Properties

Label 1064.2.a.d.1.1
Level $1064$
Weight $2$
Character 1064.1
Self dual yes
Analytic conductor $8.496$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1064,2,Mod(1,1064)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1064, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1064.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1064 = 2^{3} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1064.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.49608277506\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1064.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{3} -1.00000 q^{5} -1.00000 q^{7} -2.61803 q^{9} +2.85410 q^{11} +5.47214 q^{13} +0.618034 q^{15} -3.61803 q^{17} -1.00000 q^{19} +0.618034 q^{21} +2.23607 q^{23} -4.00000 q^{25} +3.47214 q^{27} -6.09017 q^{29} -10.0902 q^{31} -1.76393 q^{33} +1.00000 q^{35} -9.47214 q^{37} -3.38197 q^{39} -0.381966 q^{41} -2.00000 q^{43} +2.61803 q^{45} -0.708204 q^{47} +1.00000 q^{49} +2.23607 q^{51} -11.0902 q^{53} -2.85410 q^{55} +0.618034 q^{57} +7.94427 q^{59} -5.00000 q^{61} +2.61803 q^{63} -5.47214 q^{65} -15.3262 q^{67} -1.38197 q^{69} +9.00000 q^{71} -5.85410 q^{73} +2.47214 q^{75} -2.85410 q^{77} +14.9443 q^{79} +5.70820 q^{81} +5.38197 q^{83} +3.61803 q^{85} +3.76393 q^{87} -7.23607 q^{89} -5.47214 q^{91} +6.23607 q^{93} +1.00000 q^{95} -4.52786 q^{97} -7.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - 2 q^{5} - 2 q^{7} - 3 q^{9} - q^{11} + 2 q^{13} - q^{15} - 5 q^{17} - 2 q^{19} - q^{21} - 8 q^{25} - 2 q^{27} - q^{29} - 9 q^{31} - 8 q^{33} + 2 q^{35} - 10 q^{37} - 9 q^{39} - 3 q^{41}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.618034 −0.356822 −0.178411 0.983956i \(-0.557096\pi\)
−0.178411 + 0.983956i \(0.557096\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −2.61803 −0.872678
\(10\) 0 0
\(11\) 2.85410 0.860544 0.430272 0.902699i \(-0.358418\pi\)
0.430272 + 0.902699i \(0.358418\pi\)
\(12\) 0 0
\(13\) 5.47214 1.51770 0.758849 0.651267i \(-0.225762\pi\)
0.758849 + 0.651267i \(0.225762\pi\)
\(14\) 0 0
\(15\) 0.618034 0.159576
\(16\) 0 0
\(17\) −3.61803 −0.877502 −0.438751 0.898609i \(-0.644579\pi\)
−0.438751 + 0.898609i \(0.644579\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0.618034 0.134866
\(22\) 0 0
\(23\) 2.23607 0.466252 0.233126 0.972446i \(-0.425104\pi\)
0.233126 + 0.972446i \(0.425104\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 3.47214 0.668213
\(28\) 0 0
\(29\) −6.09017 −1.13092 −0.565458 0.824777i \(-0.691301\pi\)
−0.565458 + 0.824777i \(0.691301\pi\)
\(30\) 0 0
\(31\) −10.0902 −1.81225 −0.906124 0.423012i \(-0.860973\pi\)
−0.906124 + 0.423012i \(0.860973\pi\)
\(32\) 0 0
\(33\) −1.76393 −0.307061
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −9.47214 −1.55721 −0.778605 0.627515i \(-0.784072\pi\)
−0.778605 + 0.627515i \(0.784072\pi\)
\(38\) 0 0
\(39\) −3.38197 −0.541548
\(40\) 0 0
\(41\) −0.381966 −0.0596531 −0.0298265 0.999555i \(-0.509495\pi\)
−0.0298265 + 0.999555i \(0.509495\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 2.61803 0.390273
\(46\) 0 0
\(47\) −0.708204 −0.103302 −0.0516511 0.998665i \(-0.516448\pi\)
−0.0516511 + 0.998665i \(0.516448\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 2.23607 0.313112
\(52\) 0 0
\(53\) −11.0902 −1.52335 −0.761676 0.647958i \(-0.775623\pi\)
−0.761676 + 0.647958i \(0.775623\pi\)
\(54\) 0 0
\(55\) −2.85410 −0.384847
\(56\) 0 0
\(57\) 0.618034 0.0818606
\(58\) 0 0
\(59\) 7.94427 1.03426 0.517128 0.855908i \(-0.327001\pi\)
0.517128 + 0.855908i \(0.327001\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 2.61803 0.329841
\(64\) 0 0
\(65\) −5.47214 −0.678735
\(66\) 0 0
\(67\) −15.3262 −1.87240 −0.936199 0.351470i \(-0.885682\pi\)
−0.936199 + 0.351470i \(0.885682\pi\)
\(68\) 0 0
\(69\) −1.38197 −0.166369
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) −5.85410 −0.685171 −0.342585 0.939487i \(-0.611303\pi\)
−0.342585 + 0.939487i \(0.611303\pi\)
\(74\) 0 0
\(75\) 2.47214 0.285458
\(76\) 0 0
\(77\) −2.85410 −0.325255
\(78\) 0 0
\(79\) 14.9443 1.68136 0.840681 0.541531i \(-0.182155\pi\)
0.840681 + 0.541531i \(0.182155\pi\)
\(80\) 0 0
\(81\) 5.70820 0.634245
\(82\) 0 0
\(83\) 5.38197 0.590748 0.295374 0.955382i \(-0.404556\pi\)
0.295374 + 0.955382i \(0.404556\pi\)
\(84\) 0 0
\(85\) 3.61803 0.392431
\(86\) 0 0
\(87\) 3.76393 0.403536
\(88\) 0 0
\(89\) −7.23607 −0.767022 −0.383511 0.923536i \(-0.625285\pi\)
−0.383511 + 0.923536i \(0.625285\pi\)
\(90\) 0 0
\(91\) −5.47214 −0.573636
\(92\) 0 0
\(93\) 6.23607 0.646650
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −4.52786 −0.459735 −0.229867 0.973222i \(-0.573829\pi\)
−0.229867 + 0.973222i \(0.573829\pi\)
\(98\) 0 0
\(99\) −7.47214 −0.750978
\(100\) 0 0
\(101\) 8.70820 0.866499 0.433249 0.901274i \(-0.357367\pi\)
0.433249 + 0.901274i \(0.357367\pi\)
\(102\) 0 0
\(103\) 15.4721 1.52451 0.762257 0.647274i \(-0.224091\pi\)
0.762257 + 0.647274i \(0.224091\pi\)
\(104\) 0 0
\(105\) −0.618034 −0.0603139
\(106\) 0 0
\(107\) −13.9443 −1.34804 −0.674022 0.738711i \(-0.735435\pi\)
−0.674022 + 0.738711i \(0.735435\pi\)
\(108\) 0 0
\(109\) −5.76393 −0.552085 −0.276042 0.961145i \(-0.589023\pi\)
−0.276042 + 0.961145i \(0.589023\pi\)
\(110\) 0 0
\(111\) 5.85410 0.555647
\(112\) 0 0
\(113\) 0.618034 0.0581397 0.0290699 0.999577i \(-0.490745\pi\)
0.0290699 + 0.999577i \(0.490745\pi\)
\(114\) 0 0
\(115\) −2.23607 −0.208514
\(116\) 0 0
\(117\) −14.3262 −1.32446
\(118\) 0 0
\(119\) 3.61803 0.331665
\(120\) 0 0
\(121\) −2.85410 −0.259464
\(122\) 0 0
\(123\) 0.236068 0.0212855
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −12.1803 −1.08083 −0.540415 0.841398i \(-0.681733\pi\)
−0.540415 + 0.841398i \(0.681733\pi\)
\(128\) 0 0
\(129\) 1.23607 0.108830
\(130\) 0 0
\(131\) −11.0344 −0.964084 −0.482042 0.876148i \(-0.660105\pi\)
−0.482042 + 0.876148i \(0.660105\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) −3.47214 −0.298834
\(136\) 0 0
\(137\) −5.05573 −0.431940 −0.215970 0.976400i \(-0.569291\pi\)
−0.215970 + 0.976400i \(0.569291\pi\)
\(138\) 0 0
\(139\) −11.1803 −0.948304 −0.474152 0.880443i \(-0.657245\pi\)
−0.474152 + 0.880443i \(0.657245\pi\)
\(140\) 0 0
\(141\) 0.437694 0.0368605
\(142\) 0 0
\(143\) 15.6180 1.30605
\(144\) 0 0
\(145\) 6.09017 0.505761
\(146\) 0 0
\(147\) −0.618034 −0.0509746
\(148\) 0 0
\(149\) −21.9443 −1.79774 −0.898872 0.438210i \(-0.855612\pi\)
−0.898872 + 0.438210i \(0.855612\pi\)
\(150\) 0 0
\(151\) 1.79837 0.146350 0.0731748 0.997319i \(-0.476687\pi\)
0.0731748 + 0.997319i \(0.476687\pi\)
\(152\) 0 0
\(153\) 9.47214 0.765777
\(154\) 0 0
\(155\) 10.0902 0.810462
\(156\) 0 0
\(157\) 21.0344 1.67873 0.839366 0.543567i \(-0.182927\pi\)
0.839366 + 0.543567i \(0.182927\pi\)
\(158\) 0 0
\(159\) 6.85410 0.543566
\(160\) 0 0
\(161\) −2.23607 −0.176227
\(162\) 0 0
\(163\) 4.32624 0.338857 0.169429 0.985542i \(-0.445808\pi\)
0.169429 + 0.985542i \(0.445808\pi\)
\(164\) 0 0
\(165\) 1.76393 0.137322
\(166\) 0 0
\(167\) 19.1803 1.48422 0.742110 0.670279i \(-0.233825\pi\)
0.742110 + 0.670279i \(0.233825\pi\)
\(168\) 0 0
\(169\) 16.9443 1.30341
\(170\) 0 0
\(171\) 2.61803 0.200206
\(172\) 0 0
\(173\) 4.18034 0.317825 0.158913 0.987293i \(-0.449201\pi\)
0.158913 + 0.987293i \(0.449201\pi\)
\(174\) 0 0
\(175\) 4.00000 0.302372
\(176\) 0 0
\(177\) −4.90983 −0.369045
\(178\) 0 0
\(179\) 2.85410 0.213326 0.106663 0.994295i \(-0.465983\pi\)
0.106663 + 0.994295i \(0.465983\pi\)
\(180\) 0 0
\(181\) −10.5623 −0.785090 −0.392545 0.919733i \(-0.628405\pi\)
−0.392545 + 0.919733i \(0.628405\pi\)
\(182\) 0 0
\(183\) 3.09017 0.228432
\(184\) 0 0
\(185\) 9.47214 0.696405
\(186\) 0 0
\(187\) −10.3262 −0.755129
\(188\) 0 0
\(189\) −3.47214 −0.252561
\(190\) 0 0
\(191\) 2.43769 0.176385 0.0881927 0.996103i \(-0.471891\pi\)
0.0881927 + 0.996103i \(0.471891\pi\)
\(192\) 0 0
\(193\) 5.14590 0.370410 0.185205 0.982700i \(-0.440705\pi\)
0.185205 + 0.982700i \(0.440705\pi\)
\(194\) 0 0
\(195\) 3.38197 0.242188
\(196\) 0 0
\(197\) 27.2705 1.94294 0.971472 0.237156i \(-0.0762151\pi\)
0.971472 + 0.237156i \(0.0762151\pi\)
\(198\) 0 0
\(199\) 21.1803 1.50143 0.750717 0.660624i \(-0.229708\pi\)
0.750717 + 0.660624i \(0.229708\pi\)
\(200\) 0 0
\(201\) 9.47214 0.668113
\(202\) 0 0
\(203\) 6.09017 0.427446
\(204\) 0 0
\(205\) 0.381966 0.0266777
\(206\) 0 0
\(207\) −5.85410 −0.406888
\(208\) 0 0
\(209\) −2.85410 −0.197422
\(210\) 0 0
\(211\) −12.9098 −0.888749 −0.444375 0.895841i \(-0.646574\pi\)
−0.444375 + 0.895841i \(0.646574\pi\)
\(212\) 0 0
\(213\) −5.56231 −0.381123
\(214\) 0 0
\(215\) 2.00000 0.136399
\(216\) 0 0
\(217\) 10.0902 0.684965
\(218\) 0 0
\(219\) 3.61803 0.244484
\(220\) 0 0
\(221\) −19.7984 −1.33178
\(222\) 0 0
\(223\) 18.7082 1.25279 0.626397 0.779504i \(-0.284529\pi\)
0.626397 + 0.779504i \(0.284529\pi\)
\(224\) 0 0
\(225\) 10.4721 0.698142
\(226\) 0 0
\(227\) 19.7984 1.31406 0.657032 0.753863i \(-0.271812\pi\)
0.657032 + 0.753863i \(0.271812\pi\)
\(228\) 0 0
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 1.76393 0.116058
\(232\) 0 0
\(233\) −3.32624 −0.217909 −0.108955 0.994047i \(-0.534750\pi\)
−0.108955 + 0.994047i \(0.534750\pi\)
\(234\) 0 0
\(235\) 0.708204 0.0461981
\(236\) 0 0
\(237\) −9.23607 −0.599947
\(238\) 0 0
\(239\) −22.5967 −1.46166 −0.730831 0.682558i \(-0.760867\pi\)
−0.730831 + 0.682558i \(0.760867\pi\)
\(240\) 0 0
\(241\) −27.1246 −1.74725 −0.873625 0.486600i \(-0.838237\pi\)
−0.873625 + 0.486600i \(0.838237\pi\)
\(242\) 0 0
\(243\) −13.9443 −0.894525
\(244\) 0 0
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) −5.47214 −0.348184
\(248\) 0 0
\(249\) −3.32624 −0.210792
\(250\) 0 0
\(251\) −8.85410 −0.558866 −0.279433 0.960165i \(-0.590146\pi\)
−0.279433 + 0.960165i \(0.590146\pi\)
\(252\) 0 0
\(253\) 6.38197 0.401231
\(254\) 0 0
\(255\) −2.23607 −0.140028
\(256\) 0 0
\(257\) 26.9787 1.68289 0.841443 0.540346i \(-0.181707\pi\)
0.841443 + 0.540346i \(0.181707\pi\)
\(258\) 0 0
\(259\) 9.47214 0.588570
\(260\) 0 0
\(261\) 15.9443 0.986926
\(262\) 0 0
\(263\) 8.61803 0.531411 0.265705 0.964054i \(-0.414395\pi\)
0.265705 + 0.964054i \(0.414395\pi\)
\(264\) 0 0
\(265\) 11.0902 0.681264
\(266\) 0 0
\(267\) 4.47214 0.273690
\(268\) 0 0
\(269\) 18.1459 1.10637 0.553187 0.833057i \(-0.313411\pi\)
0.553187 + 0.833057i \(0.313411\pi\)
\(270\) 0 0
\(271\) −20.5623 −1.24907 −0.624536 0.780996i \(-0.714712\pi\)
−0.624536 + 0.780996i \(0.714712\pi\)
\(272\) 0 0
\(273\) 3.38197 0.204686
\(274\) 0 0
\(275\) −11.4164 −0.688435
\(276\) 0 0
\(277\) −31.1246 −1.87010 −0.935048 0.354520i \(-0.884644\pi\)
−0.935048 + 0.354520i \(0.884644\pi\)
\(278\) 0 0
\(279\) 26.4164 1.58151
\(280\) 0 0
\(281\) 7.76393 0.463157 0.231579 0.972816i \(-0.425611\pi\)
0.231579 + 0.972816i \(0.425611\pi\)
\(282\) 0 0
\(283\) −13.3820 −0.795475 −0.397738 0.917499i \(-0.630205\pi\)
−0.397738 + 0.917499i \(0.630205\pi\)
\(284\) 0 0
\(285\) −0.618034 −0.0366092
\(286\) 0 0
\(287\) 0.381966 0.0225467
\(288\) 0 0
\(289\) −3.90983 −0.229990
\(290\) 0 0
\(291\) 2.79837 0.164044
\(292\) 0 0
\(293\) 31.6525 1.84916 0.924579 0.380991i \(-0.124417\pi\)
0.924579 + 0.380991i \(0.124417\pi\)
\(294\) 0 0
\(295\) −7.94427 −0.462533
\(296\) 0 0
\(297\) 9.90983 0.575027
\(298\) 0 0
\(299\) 12.2361 0.707630
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) −5.38197 −0.309186
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) 10.6738 0.609184 0.304592 0.952483i \(-0.401480\pi\)
0.304592 + 0.952483i \(0.401480\pi\)
\(308\) 0 0
\(309\) −9.56231 −0.543981
\(310\) 0 0
\(311\) −6.56231 −0.372114 −0.186057 0.982539i \(-0.559571\pi\)
−0.186057 + 0.982539i \(0.559571\pi\)
\(312\) 0 0
\(313\) −25.5967 −1.44681 −0.723407 0.690422i \(-0.757425\pi\)
−0.723407 + 0.690422i \(0.757425\pi\)
\(314\) 0 0
\(315\) −2.61803 −0.147510
\(316\) 0 0
\(317\) 25.4164 1.42753 0.713764 0.700386i \(-0.246989\pi\)
0.713764 + 0.700386i \(0.246989\pi\)
\(318\) 0 0
\(319\) −17.3820 −0.973203
\(320\) 0 0
\(321\) 8.61803 0.481012
\(322\) 0 0
\(323\) 3.61803 0.201313
\(324\) 0 0
\(325\) −21.8885 −1.21416
\(326\) 0 0
\(327\) 3.56231 0.196996
\(328\) 0 0
\(329\) 0.708204 0.0390445
\(330\) 0 0
\(331\) −2.14590 −0.117949 −0.0589746 0.998259i \(-0.518783\pi\)
−0.0589746 + 0.998259i \(0.518783\pi\)
\(332\) 0 0
\(333\) 24.7984 1.35894
\(334\) 0 0
\(335\) 15.3262 0.837362
\(336\) 0 0
\(337\) 17.0344 0.927925 0.463963 0.885855i \(-0.346427\pi\)
0.463963 + 0.885855i \(0.346427\pi\)
\(338\) 0 0
\(339\) −0.381966 −0.0207455
\(340\) 0 0
\(341\) −28.7984 −1.55952
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.38197 0.0744025
\(346\) 0 0
\(347\) −14.9098 −0.800402 −0.400201 0.916427i \(-0.631060\pi\)
−0.400201 + 0.916427i \(0.631060\pi\)
\(348\) 0 0
\(349\) 5.67376 0.303710 0.151855 0.988403i \(-0.451475\pi\)
0.151855 + 0.988403i \(0.451475\pi\)
\(350\) 0 0
\(351\) 19.0000 1.01414
\(352\) 0 0
\(353\) 9.43769 0.502318 0.251159 0.967946i \(-0.419188\pi\)
0.251159 + 0.967946i \(0.419188\pi\)
\(354\) 0 0
\(355\) −9.00000 −0.477670
\(356\) 0 0
\(357\) −2.23607 −0.118345
\(358\) 0 0
\(359\) 14.8541 0.783970 0.391985 0.919972i \(-0.371789\pi\)
0.391985 + 0.919972i \(0.371789\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 1.76393 0.0925824
\(364\) 0 0
\(365\) 5.85410 0.306418
\(366\) 0 0
\(367\) −13.4721 −0.703240 −0.351620 0.936143i \(-0.614369\pi\)
−0.351620 + 0.936143i \(0.614369\pi\)
\(368\) 0 0
\(369\) 1.00000 0.0520579
\(370\) 0 0
\(371\) 11.0902 0.575773
\(372\) 0 0
\(373\) 33.9230 1.75647 0.878233 0.478233i \(-0.158723\pi\)
0.878233 + 0.478233i \(0.158723\pi\)
\(374\) 0 0
\(375\) −5.56231 −0.287236
\(376\) 0 0
\(377\) −33.3262 −1.71639
\(378\) 0 0
\(379\) −10.8197 −0.555769 −0.277884 0.960615i \(-0.589633\pi\)
−0.277884 + 0.960615i \(0.589633\pi\)
\(380\) 0 0
\(381\) 7.52786 0.385664
\(382\) 0 0
\(383\) −12.4164 −0.634449 −0.317224 0.948351i \(-0.602751\pi\)
−0.317224 + 0.948351i \(0.602751\pi\)
\(384\) 0 0
\(385\) 2.85410 0.145459
\(386\) 0 0
\(387\) 5.23607 0.266164
\(388\) 0 0
\(389\) 7.50658 0.380599 0.190299 0.981726i \(-0.439054\pi\)
0.190299 + 0.981726i \(0.439054\pi\)
\(390\) 0 0
\(391\) −8.09017 −0.409137
\(392\) 0 0
\(393\) 6.81966 0.344006
\(394\) 0 0
\(395\) −14.9443 −0.751928
\(396\) 0 0
\(397\) 13.1246 0.658705 0.329353 0.944207i \(-0.393169\pi\)
0.329353 + 0.944207i \(0.393169\pi\)
\(398\) 0 0
\(399\) −0.618034 −0.0309404
\(400\) 0 0
\(401\) −35.7984 −1.78769 −0.893843 0.448381i \(-0.852001\pi\)
−0.893843 + 0.448381i \(0.852001\pi\)
\(402\) 0 0
\(403\) −55.2148 −2.75044
\(404\) 0 0
\(405\) −5.70820 −0.283643
\(406\) 0 0
\(407\) −27.0344 −1.34005
\(408\) 0 0
\(409\) 16.7984 0.830626 0.415313 0.909679i \(-0.363672\pi\)
0.415313 + 0.909679i \(0.363672\pi\)
\(410\) 0 0
\(411\) 3.12461 0.154126
\(412\) 0 0
\(413\) −7.94427 −0.390912
\(414\) 0 0
\(415\) −5.38197 −0.264190
\(416\) 0 0
\(417\) 6.90983 0.338376
\(418\) 0 0
\(419\) 1.29180 0.0631084 0.0315542 0.999502i \(-0.489954\pi\)
0.0315542 + 0.999502i \(0.489954\pi\)
\(420\) 0 0
\(421\) −9.47214 −0.461644 −0.230822 0.972996i \(-0.574141\pi\)
−0.230822 + 0.972996i \(0.574141\pi\)
\(422\) 0 0
\(423\) 1.85410 0.0901495
\(424\) 0 0
\(425\) 14.4721 0.702002
\(426\) 0 0
\(427\) 5.00000 0.241967
\(428\) 0 0
\(429\) −9.65248 −0.466026
\(430\) 0 0
\(431\) 7.88854 0.379978 0.189989 0.981786i \(-0.439155\pi\)
0.189989 + 0.981786i \(0.439155\pi\)
\(432\) 0 0
\(433\) −26.1246 −1.25547 −0.627734 0.778428i \(-0.716018\pi\)
−0.627734 + 0.778428i \(0.716018\pi\)
\(434\) 0 0
\(435\) −3.76393 −0.180467
\(436\) 0 0
\(437\) −2.23607 −0.106966
\(438\) 0 0
\(439\) 7.41641 0.353966 0.176983 0.984214i \(-0.443366\pi\)
0.176983 + 0.984214i \(0.443366\pi\)
\(440\) 0 0
\(441\) −2.61803 −0.124668
\(442\) 0 0
\(443\) −7.38197 −0.350728 −0.175364 0.984504i \(-0.556110\pi\)
−0.175364 + 0.984504i \(0.556110\pi\)
\(444\) 0 0
\(445\) 7.23607 0.343023
\(446\) 0 0
\(447\) 13.5623 0.641475
\(448\) 0 0
\(449\) −8.03444 −0.379169 −0.189584 0.981864i \(-0.560714\pi\)
−0.189584 + 0.981864i \(0.560714\pi\)
\(450\) 0 0
\(451\) −1.09017 −0.0513341
\(452\) 0 0
\(453\) −1.11146 −0.0522208
\(454\) 0 0
\(455\) 5.47214 0.256538
\(456\) 0 0
\(457\) −20.5066 −0.959257 −0.479629 0.877472i \(-0.659229\pi\)
−0.479629 + 0.877472i \(0.659229\pi\)
\(458\) 0 0
\(459\) −12.5623 −0.586358
\(460\) 0 0
\(461\) −7.09017 −0.330222 −0.165111 0.986275i \(-0.552798\pi\)
−0.165111 + 0.986275i \(0.552798\pi\)
\(462\) 0 0
\(463\) 16.4164 0.762935 0.381468 0.924382i \(-0.375419\pi\)
0.381468 + 0.924382i \(0.375419\pi\)
\(464\) 0 0
\(465\) −6.23607 −0.289191
\(466\) 0 0
\(467\) 19.5623 0.905236 0.452618 0.891705i \(-0.350490\pi\)
0.452618 + 0.891705i \(0.350490\pi\)
\(468\) 0 0
\(469\) 15.3262 0.707700
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) −5.70820 −0.262463
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 29.0344 1.32940
\(478\) 0 0
\(479\) −0.965558 −0.0441175 −0.0220587 0.999757i \(-0.507022\pi\)
−0.0220587 + 0.999757i \(0.507022\pi\)
\(480\) 0 0
\(481\) −51.8328 −2.36337
\(482\) 0 0
\(483\) 1.38197 0.0628816
\(484\) 0 0
\(485\) 4.52786 0.205600
\(486\) 0 0
\(487\) −21.4721 −0.972995 −0.486498 0.873682i \(-0.661726\pi\)
−0.486498 + 0.873682i \(0.661726\pi\)
\(488\) 0 0
\(489\) −2.67376 −0.120912
\(490\) 0 0
\(491\) 3.41641 0.154180 0.0770902 0.997024i \(-0.475437\pi\)
0.0770902 + 0.997024i \(0.475437\pi\)
\(492\) 0 0
\(493\) 22.0344 0.992381
\(494\) 0 0
\(495\) 7.47214 0.335848
\(496\) 0 0
\(497\) −9.00000 −0.403705
\(498\) 0 0
\(499\) 30.3951 1.36067 0.680336 0.732900i \(-0.261834\pi\)
0.680336 + 0.732900i \(0.261834\pi\)
\(500\) 0 0
\(501\) −11.8541 −0.529602
\(502\) 0 0
\(503\) −14.8328 −0.661363 −0.330681 0.943742i \(-0.607279\pi\)
−0.330681 + 0.943742i \(0.607279\pi\)
\(504\) 0 0
\(505\) −8.70820 −0.387510
\(506\) 0 0
\(507\) −10.4721 −0.465084
\(508\) 0 0
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 0 0
\(511\) 5.85410 0.258970
\(512\) 0 0
\(513\) −3.47214 −0.153299
\(514\) 0 0
\(515\) −15.4721 −0.681784
\(516\) 0 0
\(517\) −2.02129 −0.0888961
\(518\) 0 0
\(519\) −2.58359 −0.113407
\(520\) 0 0
\(521\) 35.1803 1.54128 0.770639 0.637272i \(-0.219937\pi\)
0.770639 + 0.637272i \(0.219937\pi\)
\(522\) 0 0
\(523\) −6.23607 −0.272684 −0.136342 0.990662i \(-0.543535\pi\)
−0.136342 + 0.990662i \(0.543535\pi\)
\(524\) 0 0
\(525\) −2.47214 −0.107893
\(526\) 0 0
\(527\) 36.5066 1.59025
\(528\) 0 0
\(529\) −18.0000 −0.782609
\(530\) 0 0
\(531\) −20.7984 −0.902573
\(532\) 0 0
\(533\) −2.09017 −0.0905353
\(534\) 0 0
\(535\) 13.9443 0.602863
\(536\) 0 0
\(537\) −1.76393 −0.0761193
\(538\) 0 0
\(539\) 2.85410 0.122935
\(540\) 0 0
\(541\) 11.8885 0.511128 0.255564 0.966792i \(-0.417739\pi\)
0.255564 + 0.966792i \(0.417739\pi\)
\(542\) 0 0
\(543\) 6.52786 0.280137
\(544\) 0 0
\(545\) 5.76393 0.246900
\(546\) 0 0
\(547\) −16.9098 −0.723012 −0.361506 0.932370i \(-0.617737\pi\)
−0.361506 + 0.932370i \(0.617737\pi\)
\(548\) 0 0
\(549\) 13.0902 0.558675
\(550\) 0 0
\(551\) 6.09017 0.259450
\(552\) 0 0
\(553\) −14.9443 −0.635495
\(554\) 0 0
\(555\) −5.85410 −0.248493
\(556\) 0 0
\(557\) −44.5623 −1.88817 −0.944083 0.329709i \(-0.893050\pi\)
−0.944083 + 0.329709i \(0.893050\pi\)
\(558\) 0 0
\(559\) −10.9443 −0.462893
\(560\) 0 0
\(561\) 6.38197 0.269447
\(562\) 0 0
\(563\) −28.8885 −1.21751 −0.608753 0.793359i \(-0.708330\pi\)
−0.608753 + 0.793359i \(0.708330\pi\)
\(564\) 0 0
\(565\) −0.618034 −0.0260009
\(566\) 0 0
\(567\) −5.70820 −0.239722
\(568\) 0 0
\(569\) 38.7771 1.62562 0.812810 0.582529i \(-0.197937\pi\)
0.812810 + 0.582529i \(0.197937\pi\)
\(570\) 0 0
\(571\) −26.4164 −1.10549 −0.552746 0.833350i \(-0.686420\pi\)
−0.552746 + 0.833350i \(0.686420\pi\)
\(572\) 0 0
\(573\) −1.50658 −0.0629382
\(574\) 0 0
\(575\) −8.94427 −0.373002
\(576\) 0 0
\(577\) 24.5066 1.02022 0.510111 0.860109i \(-0.329604\pi\)
0.510111 + 0.860109i \(0.329604\pi\)
\(578\) 0 0
\(579\) −3.18034 −0.132170
\(580\) 0 0
\(581\) −5.38197 −0.223282
\(582\) 0 0
\(583\) −31.6525 −1.31091
\(584\) 0 0
\(585\) 14.3262 0.592317
\(586\) 0 0
\(587\) −17.4164 −0.718852 −0.359426 0.933174i \(-0.617028\pi\)
−0.359426 + 0.933174i \(0.617028\pi\)
\(588\) 0 0
\(589\) 10.0902 0.415758
\(590\) 0 0
\(591\) −16.8541 −0.693285
\(592\) 0 0
\(593\) 13.1803 0.541252 0.270626 0.962685i \(-0.412769\pi\)
0.270626 + 0.962685i \(0.412769\pi\)
\(594\) 0 0
\(595\) −3.61803 −0.148325
\(596\) 0 0
\(597\) −13.0902 −0.535745
\(598\) 0 0
\(599\) −21.2705 −0.869089 −0.434545 0.900650i \(-0.643091\pi\)
−0.434545 + 0.900650i \(0.643091\pi\)
\(600\) 0 0
\(601\) 19.3820 0.790607 0.395303 0.918551i \(-0.370639\pi\)
0.395303 + 0.918551i \(0.370639\pi\)
\(602\) 0 0
\(603\) 40.1246 1.63400
\(604\) 0 0
\(605\) 2.85410 0.116036
\(606\) 0 0
\(607\) −2.88854 −0.117242 −0.0586212 0.998280i \(-0.518670\pi\)
−0.0586212 + 0.998280i \(0.518670\pi\)
\(608\) 0 0
\(609\) −3.76393 −0.152522
\(610\) 0 0
\(611\) −3.87539 −0.156781
\(612\) 0 0
\(613\) 11.5623 0.466997 0.233499 0.972357i \(-0.424983\pi\)
0.233499 + 0.972357i \(0.424983\pi\)
\(614\) 0 0
\(615\) −0.236068 −0.00951918
\(616\) 0 0
\(617\) 41.8673 1.68551 0.842756 0.538296i \(-0.180932\pi\)
0.842756 + 0.538296i \(0.180932\pi\)
\(618\) 0 0
\(619\) −19.6738 −0.790755 −0.395378 0.918519i \(-0.629386\pi\)
−0.395378 + 0.918519i \(0.629386\pi\)
\(620\) 0 0
\(621\) 7.76393 0.311556
\(622\) 0 0
\(623\) 7.23607 0.289907
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 1.76393 0.0704447
\(628\) 0 0
\(629\) 34.2705 1.36645
\(630\) 0 0
\(631\) −43.9443 −1.74939 −0.874697 0.484670i \(-0.838940\pi\)
−0.874697 + 0.484670i \(0.838940\pi\)
\(632\) 0 0
\(633\) 7.97871 0.317125
\(634\) 0 0
\(635\) 12.1803 0.483362
\(636\) 0 0
\(637\) 5.47214 0.216814
\(638\) 0 0
\(639\) −23.5623 −0.932110
\(640\) 0 0
\(641\) −7.61803 −0.300894 −0.150447 0.988618i \(-0.548071\pi\)
−0.150447 + 0.988618i \(0.548071\pi\)
\(642\) 0 0
\(643\) −3.00000 −0.118308 −0.0591542 0.998249i \(-0.518840\pi\)
−0.0591542 + 0.998249i \(0.518840\pi\)
\(644\) 0 0
\(645\) −1.23607 −0.0486701
\(646\) 0 0
\(647\) 43.0689 1.69321 0.846606 0.532220i \(-0.178642\pi\)
0.846606 + 0.532220i \(0.178642\pi\)
\(648\) 0 0
\(649\) 22.6738 0.890023
\(650\) 0 0
\(651\) −6.23607 −0.244411
\(652\) 0 0
\(653\) −19.6525 −0.769061 −0.384530 0.923112i \(-0.625637\pi\)
−0.384530 + 0.923112i \(0.625637\pi\)
\(654\) 0 0
\(655\) 11.0344 0.431151
\(656\) 0 0
\(657\) 15.3262 0.597933
\(658\) 0 0
\(659\) −44.4508 −1.73156 −0.865780 0.500425i \(-0.833177\pi\)
−0.865780 + 0.500425i \(0.833177\pi\)
\(660\) 0 0
\(661\) 2.94427 0.114519 0.0572595 0.998359i \(-0.481764\pi\)
0.0572595 + 0.998359i \(0.481764\pi\)
\(662\) 0 0
\(663\) 12.2361 0.475210
\(664\) 0 0
\(665\) −1.00000 −0.0387783
\(666\) 0 0
\(667\) −13.6180 −0.527292
\(668\) 0 0
\(669\) −11.5623 −0.447025
\(670\) 0 0
\(671\) −14.2705 −0.550907
\(672\) 0 0
\(673\) 1.20163 0.0463193 0.0231596 0.999732i \(-0.492627\pi\)
0.0231596 + 0.999732i \(0.492627\pi\)
\(674\) 0 0
\(675\) −13.8885 −0.534570
\(676\) 0 0
\(677\) −22.7984 −0.876213 −0.438106 0.898923i \(-0.644351\pi\)
−0.438106 + 0.898923i \(0.644351\pi\)
\(678\) 0 0
\(679\) 4.52786 0.173763
\(680\) 0 0
\(681\) −12.2361 −0.468887
\(682\) 0 0
\(683\) 8.05573 0.308244 0.154122 0.988052i \(-0.450745\pi\)
0.154122 + 0.988052i \(0.450745\pi\)
\(684\) 0 0
\(685\) 5.05573 0.193169
\(686\) 0 0
\(687\) 8.65248 0.330113
\(688\) 0 0
\(689\) −60.6869 −2.31199
\(690\) 0 0
\(691\) −17.2361 −0.655691 −0.327845 0.944731i \(-0.606323\pi\)
−0.327845 + 0.944731i \(0.606323\pi\)
\(692\) 0 0
\(693\) 7.47214 0.283843
\(694\) 0 0
\(695\) 11.1803 0.424094
\(696\) 0 0
\(697\) 1.38197 0.0523457
\(698\) 0 0
\(699\) 2.05573 0.0777548
\(700\) 0 0
\(701\) 2.11146 0.0797486 0.0398743 0.999205i \(-0.487304\pi\)
0.0398743 + 0.999205i \(0.487304\pi\)
\(702\) 0 0
\(703\) 9.47214 0.357248
\(704\) 0 0
\(705\) −0.437694 −0.0164845
\(706\) 0 0
\(707\) −8.70820 −0.327506
\(708\) 0 0
\(709\) −37.1803 −1.39634 −0.698168 0.715933i \(-0.746001\pi\)
−0.698168 + 0.715933i \(0.746001\pi\)
\(710\) 0 0
\(711\) −39.1246 −1.46729
\(712\) 0 0
\(713\) −22.5623 −0.844965
\(714\) 0 0
\(715\) −15.6180 −0.584081
\(716\) 0 0
\(717\) 13.9656 0.521553
\(718\) 0 0
\(719\) −31.7771 −1.18509 −0.592543 0.805539i \(-0.701876\pi\)
−0.592543 + 0.805539i \(0.701876\pi\)
\(720\) 0 0
\(721\) −15.4721 −0.576212
\(722\) 0 0
\(723\) 16.7639 0.623457
\(724\) 0 0
\(725\) 24.3607 0.904733
\(726\) 0 0
\(727\) 43.8328 1.62567 0.812835 0.582495i \(-0.197923\pi\)
0.812835 + 0.582495i \(0.197923\pi\)
\(728\) 0 0
\(729\) −8.50658 −0.315058
\(730\) 0 0
\(731\) 7.23607 0.267636
\(732\) 0 0
\(733\) 21.5279 0.795150 0.397575 0.917570i \(-0.369852\pi\)
0.397575 + 0.917570i \(0.369852\pi\)
\(734\) 0 0
\(735\) 0.618034 0.0227965
\(736\) 0 0
\(737\) −43.7426 −1.61128
\(738\) 0 0
\(739\) 39.0689 1.43717 0.718586 0.695438i \(-0.244790\pi\)
0.718586 + 0.695438i \(0.244790\pi\)
\(740\) 0 0
\(741\) 3.38197 0.124240
\(742\) 0 0
\(743\) 32.4164 1.18924 0.594621 0.804006i \(-0.297302\pi\)
0.594621 + 0.804006i \(0.297302\pi\)
\(744\) 0 0
\(745\) 21.9443 0.803976
\(746\) 0 0
\(747\) −14.0902 −0.515532
\(748\) 0 0
\(749\) 13.9443 0.509513
\(750\) 0 0
\(751\) 10.7295 0.391525 0.195762 0.980651i \(-0.437282\pi\)
0.195762 + 0.980651i \(0.437282\pi\)
\(752\) 0 0
\(753\) 5.47214 0.199416
\(754\) 0 0
\(755\) −1.79837 −0.0654495
\(756\) 0 0
\(757\) −4.11146 −0.149433 −0.0747167 0.997205i \(-0.523805\pi\)
−0.0747167 + 0.997205i \(0.523805\pi\)
\(758\) 0 0
\(759\) −3.94427 −0.143168
\(760\) 0 0
\(761\) 0.888544 0.0322097 0.0161048 0.999870i \(-0.494873\pi\)
0.0161048 + 0.999870i \(0.494873\pi\)
\(762\) 0 0
\(763\) 5.76393 0.208668
\(764\) 0 0
\(765\) −9.47214 −0.342466
\(766\) 0 0
\(767\) 43.4721 1.56969
\(768\) 0 0
\(769\) −12.5836 −0.453776 −0.226888 0.973921i \(-0.572855\pi\)
−0.226888 + 0.973921i \(0.572855\pi\)
\(770\) 0 0
\(771\) −16.6738 −0.600491
\(772\) 0 0
\(773\) 30.1803 1.08551 0.542756 0.839891i \(-0.317381\pi\)
0.542756 + 0.839891i \(0.317381\pi\)
\(774\) 0 0
\(775\) 40.3607 1.44980
\(776\) 0 0
\(777\) −5.85410 −0.210015
\(778\) 0 0
\(779\) 0.381966 0.0136854
\(780\) 0 0
\(781\) 25.6869 0.919150
\(782\) 0 0
\(783\) −21.1459 −0.755693
\(784\) 0 0
\(785\) −21.0344 −0.750751
\(786\) 0 0
\(787\) −34.8328 −1.24166 −0.620828 0.783947i \(-0.713203\pi\)
−0.620828 + 0.783947i \(0.713203\pi\)
\(788\) 0 0
\(789\) −5.32624 −0.189619
\(790\) 0 0
\(791\) −0.618034 −0.0219748
\(792\) 0 0
\(793\) −27.3607 −0.971606
\(794\) 0 0
\(795\) −6.85410 −0.243090
\(796\) 0 0
\(797\) −27.0344 −0.957609 −0.478805 0.877922i \(-0.658930\pi\)
−0.478805 + 0.877922i \(0.658930\pi\)
\(798\) 0 0
\(799\) 2.56231 0.0906479
\(800\) 0 0
\(801\) 18.9443 0.669363
\(802\) 0 0
\(803\) −16.7082 −0.589620
\(804\) 0 0
\(805\) 2.23607 0.0788110
\(806\) 0 0
\(807\) −11.2148 −0.394779
\(808\) 0 0
\(809\) 33.2918 1.17048 0.585239 0.810861i \(-0.301001\pi\)
0.585239 + 0.810861i \(0.301001\pi\)
\(810\) 0 0
\(811\) 6.58359 0.231181 0.115591 0.993297i \(-0.463124\pi\)
0.115591 + 0.993297i \(0.463124\pi\)
\(812\) 0 0
\(813\) 12.7082 0.445696
\(814\) 0 0
\(815\) −4.32624 −0.151542
\(816\) 0 0
\(817\) 2.00000 0.0699711
\(818\) 0 0
\(819\) 14.3262 0.500599
\(820\) 0 0
\(821\) 4.00000 0.139601 0.0698005 0.997561i \(-0.477764\pi\)
0.0698005 + 0.997561i \(0.477764\pi\)
\(822\) 0 0
\(823\) 30.5410 1.06459 0.532297 0.846558i \(-0.321329\pi\)
0.532297 + 0.846558i \(0.321329\pi\)
\(824\) 0 0
\(825\) 7.05573 0.245649
\(826\) 0 0
\(827\) 34.3050 1.19290 0.596450 0.802650i \(-0.296577\pi\)
0.596450 + 0.802650i \(0.296577\pi\)
\(828\) 0 0
\(829\) −31.7771 −1.10366 −0.551832 0.833955i \(-0.686071\pi\)
−0.551832 + 0.833955i \(0.686071\pi\)
\(830\) 0 0
\(831\) 19.2361 0.667292
\(832\) 0 0
\(833\) −3.61803 −0.125357
\(834\) 0 0
\(835\) −19.1803 −0.663763
\(836\) 0 0
\(837\) −35.0344 −1.21097
\(838\) 0 0
\(839\) 50.2492 1.73480 0.867398 0.497615i \(-0.165791\pi\)
0.867398 + 0.497615i \(0.165791\pi\)
\(840\) 0 0
\(841\) 8.09017 0.278971
\(842\) 0 0
\(843\) −4.79837 −0.165265
\(844\) 0 0
\(845\) −16.9443 −0.582901
\(846\) 0 0
\(847\) 2.85410 0.0980681
\(848\) 0 0
\(849\) 8.27051 0.283843
\(850\) 0 0
\(851\) −21.1803 −0.726053
\(852\) 0 0
\(853\) −34.1459 −1.16913 −0.584567 0.811346i \(-0.698735\pi\)
−0.584567 + 0.811346i \(0.698735\pi\)
\(854\) 0 0
\(855\) −2.61803 −0.0895349
\(856\) 0 0
\(857\) −33.9787 −1.16069 −0.580345 0.814370i \(-0.697082\pi\)
−0.580345 + 0.814370i \(0.697082\pi\)
\(858\) 0 0
\(859\) 26.2705 0.896338 0.448169 0.893949i \(-0.352076\pi\)
0.448169 + 0.893949i \(0.352076\pi\)
\(860\) 0 0
\(861\) −0.236068 −0.00804518
\(862\) 0 0
\(863\) 55.4508 1.88757 0.943784 0.330562i \(-0.107238\pi\)
0.943784 + 0.330562i \(0.107238\pi\)
\(864\) 0 0
\(865\) −4.18034 −0.142136
\(866\) 0 0
\(867\) 2.41641 0.0820655
\(868\) 0 0
\(869\) 42.6525 1.44689
\(870\) 0 0
\(871\) −83.8673 −2.84173
\(872\) 0 0
\(873\) 11.8541 0.401201
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) −52.1803 −1.76200 −0.881002 0.473112i \(-0.843131\pi\)
−0.881002 + 0.473112i \(0.843131\pi\)
\(878\) 0 0
\(879\) −19.5623 −0.659820
\(880\) 0 0
\(881\) −32.7984 −1.10501 −0.552503 0.833511i \(-0.686327\pi\)
−0.552503 + 0.833511i \(0.686327\pi\)
\(882\) 0 0
\(883\) 10.3475 0.348222 0.174111 0.984726i \(-0.444295\pi\)
0.174111 + 0.984726i \(0.444295\pi\)
\(884\) 0 0
\(885\) 4.90983 0.165042
\(886\) 0 0
\(887\) 33.6525 1.12994 0.564970 0.825112i \(-0.308888\pi\)
0.564970 + 0.825112i \(0.308888\pi\)
\(888\) 0 0
\(889\) 12.1803 0.408515
\(890\) 0 0
\(891\) 16.2918 0.545796
\(892\) 0 0
\(893\) 0.708204 0.0236991
\(894\) 0 0
\(895\) −2.85410 −0.0954021
\(896\) 0 0
\(897\) −7.56231 −0.252498
\(898\) 0 0
\(899\) 61.4508 2.04950
\(900\) 0 0
\(901\) 40.1246 1.33674
\(902\) 0 0
\(903\) −1.23607 −0.0411338
\(904\) 0 0
\(905\) 10.5623 0.351103
\(906\) 0 0
\(907\) 32.8197 1.08976 0.544879 0.838514i \(-0.316575\pi\)
0.544879 + 0.838514i \(0.316575\pi\)
\(908\) 0 0
\(909\) −22.7984 −0.756174
\(910\) 0 0
\(911\) 3.52786 0.116883 0.0584417 0.998291i \(-0.481387\pi\)
0.0584417 + 0.998291i \(0.481387\pi\)
\(912\) 0 0
\(913\) 15.3607 0.508364
\(914\) 0 0
\(915\) −3.09017 −0.102158
\(916\) 0 0
\(917\) 11.0344 0.364389
\(918\) 0 0
\(919\) −3.36068 −0.110859 −0.0554293 0.998463i \(-0.517653\pi\)
−0.0554293 + 0.998463i \(0.517653\pi\)
\(920\) 0 0
\(921\) −6.59675 −0.217370
\(922\) 0 0
\(923\) 49.2492 1.62106
\(924\) 0 0
\(925\) 37.8885 1.24577
\(926\) 0 0
\(927\) −40.5066 −1.33041
\(928\) 0 0
\(929\) −4.21478 −0.138283 −0.0691413 0.997607i \(-0.522026\pi\)
−0.0691413 + 0.997607i \(0.522026\pi\)
\(930\) 0 0
\(931\) −1.00000 −0.0327737
\(932\) 0 0
\(933\) 4.05573 0.132779
\(934\) 0 0
\(935\) 10.3262 0.337704
\(936\) 0 0
\(937\) −1.14590 −0.0374349 −0.0187174 0.999825i \(-0.505958\pi\)
−0.0187174 + 0.999825i \(0.505958\pi\)
\(938\) 0 0
\(939\) 15.8197 0.516255
\(940\) 0 0
\(941\) 6.36068 0.207352 0.103676 0.994611i \(-0.466939\pi\)
0.103676 + 0.994611i \(0.466939\pi\)
\(942\) 0 0
\(943\) −0.854102 −0.0278134
\(944\) 0 0
\(945\) 3.47214 0.112949
\(946\) 0 0
\(947\) 46.1033 1.49816 0.749078 0.662481i \(-0.230497\pi\)
0.749078 + 0.662481i \(0.230497\pi\)
\(948\) 0 0
\(949\) −32.0344 −1.03988
\(950\) 0 0
\(951\) −15.7082 −0.509373
\(952\) 0 0
\(953\) 11.4377 0.370503 0.185252 0.982691i \(-0.440690\pi\)
0.185252 + 0.982691i \(0.440690\pi\)
\(954\) 0 0
\(955\) −2.43769 −0.0788819
\(956\) 0 0
\(957\) 10.7426 0.347260
\(958\) 0 0
\(959\) 5.05573 0.163258
\(960\) 0 0
\(961\) 70.8115 2.28424
\(962\) 0 0
\(963\) 36.5066 1.17641
\(964\) 0 0
\(965\) −5.14590 −0.165652
\(966\) 0 0
\(967\) −39.1033 −1.25748 −0.628739 0.777616i \(-0.716429\pi\)
−0.628739 + 0.777616i \(0.716429\pi\)
\(968\) 0 0
\(969\) −2.23607 −0.0718329
\(970\) 0 0
\(971\) 17.3607 0.557131 0.278565 0.960417i \(-0.410141\pi\)
0.278565 + 0.960417i \(0.410141\pi\)
\(972\) 0 0
\(973\) 11.1803 0.358425
\(974\) 0 0
\(975\) 13.5279 0.433238
\(976\) 0 0
\(977\) 21.5967 0.690941 0.345471 0.938430i \(-0.387719\pi\)
0.345471 + 0.938430i \(0.387719\pi\)
\(978\) 0 0
\(979\) −20.6525 −0.660056
\(980\) 0 0
\(981\) 15.0902 0.481792
\(982\) 0 0
\(983\) 48.4164 1.54424 0.772122 0.635475i \(-0.219196\pi\)
0.772122 + 0.635475i \(0.219196\pi\)
\(984\) 0 0
\(985\) −27.2705 −0.868911
\(986\) 0 0
\(987\) −0.437694 −0.0139320
\(988\) 0 0
\(989\) −4.47214 −0.142206
\(990\) 0 0
\(991\) 35.1246 1.11577 0.557885 0.829918i \(-0.311613\pi\)
0.557885 + 0.829918i \(0.311613\pi\)
\(992\) 0 0
\(993\) 1.32624 0.0420869
\(994\) 0 0
\(995\) −21.1803 −0.671462
\(996\) 0 0
\(997\) −24.0344 −0.761178 −0.380589 0.924744i \(-0.624279\pi\)
−0.380589 + 0.924744i \(0.624279\pi\)
\(998\) 0 0
\(999\) −32.8885 −1.04055
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1064.2.a.d.1.1 2
3.2 odd 2 9576.2.a.bt.1.1 2
4.3 odd 2 2128.2.a.f.1.2 2
7.6 odd 2 7448.2.a.z.1.2 2
8.3 odd 2 8512.2.a.y.1.1 2
8.5 even 2 8512.2.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1064.2.a.d.1.1 2 1.1 even 1 trivial
2128.2.a.f.1.2 2 4.3 odd 2
7448.2.a.z.1.2 2 7.6 odd 2
8512.2.a.q.1.2 2 8.5 even 2
8512.2.a.y.1.1 2 8.3 odd 2
9576.2.a.bt.1.1 2 3.2 odd 2