761474i
\(944\) 10.5744 0.344167
\(945\) 0 0
\(946\) −32.4317 −1.05444
\(947\) 28.4605 16.4317i 0.924842 0.533958i 0.0396654 0.999213i \(-0.487371\pi\)
0.885177 + 0.465255i \(0.154037\pi\)
\(948\) 16.1019 11.6580i 0.522965 0.378635i
\(949\) −1.82971 + 3.16915i −0.0593949 + 0.102875i
\(950\) 0 0
\(951\) −7.00665 + 15.6674i −0.227206 + 0.508049i
\(952\) 8.35979 0.337449i 0.270942 0.0109368i
\(953\) 46.9545i 1.52100i −0.649336 0.760502i \(-0.724953\pi\)
0.649336 0.760502i \(-0.275047\pi\)
\(954\) 4.68246 14.2504i 0.151600 0.461375i
\(955\) 0 0
\(956\) 0 0
\(957\) 5.77923 + 55.8752i 0.186816 + 1.80619i
\(958\) 42.3620i 1.36865i
\(959\) 9.19239 0.371058i 0.296838 0.0119821i
\(960\) 0 0
\(961\) 6.45445 + 11.1794i 0.208208 + 0.360627i
\(962\) 1.39078 2.40890i 0.0448406 0.0776661i
\(963\) 3.36311 + 16.0838i 0.108375 + 0.518294i
\(964\) −18.4545 + 10.6547i −0.594378 + 0.343164i
\(965\) 0 0
\(966\) 12.6927 + 16.1199i 0.408382 + 0.518649i
\(967\) 7.23690 0.232723 0.116361 0.993207i \(-0.462877\pi\)
0.116361 + 0.993207i \(0.462877\pi\)
\(968\) 9.48683 5.47723i 0.304918 0.176045i
\(969\) 4.59402 + 6.34519i 0.147581 + 0.203837i
\(970\) 0 0
\(971\) 18.8748 + 32.6922i 0.605723 + 1.04914i 0.991937 + 0.126733i \(0.0404492\pi\)
−0.386214 + 0.922409i \(0.626217\pi\)
\(972\) −7.90569 + 13.4350i −0.253575 + 0.430929i
\(973\) −28.5402 45.1260i −0.914956 1.44667i
\(974\) 17.0349i 0.545832i
\(975\) 0 0
\(976\) −3.00000 1.73205i −0.0960277 0.0554416i
\(977\) −3.38521 1.95445i −0.108302 0.0625284i 0.444870 0.895595i \(-0.353250\pi\)
−0.553173 + 0.833067i \(0.686583\pi\)
\(978\) 25.3208 2.61895i 0.809669 0.0837448i
\(979\) 23.0414i 0.736407i
\(980\) 0 0
\(981\) 40.8634 + 45.6866i 1.30467 + 1.45866i
\(982\) −6.92163 11.9886i −0.220878 0.382572i
\(983\) −26.3941 + 45.7158i −0.841840 + 1.45811i 0.0464984 + 0.998918i \(0.485194\pi\)
−0.888338 + 0.459190i \(0.848140\pi\)
\(984\) −1.06101 1.46545i −0.0338238 0.0467169i
\(985\) 0 0
\(986\) −21.8881 −0.697059
\(987\) −50.8836 + 7.34757i −1.61964 + 0.233876i
\(988\) 1.49395 0.0475290
\(989\) 26.8378 15.4948i 0.853394 0.492707i
\(990\) 0 0
\(991\) −5.26139 + 9.11299i −0.167133 + 0.289484i −0.937411 0.348225i \(-0.886784\pi\)
0.770277 + 0.637709i \(0.220118\pi\)
\(992\) 3.31319 + 5.73861i 0.105194 + 0.182201i
\(993\) −33.8865 15.1545i −1.07535 0.480913i
\(994\) 16.2158 + 8.50934i 0.514335 + 0.269900i
\(995\) 0 0
\(996\) 0.724861 + 7.00816i 0.0229681 + 0.222062i
\(997\) −13.4164 7.74597i −0.424902 0.245317i 0.272270 0.962221i \(-0.412225\pi\)
−0.697172 + 0.716904i \(0.745559\pi\)
\(998\) 1.65316 + 0.954451i 0.0523298 + 0.0302126i
\(999\) −9.30964 + 10.2367i −0.294544 + 0.323875i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.s.i.101.8 16
3.2 odd 2 inner 1050.2.s.i.101.2 16
5.2 odd 4 210.2.t.f.59.2 yes 8
5.3 odd 4 210.2.t.e.59.3 8
5.4 even 2 inner 1050.2.s.i.101.1 16
7.5 odd 6 inner 1050.2.s.i.551.2 16
15.2 even 4 210.2.t.e.59.4 yes 8
15.8 even 4 210.2.t.f.59.1 yes 8
15.14 odd 2 inner 1050.2.s.i.101.7 16
21.5 even 6 inner 1050.2.s.i.551.8 16
35.3 even 12 1470.2.d.f.1469.3 8
35.12 even 12 210.2.t.f.89.1 yes 8
35.17 even 12 1470.2.d.e.1469.6 8
35.18 odd 12 1470.2.d.f.1469.6 8
35.19 odd 6 inner 1050.2.s.i.551.7 16
35.32 odd 12 1470.2.d.e.1469.3 8
35.33 even 12 210.2.t.e.89.4 yes 8
105.17 odd 12 1470.2.d.f.1469.7 8
105.32 even 12 1470.2.d.f.1469.2 8
105.38 odd 12 1470.2.d.e.1469.2 8
105.47 odd 12 210.2.t.e.89.3 yes 8
105.53 even 12 1470.2.d.e.1469.7 8
105.68 odd 12 210.2.t.f.89.2 yes 8
105.89 even 6 inner 1050.2.s.i.551.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.t.e.59.3 8 5.3 odd 4
210.2.t.e.59.4 yes 8 15.2 even 4
210.2.t.e.89.3 yes 8 105.47 odd 12
210.2.t.e.89.4 yes 8 35.33 even 12
210.2.t.f.59.1 yes 8 15.8 even 4
210.2.t.f.59.2 yes 8 5.2 odd 4
210.2.t.f.89.1 yes 8 35.12 even 12
210.2.t.f.89.2 yes 8 105.68 odd 12
1050.2.s.i.101.1 16 5.4 even 2 inner
1050.2.s.i.101.2 16 3.2 odd 2 inner
1050.2.s.i.101.7 16 15.14 odd 2 inner
1050.2.s.i.101.8 16 1.1 even 1 trivial
1050.2.s.i.551.1 16 105.89 even 6 inner
1050.2.s.i.551.2 16 7.5 odd 6 inner
1050.2.s.i.551.7 16 35.19 odd 6 inner
1050.2.s.i.551.8 16 21.5 even 6 inner
1470.2.d.e.1469.2 8 105.38 odd 12
1470.2.d.e.1469.3 8 35.32 odd 12
1470.2.d.e.1469.6 8 35.17 even 12
1470.2.d.e.1469.7 8 105.53 even 12
1470.2.d.f.1469.2 8 105.32 even 12
1470.2.d.f.1469.3 8 35.3 even 12
1470.2.d.f.1469.6 8 35.18 odd 12
1470.2.d.f.1469.7 8 105.17 odd 12