Properties

Label 1053.2.b.f
Level $1053$
Weight $2$
Character orbit 1053.b
Analytic conductor $8.408$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1053,2,Mod(649,1053)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1053.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{4} + \beta q^{5} + \beta q^{7} + \beta q^{11} + ( - \beta - 1) q^{13} + 4 q^{16} + 3 q^{17} - \beta q^{19} + 2 \beta q^{20} - 3 q^{23} - 7 q^{25} + 2 \beta q^{28} - 6 q^{29} + \beta q^{31} - 12 q^{35} + \cdots - 2 \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} - 2 q^{13} + 8 q^{16} + 6 q^{17} - 6 q^{23} - 14 q^{25} - 12 q^{29} - 24 q^{35} - 2 q^{43} - 10 q^{49} - 4 q^{52} + 18 q^{53} - 24 q^{55} + 14 q^{61} + 16 q^{64} + 24 q^{65} + 12 q^{68} - 24 q^{77}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 2.00000 3.46410i 0 3.46410i 0 0 0
649.2 0 0 2.00000 3.46410i 0 3.46410i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.b.f 2
3.b odd 2 1 1053.2.b.e 2
9.c even 3 1 351.2.t.a 2
9.c even 3 1 351.2.t.b 2
9.d odd 6 1 117.2.t.a 2
9.d odd 6 1 117.2.t.b yes 2
13.b even 2 1 inner 1053.2.b.f 2
39.d odd 2 1 1053.2.b.e 2
117.n odd 6 1 117.2.t.a 2
117.n odd 6 1 117.2.t.b yes 2
117.t even 6 1 351.2.t.a 2
117.t even 6 1 351.2.t.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.t.a 2 9.d odd 6 1
117.2.t.a 2 117.n odd 6 1
117.2.t.b yes 2 9.d odd 6 1
117.2.t.b yes 2 117.n odd 6 1
351.2.t.a 2 9.c even 3 1
351.2.t.a 2 117.t even 6 1
351.2.t.b 2 9.c even 3 1
351.2.t.b 2 117.t even 6 1
1053.2.b.e 2 3.b odd 2 1
1053.2.b.e 2 39.d odd 2 1
1053.2.b.f 2 1.a even 1 1 trivial
1053.2.b.f 2 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1053, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{17} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 12 \) Copy content Toggle raw display
$7$ \( T^{2} + 12 \) Copy content Toggle raw display
$11$ \( T^{2} + 12 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T + 13 \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 12 \) Copy content Toggle raw display
$23$ \( (T + 3)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 12 \) Copy content Toggle raw display
$37$ \( T^{2} + 48 \) Copy content Toggle raw display
$41$ \( T^{2} + 48 \) Copy content Toggle raw display
$43$ \( (T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 48 \) Copy content Toggle raw display
$53$ \( (T - 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 12 \) Copy content Toggle raw display
$61$ \( (T - 7)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 108 \) Copy content Toggle raw display
$79$ \( (T - 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 48 \) Copy content Toggle raw display
$89$ \( T^{2} + 12 \) Copy content Toggle raw display
$97$ \( T^{2} + 48 \) Copy content Toggle raw display
show more
show less