Properties

Label 1071.2.n.b.820.4
Level $1071$
Weight $2$
Character 1071.820
Analytic conductor $8.552$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1071,2,Mod(64,1071)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1071, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1071.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1071 = 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1071.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.55197805648\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 32 x^{18} + 426 x^{16} + 3072 x^{14} + 13121 x^{12} + 34148 x^{10} + 53608 x^{8} + 48276 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 357)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 820.4
Root \(-1.51109i\) of defining polynomial
Character \(\chi\) \(=\) 1071.820
Dual form 1071.2.n.b.64.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51109i q^{2} -0.283389 q^{4} +(1.65084 - 1.65084i) q^{5} +(-0.707107 - 0.707107i) q^{7} -2.59395i q^{8} +O(q^{10})\) \(q-1.51109i q^{2} -0.283389 q^{4} +(1.65084 - 1.65084i) q^{5} +(-0.707107 - 0.707107i) q^{7} -2.59395i q^{8} +(-2.49457 - 2.49457i) q^{10} +(-2.73442 - 2.73442i) q^{11} -7.04427 q^{13} +(-1.06850 + 1.06850i) q^{14} -4.48647 q^{16} +(-0.965114 + 4.00856i) q^{17} +0.992753i q^{19} +(-0.467830 + 0.467830i) q^{20} +(-4.13195 + 4.13195i) q^{22} +(0.461170 + 0.461170i) q^{23} -0.450549i q^{25} +10.6445i q^{26} +(0.200386 + 0.200386i) q^{28} +(3.56926 - 3.56926i) q^{29} +(1.46992 - 1.46992i) q^{31} +1.59155i q^{32} +(6.05729 + 1.45837i) q^{34} -2.33464 q^{35} +(4.07799 - 4.07799i) q^{37} +1.50014 q^{38} +(-4.28220 - 4.28220i) q^{40} +(-8.45995 - 8.45995i) q^{41} +2.40741i q^{43} +(0.774904 + 0.774904i) q^{44} +(0.696868 - 0.696868i) q^{46} +6.81302 q^{47} +1.00000i q^{49} -0.680819 q^{50} +1.99627 q^{52} -5.04239i q^{53} -9.02818 q^{55} +(-1.83420 + 1.83420i) q^{56} +(-5.39348 - 5.39348i) q^{58} -1.56548i q^{59} +(8.83396 + 8.83396i) q^{61} +(-2.22118 - 2.22118i) q^{62} -6.56797 q^{64} +(-11.6290 + 11.6290i) q^{65} +4.95686 q^{67} +(0.273503 - 1.13598i) q^{68} +3.52785i q^{70} +(5.53082 - 5.53082i) q^{71} +(3.24064 - 3.24064i) q^{73} +(-6.16220 - 6.16220i) q^{74} -0.281335i q^{76} +3.86705i q^{77} +(0.679318 + 0.679318i) q^{79} +(-7.40644 + 7.40644i) q^{80} +(-12.7837 + 12.7837i) q^{82} -12.8881i q^{83} +(5.02425 + 8.21074i) q^{85} +3.63780 q^{86} +(-7.09295 + 7.09295i) q^{88} -3.82872 q^{89} +(4.98105 + 4.98105i) q^{91} +(-0.130690 - 0.130690i) q^{92} -10.2951i q^{94} +(1.63888 + 1.63888i) q^{95} +(2.10281 - 2.10281i) q^{97} +1.51109 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{4} - 8 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 24 q^{4} - 8 q^{5} + 16 q^{10} - 4 q^{11} - 12 q^{13} - 4 q^{14} + 40 q^{16} - 4 q^{17} + 52 q^{20} - 24 q^{22} + 4 q^{23} + 8 q^{29} + 8 q^{31} - 44 q^{34} - 12 q^{35} + 24 q^{37} + 64 q^{38} - 52 q^{40} + 20 q^{41} - 72 q^{44} + 28 q^{46} + 32 q^{47} - 104 q^{50} + 48 q^{52} - 36 q^{55} + 4 q^{56} - 60 q^{58} + 28 q^{61} - 36 q^{62} - 112 q^{64} + 4 q^{65} + 40 q^{67} + 52 q^{68} - 16 q^{71} - 72 q^{73} + 24 q^{74} - 8 q^{79} - 120 q^{80} + 108 q^{82} + 40 q^{85} - 28 q^{88} + 64 q^{89} - 12 q^{91} + 56 q^{92} - 60 q^{95} + 60 q^{97} + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1071\mathbb{Z}\right)^\times\).

\(n\) \(190\) \(596\) \(766\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51109i 1.06850i −0.845326 0.534251i \(-0.820594\pi\)
0.845326 0.534251i \(-0.179406\pi\)
\(3\) 0 0
\(4\) −0.283389 −0.141694
\(5\) 1.65084 1.65084i 0.738278 0.738278i −0.233966 0.972245i \(-0.575171\pi\)
0.972245 + 0.233966i \(0.0751706\pi\)
\(6\) 0 0
\(7\) −0.707107 0.707107i −0.267261 0.267261i
\(8\) 2.59395i 0.917100i
\(9\) 0 0
\(10\) −2.49457 2.49457i −0.788851 0.788851i
\(11\) −2.73442 2.73442i −0.824459 0.824459i 0.162285 0.986744i \(-0.448114\pi\)
−0.986744 + 0.162285i \(0.948114\pi\)
\(12\) 0 0
\(13\) −7.04427 −1.95373 −0.976864 0.213859i \(-0.931397\pi\)
−0.976864 + 0.213859i \(0.931397\pi\)
\(14\) −1.06850 + 1.06850i −0.285569 + 0.285569i
\(15\) 0 0
\(16\) −4.48647 −1.12162
\(17\) −0.965114 + 4.00856i −0.234074 + 0.972219i
\(18\) 0 0
\(19\) 0.992753i 0.227753i 0.993495 + 0.113877i \(0.0363269\pi\)
−0.993495 + 0.113877i \(0.963673\pi\)
\(20\) −0.467830 + 0.467830i −0.104610 + 0.104610i
\(21\) 0 0
\(22\) −4.13195 + 4.13195i −0.880935 + 0.880935i
\(23\) 0.461170 + 0.461170i 0.0961605 + 0.0961605i 0.753551 0.657390i \(-0.228340\pi\)
−0.657390 + 0.753551i \(0.728340\pi\)
\(24\) 0 0
\(25\) 0.450549i 0.0901097i
\(26\) 10.6445i 2.08756i
\(27\) 0 0
\(28\) 0.200386 + 0.200386i 0.0378694 + 0.0378694i
\(29\) 3.56926 3.56926i 0.662796 0.662796i −0.293242 0.956038i \(-0.594734\pi\)
0.956038 + 0.293242i \(0.0947343\pi\)
\(30\) 0 0
\(31\) 1.46992 1.46992i 0.264006 0.264006i −0.562673 0.826679i \(-0.690227\pi\)
0.826679 + 0.562673i \(0.190227\pi\)
\(32\) 1.59155i 0.281349i
\(33\) 0 0
\(34\) 6.05729 + 1.45837i 1.03882 + 0.250109i
\(35\) −2.33464 −0.394626
\(36\) 0 0
\(37\) 4.07799 4.07799i 0.670417 0.670417i −0.287395 0.957812i \(-0.592789\pi\)
0.957812 + 0.287395i \(0.0927892\pi\)
\(38\) 1.50014 0.243355
\(39\) 0 0
\(40\) −4.28220 4.28220i −0.677075 0.677075i
\(41\) −8.45995 8.45995i −1.32122 1.32122i −0.912788 0.408433i \(-0.866075\pi\)
−0.408433 0.912788i \(-0.633925\pi\)
\(42\) 0 0
\(43\) 2.40741i 0.367126i 0.983008 + 0.183563i \(0.0587631\pi\)
−0.983008 + 0.183563i \(0.941237\pi\)
\(44\) 0.774904 + 0.774904i 0.116821 + 0.116821i
\(45\) 0 0
\(46\) 0.696868 0.696868i 0.102748 0.102748i
\(47\) 6.81302 0.993781 0.496890 0.867813i \(-0.334475\pi\)
0.496890 + 0.867813i \(0.334475\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) −0.680819 −0.0962823
\(51\) 0 0
\(52\) 1.99627 0.276833
\(53\) 5.04239i 0.692626i −0.938119 0.346313i \(-0.887434\pi\)
0.938119 0.346313i \(-0.112566\pi\)
\(54\) 0 0
\(55\) −9.02818 −1.21736
\(56\) −1.83420 + 1.83420i −0.245105 + 0.245105i
\(57\) 0 0
\(58\) −5.39348 5.39348i −0.708198 0.708198i
\(59\) 1.56548i 0.203808i −0.994794 0.101904i \(-0.967507\pi\)
0.994794 0.101904i \(-0.0324934\pi\)
\(60\) 0 0
\(61\) 8.83396 + 8.83396i 1.13107 + 1.13107i 0.989999 + 0.141074i \(0.0450555\pi\)
0.141074 + 0.989999i \(0.454944\pi\)
\(62\) −2.22118 2.22118i −0.282090 0.282090i
\(63\) 0 0
\(64\) −6.56797 −0.820996
\(65\) −11.6290 + 11.6290i −1.44240 + 1.44240i
\(66\) 0 0
\(67\) 4.95686 0.605577 0.302788 0.953058i \(-0.402082\pi\)
0.302788 + 0.953058i \(0.402082\pi\)
\(68\) 0.273503 1.13598i 0.0331671 0.137758i
\(69\) 0 0
\(70\) 3.52785i 0.421659i
\(71\) 5.53082 5.53082i 0.656387 0.656387i −0.298136 0.954523i \(-0.596365\pi\)
0.954523 + 0.298136i \(0.0963649\pi\)
\(72\) 0 0
\(73\) 3.24064 3.24064i 0.379289 0.379289i −0.491557 0.870846i \(-0.663572\pi\)
0.870846 + 0.491557i \(0.163572\pi\)
\(74\) −6.16220 6.16220i −0.716341 0.716341i
\(75\) 0 0
\(76\) 0.281335i 0.0322714i
\(77\) 3.86705i 0.440692i
\(78\) 0 0
\(79\) 0.679318 + 0.679318i 0.0764293 + 0.0764293i 0.744288 0.667859i \(-0.232789\pi\)
−0.667859 + 0.744288i \(0.732789\pi\)
\(80\) −7.40644 + 7.40644i −0.828066 + 0.828066i
\(81\) 0 0
\(82\) −12.7837 + 12.7837i −1.41173 + 1.41173i
\(83\) 12.8881i 1.41465i −0.706889 0.707324i \(-0.749902\pi\)
0.706889 0.707324i \(-0.250098\pi\)
\(84\) 0 0
\(85\) 5.02425 + 8.21074i 0.544956 + 0.890580i
\(86\) 3.63780 0.392275
\(87\) 0 0
\(88\) −7.09295 + 7.09295i −0.756111 + 0.756111i
\(89\) −3.82872 −0.405843 −0.202922 0.979195i \(-0.565044\pi\)
−0.202922 + 0.979195i \(0.565044\pi\)
\(90\) 0 0
\(91\) 4.98105 + 4.98105i 0.522156 + 0.522156i
\(92\) −0.130690 0.130690i −0.0136254 0.0136254i
\(93\) 0 0
\(94\) 10.2951i 1.06186i
\(95\) 1.63888 + 1.63888i 0.168145 + 0.168145i
\(96\) 0 0
\(97\) 2.10281 2.10281i 0.213508 0.213508i −0.592248 0.805756i \(-0.701759\pi\)
0.805756 + 0.592248i \(0.201759\pi\)
\(98\) 1.51109 0.152643
\(99\) 0 0
\(100\) 0.127680i 0.0127680i
\(101\) 1.00557 0.100058 0.0500290 0.998748i \(-0.484069\pi\)
0.0500290 + 0.998748i \(0.484069\pi\)
\(102\) 0 0
\(103\) −1.58496 −0.156170 −0.0780852 0.996947i \(-0.524881\pi\)
−0.0780852 + 0.996947i \(0.524881\pi\)
\(104\) 18.2725i 1.79177i
\(105\) 0 0
\(106\) −7.61950 −0.740071
\(107\) −4.33329 + 4.33329i −0.418915 + 0.418915i −0.884829 0.465915i \(-0.845725\pi\)
0.465915 + 0.884829i \(0.345725\pi\)
\(108\) 0 0
\(109\) 9.35507 + 9.35507i 0.896053 + 0.896053i 0.995084 0.0990316i \(-0.0315745\pi\)
−0.0990316 + 0.995084i \(0.531574\pi\)
\(110\) 13.6424i 1.30075i
\(111\) 0 0
\(112\) 3.17241 + 3.17241i 0.299765 + 0.299765i
\(113\) −13.3488 13.3488i −1.25575 1.25575i −0.953104 0.302642i \(-0.902131\pi\)
−0.302642 0.953104i \(-0.597869\pi\)
\(114\) 0 0
\(115\) 1.52264 0.141986
\(116\) −1.01149 + 1.01149i −0.0939145 + 0.0939145i
\(117\) 0 0
\(118\) −2.36558 −0.217769
\(119\) 3.51692 2.15204i 0.322395 0.197277i
\(120\) 0 0
\(121\) 3.95411i 0.359464i
\(122\) 13.3489 13.3489i 1.20855 1.20855i
\(123\) 0 0
\(124\) −0.416560 + 0.416560i −0.0374082 + 0.0374082i
\(125\) 7.51042 + 7.51042i 0.671752 + 0.671752i
\(126\) 0 0
\(127\) 22.2222i 1.97190i −0.167035 0.985951i \(-0.553419\pi\)
0.167035 0.985951i \(-0.446581\pi\)
\(128\) 13.1079i 1.15858i
\(129\) 0 0
\(130\) 17.5724 + 17.5724i 1.54120 + 1.54120i
\(131\) 5.73121 5.73121i 0.500738 0.500738i −0.410929 0.911667i \(-0.634796\pi\)
0.911667 + 0.410929i \(0.134796\pi\)
\(132\) 0 0
\(133\) 0.701983 0.701983i 0.0608696 0.0608696i
\(134\) 7.49025i 0.647059i
\(135\) 0 0
\(136\) 10.3980 + 2.50346i 0.891622 + 0.214670i
\(137\) 7.66715 0.655049 0.327524 0.944843i \(-0.393786\pi\)
0.327524 + 0.944843i \(0.393786\pi\)
\(138\) 0 0
\(139\) −3.45909 + 3.45909i −0.293396 + 0.293396i −0.838420 0.545024i \(-0.816520\pi\)
0.545024 + 0.838420i \(0.316520\pi\)
\(140\) 0.661611 0.0559164
\(141\) 0 0
\(142\) −8.35755 8.35755i −0.701350 0.701350i
\(143\) 19.2620 + 19.2620i 1.61077 + 1.61077i
\(144\) 0 0
\(145\) 11.7846i 0.978655i
\(146\) −4.89690 4.89690i −0.405270 0.405270i
\(147\) 0 0
\(148\) −1.15566 + 1.15566i −0.0949944 + 0.0949944i
\(149\) −13.7753 −1.12852 −0.564258 0.825599i \(-0.690838\pi\)
−0.564258 + 0.825599i \(0.690838\pi\)
\(150\) 0 0
\(151\) 20.5923i 1.67578i −0.545841 0.837889i \(-0.683790\pi\)
0.545841 0.837889i \(-0.316210\pi\)
\(152\) 2.57515 0.208873
\(153\) 0 0
\(154\) 5.84346 0.470880
\(155\) 4.85321i 0.389819i
\(156\) 0 0
\(157\) −23.0384 −1.83866 −0.919331 0.393484i \(-0.871270\pi\)
−0.919331 + 0.393484i \(0.871270\pi\)
\(158\) 1.02651 1.02651i 0.0816648 0.0816648i
\(159\) 0 0
\(160\) 2.62739 + 2.62739i 0.207714 + 0.207714i
\(161\) 0.652192i 0.0514000i
\(162\) 0 0
\(163\) −3.40803 3.40803i −0.266937 0.266937i 0.560927 0.827865i \(-0.310445\pi\)
−0.827865 + 0.560927i \(0.810445\pi\)
\(164\) 2.39745 + 2.39745i 0.187210 + 0.187210i
\(165\) 0 0
\(166\) −19.4750 −1.51155
\(167\) −10.0111 + 10.0111i −0.774680 + 0.774680i −0.978921 0.204241i \(-0.934527\pi\)
0.204241 + 0.978921i \(0.434527\pi\)
\(168\) 0 0
\(169\) 36.6217 2.81706
\(170\) 12.4072 7.59208i 0.951586 0.582286i
\(171\) 0 0
\(172\) 0.682232i 0.0520197i
\(173\) −14.3926 + 14.3926i −1.09425 + 1.09425i −0.0991809 + 0.995069i \(0.531622\pi\)
−0.995069 + 0.0991809i \(0.968378\pi\)
\(174\) 0 0
\(175\) −0.318586 + 0.318586i −0.0240828 + 0.0240828i
\(176\) 12.2679 + 12.2679i 0.924727 + 0.924727i
\(177\) 0 0
\(178\) 5.78553i 0.433644i
\(179\) 15.0614i 1.12574i 0.826544 + 0.562872i \(0.190304\pi\)
−0.826544 + 0.562872i \(0.809696\pi\)
\(180\) 0 0
\(181\) −3.31493 3.31493i −0.246397 0.246397i 0.573093 0.819490i \(-0.305743\pi\)
−0.819490 + 0.573093i \(0.805743\pi\)
\(182\) 7.52681 7.52681i 0.557924 0.557924i
\(183\) 0 0
\(184\) 1.19625 1.19625i 0.0881889 0.0881889i
\(185\) 13.4642i 0.989909i
\(186\) 0 0
\(187\) 13.6001 8.32206i 0.994539 0.608569i
\(188\) −1.93073 −0.140813
\(189\) 0 0
\(190\) 2.47649 2.47649i 0.179663 0.179663i
\(191\) 17.6598 1.27782 0.638908 0.769283i \(-0.279386\pi\)
0.638908 + 0.769283i \(0.279386\pi\)
\(192\) 0 0
\(193\) −10.4528 10.4528i −0.752408 0.752408i 0.222520 0.974928i \(-0.428572\pi\)
−0.974928 + 0.222520i \(0.928572\pi\)
\(194\) −3.17753 3.17753i −0.228133 0.228133i
\(195\) 0 0
\(196\) 0.283389i 0.0202421i
\(197\) −3.21831 3.21831i −0.229295 0.229295i 0.583103 0.812398i \(-0.301838\pi\)
−0.812398 + 0.583103i \(0.801838\pi\)
\(198\) 0 0
\(199\) 14.3092 14.3092i 1.01435 1.01435i 0.0144592 0.999895i \(-0.495397\pi\)
0.999895 0.0144592i \(-0.00460267\pi\)
\(200\) −1.16870 −0.0826396
\(201\) 0 0
\(202\) 1.51951i 0.106912i
\(203\) −5.04770 −0.354279
\(204\) 0 0
\(205\) −27.9320 −1.95086
\(206\) 2.39501i 0.166868i
\(207\) 0 0
\(208\) 31.6039 2.19134
\(209\) 2.71461 2.71461i 0.187773 0.187773i
\(210\) 0 0
\(211\) 1.06695 + 1.06695i 0.0734519 + 0.0734519i 0.742878 0.669426i \(-0.233460\pi\)
−0.669426 + 0.742878i \(0.733460\pi\)
\(212\) 1.42896i 0.0981412i
\(213\) 0 0
\(214\) 6.54798 + 6.54798i 0.447611 + 0.447611i
\(215\) 3.97424 + 3.97424i 0.271041 + 0.271041i
\(216\) 0 0
\(217\) −2.07878 −0.141117
\(218\) 14.1363 14.1363i 0.957433 0.957433i
\(219\) 0 0
\(220\) 2.55849 0.172493
\(221\) 6.79852 28.2374i 0.457318 1.89945i
\(222\) 0 0
\(223\) 29.2730i 1.96027i 0.198337 + 0.980134i \(0.436446\pi\)
−0.198337 + 0.980134i \(0.563554\pi\)
\(224\) 1.12539 1.12539i 0.0751936 0.0751936i
\(225\) 0 0
\(226\) −20.1712 + 20.1712i −1.34177 + 1.34177i
\(227\) 16.0152 + 16.0152i 1.06296 + 1.06296i 0.997880 + 0.0650831i \(0.0207312\pi\)
0.0650831 + 0.997880i \(0.479269\pi\)
\(228\) 0 0
\(229\) 20.5349i 1.35699i 0.734607 + 0.678493i \(0.237367\pi\)
−0.734607 + 0.678493i \(0.762633\pi\)
\(230\) 2.30084i 0.151713i
\(231\) 0 0
\(232\) −9.25850 9.25850i −0.607850 0.607850i
\(233\) −2.75026 + 2.75026i −0.180176 + 0.180176i −0.791432 0.611257i \(-0.790664\pi\)
0.611257 + 0.791432i \(0.290664\pi\)
\(234\) 0 0
\(235\) 11.2472 11.2472i 0.733687 0.733687i
\(236\) 0.443639i 0.0288785i
\(237\) 0 0
\(238\) −3.25193 5.31438i −0.210791 0.344480i
\(239\) 7.00766 0.453288 0.226644 0.973978i \(-0.427225\pi\)
0.226644 + 0.973978i \(0.427225\pi\)
\(240\) 0 0
\(241\) 11.6350 11.6350i 0.749476 0.749476i −0.224905 0.974381i \(-0.572207\pi\)
0.974381 + 0.224905i \(0.0722070\pi\)
\(242\) 5.97501 0.384088
\(243\) 0 0
\(244\) −2.50345 2.50345i −0.160267 0.160267i
\(245\) 1.65084 + 1.65084i 0.105468 + 0.105468i
\(246\) 0 0
\(247\) 6.99322i 0.444968i
\(248\) −3.81291 3.81291i −0.242120 0.242120i
\(249\) 0 0
\(250\) 11.3489 11.3489i 0.717768 0.717768i
\(251\) 12.6735 0.799941 0.399971 0.916528i \(-0.369020\pi\)
0.399971 + 0.916528i \(0.369020\pi\)
\(252\) 0 0
\(253\) 2.52206i 0.158561i
\(254\) −33.5797 −2.10698
\(255\) 0 0
\(256\) 6.67123 0.416952
\(257\) 14.4557i 0.901719i −0.892595 0.450859i \(-0.851118\pi\)
0.892595 0.450859i \(-0.148882\pi\)
\(258\) 0 0
\(259\) −5.76715 −0.358353
\(260\) 3.29552 3.29552i 0.204379 0.204379i
\(261\) 0 0
\(262\) −8.66036 8.66036i −0.535039 0.535039i
\(263\) 17.9342i 1.10587i −0.833225 0.552935i \(-0.813508\pi\)
0.833225 0.552935i \(-0.186492\pi\)
\(264\) 0 0
\(265\) −8.32418 8.32418i −0.511351 0.511351i
\(266\) −1.06076 1.06076i −0.0650393 0.0650393i
\(267\) 0 0
\(268\) −1.40472 −0.0858069
\(269\) −3.04172 + 3.04172i −0.185457 + 0.185457i −0.793729 0.608272i \(-0.791863\pi\)
0.608272 + 0.793729i \(0.291863\pi\)
\(270\) 0 0
\(271\) 26.7775 1.62662 0.813310 0.581831i \(-0.197664\pi\)
0.813310 + 0.581831i \(0.197664\pi\)
\(272\) 4.32995 17.9843i 0.262542 1.09046i
\(273\) 0 0
\(274\) 11.5857i 0.699920i
\(275\) −1.23199 + 1.23199i −0.0742917 + 0.0742917i
\(276\) 0 0
\(277\) −6.21835 + 6.21835i −0.373625 + 0.373625i −0.868796 0.495171i \(-0.835105\pi\)
0.495171 + 0.868796i \(0.335105\pi\)
\(278\) 5.22699 + 5.22699i 0.313494 + 0.313494i
\(279\) 0 0
\(280\) 6.05595i 0.361912i
\(281\) 13.5121i 0.806065i −0.915186 0.403033i \(-0.867956\pi\)
0.915186 0.403033i \(-0.132044\pi\)
\(282\) 0 0
\(283\) 18.1685 + 18.1685i 1.08000 + 1.08000i 0.996508 + 0.0834957i \(0.0266085\pi\)
0.0834957 + 0.996508i \(0.473392\pi\)
\(284\) −1.56737 + 1.56737i −0.0930064 + 0.0930064i
\(285\) 0 0
\(286\) 29.1066 29.1066i 1.72111 1.72111i
\(287\) 11.9642i 0.706223i
\(288\) 0 0
\(289\) −15.1371 7.73743i −0.890418 0.455143i
\(290\) −17.8075 −1.04569
\(291\) 0 0
\(292\) −0.918363 + 0.918363i −0.0537431 + 0.0537431i
\(293\) −19.3056 −1.12784 −0.563922 0.825828i \(-0.690708\pi\)
−0.563922 + 0.825828i \(0.690708\pi\)
\(294\) 0 0
\(295\) −2.58436 2.58436i −0.150467 0.150467i
\(296\) −10.5781 10.5781i −0.614840 0.614840i
\(297\) 0 0
\(298\) 20.8157i 1.20582i
\(299\) −3.24860 3.24860i −0.187872 0.187872i
\(300\) 0 0
\(301\) 1.70229 1.70229i 0.0981186 0.0981186i
\(302\) −31.1168 −1.79057
\(303\) 0 0
\(304\) 4.45396i 0.255452i
\(305\) 29.1669 1.67009
\(306\) 0 0
\(307\) −0.224246 −0.0127984 −0.00639920 0.999980i \(-0.502037\pi\)
−0.00639920 + 0.999980i \(0.502037\pi\)
\(308\) 1.09588i 0.0624436i
\(309\) 0 0
\(310\) −7.33364 −0.416523
\(311\) 22.8463 22.8463i 1.29549 1.29549i 0.364153 0.931339i \(-0.381358\pi\)
0.931339 0.364153i \(-0.118642\pi\)
\(312\) 0 0
\(313\) 6.97873 + 6.97873i 0.394461 + 0.394461i 0.876274 0.481813i \(-0.160022\pi\)
−0.481813 + 0.876274i \(0.660022\pi\)
\(314\) 34.8130i 1.96461i
\(315\) 0 0
\(316\) −0.192511 0.192511i −0.0108296 0.0108296i
\(317\) −2.70321 2.70321i −0.151827 0.151827i 0.627106 0.778934i \(-0.284239\pi\)
−0.778934 + 0.627106i \(0.784239\pi\)
\(318\) 0 0
\(319\) −19.5197 −1.09290
\(320\) −10.8427 + 10.8427i −0.606123 + 0.606123i
\(321\) 0 0
\(322\) −0.985521 −0.0549209
\(323\) −3.97951 0.958120i −0.221426 0.0533112i
\(324\) 0 0
\(325\) 3.17379i 0.176050i
\(326\) −5.14983 + 5.14983i −0.285223 + 0.285223i
\(327\) 0 0
\(328\) −21.9447 + 21.9447i −1.21169 + 1.21169i
\(329\) −4.81753 4.81753i −0.265599 0.265599i
\(330\) 0 0
\(331\) 20.4933i 1.12641i −0.826317 0.563206i \(-0.809568\pi\)
0.826317 0.563206i \(-0.190432\pi\)
\(332\) 3.65233i 0.200448i
\(333\) 0 0
\(334\) 15.1276 + 15.1276i 0.827746 + 0.827746i
\(335\) 8.18298 8.18298i 0.447084 0.447084i
\(336\) 0 0
\(337\) −16.3891 + 16.3891i −0.892772 + 0.892772i −0.994783 0.102011i \(-0.967472\pi\)
0.102011 + 0.994783i \(0.467472\pi\)
\(338\) 55.3387i 3.01003i
\(339\) 0 0
\(340\) −1.42382 2.32683i −0.0772172 0.126190i
\(341\) −8.03877 −0.435324
\(342\) 0 0
\(343\) 0.707107 0.707107i 0.0381802 0.0381802i
\(344\) 6.24470 0.336691
\(345\) 0 0
\(346\) 21.7485 + 21.7485i 1.16921 + 1.16921i
\(347\) −0.767240 0.767240i −0.0411876 0.0411876i 0.686213 0.727401i \(-0.259272\pi\)
−0.727401 + 0.686213i \(0.759272\pi\)
\(348\) 0 0
\(349\) 12.8669i 0.688749i −0.938832 0.344374i \(-0.888091\pi\)
0.938832 0.344374i \(-0.111909\pi\)
\(350\) 0.481412 + 0.481412i 0.0257325 + 0.0257325i
\(351\) 0 0
\(352\) 4.35196 4.35196i 0.231960 0.231960i
\(353\) −6.81692 −0.362828 −0.181414 0.983407i \(-0.558067\pi\)
−0.181414 + 0.983407i \(0.558067\pi\)
\(354\) 0 0
\(355\) 18.2610i 0.969193i
\(356\) 1.08502 0.0575058
\(357\) 0 0
\(358\) 22.7592 1.20286
\(359\) 6.71484i 0.354396i −0.984175 0.177198i \(-0.943297\pi\)
0.984175 0.177198i \(-0.0567033\pi\)
\(360\) 0 0
\(361\) 18.0144 0.948128
\(362\) −5.00916 + 5.00916i −0.263275 + 0.263275i
\(363\) 0 0
\(364\) −1.41157 1.41157i −0.0739866 0.0739866i
\(365\) 10.6996i 0.560041i
\(366\) 0 0
\(367\) 13.7945 + 13.7945i 0.720070 + 0.720070i 0.968619 0.248550i \(-0.0799539\pi\)
−0.248550 + 0.968619i \(0.579954\pi\)
\(368\) −2.06902 2.06902i −0.107855 0.107855i
\(369\) 0 0
\(370\) −20.3456 −1.05772
\(371\) −3.56551 + 3.56551i −0.185112 + 0.185112i
\(372\) 0 0
\(373\) 11.5715 0.599152 0.299576 0.954072i \(-0.403155\pi\)
0.299576 + 0.954072i \(0.403155\pi\)
\(374\) −12.5754 20.5510i −0.650257 1.06267i
\(375\) 0 0
\(376\) 17.6726i 0.911397i
\(377\) −25.1429 + 25.1429i −1.29492 + 1.29492i
\(378\) 0 0
\(379\) 10.0319 10.0319i 0.515306 0.515306i −0.400842 0.916147i \(-0.631282\pi\)
0.916147 + 0.400842i \(0.131282\pi\)
\(380\) −0.464440 0.464440i −0.0238253 0.0238253i
\(381\) 0 0
\(382\) 26.6855i 1.36535i
\(383\) 10.0566i 0.513871i 0.966429 + 0.256935i \(0.0827128\pi\)
−0.966429 + 0.256935i \(0.917287\pi\)
\(384\) 0 0
\(385\) 6.38389 + 6.38389i 0.325353 + 0.325353i
\(386\) −15.7951 + 15.7951i −0.803949 + 0.803949i
\(387\) 0 0
\(388\) −0.595912 + 0.595912i −0.0302528 + 0.0302528i
\(389\) 15.1409i 0.767672i 0.923401 + 0.383836i \(0.125397\pi\)
−0.923401 + 0.383836i \(0.874603\pi\)
\(390\) 0 0
\(391\) −2.29371 + 1.40355i −0.115998 + 0.0709803i
\(392\) 2.59395 0.131014
\(393\) 0 0
\(394\) −4.86315 + 4.86315i −0.245002 + 0.245002i
\(395\) 2.24289 0.112852
\(396\) 0 0
\(397\) 20.2301 + 20.2301i 1.01532 + 1.01532i 0.999881 + 0.0154374i \(0.00491407\pi\)
0.0154374 + 0.999881i \(0.495086\pi\)
\(398\) −21.6225 21.6225i −1.08384 1.08384i
\(399\) 0 0
\(400\) 2.02137i 0.101069i
\(401\) 4.45942 + 4.45942i 0.222693 + 0.222693i 0.809631 0.586939i \(-0.199667\pi\)
−0.586939 + 0.809631i \(0.699667\pi\)
\(402\) 0 0
\(403\) −10.3545 + 10.3545i −0.515796 + 0.515796i
\(404\) −0.284968 −0.0141777
\(405\) 0 0
\(406\) 7.62753i 0.378548i
\(407\) −22.3019 −1.10546
\(408\) 0 0
\(409\) −0.539984 −0.0267005 −0.0133503 0.999911i \(-0.504250\pi\)
−0.0133503 + 0.999911i \(0.504250\pi\)
\(410\) 42.2078i 2.08449i
\(411\) 0 0
\(412\) 0.449159 0.0221285
\(413\) −1.10696 + 1.10696i −0.0544700 + 0.0544700i
\(414\) 0 0
\(415\) −21.2761 21.2761i −1.04440 1.04440i
\(416\) 11.2113i 0.549679i
\(417\) 0 0
\(418\) −4.10201 4.10201i −0.200636 0.200636i
\(419\) 22.3051 + 22.3051i 1.08967 + 1.08967i 0.995562 + 0.0941132i \(0.0300016\pi\)
0.0941132 + 0.995562i \(0.469998\pi\)
\(420\) 0 0
\(421\) 1.65742 0.0807778 0.0403889 0.999184i \(-0.487140\pi\)
0.0403889 + 0.999184i \(0.487140\pi\)
\(422\) 1.61226 1.61226i 0.0784834 0.0784834i
\(423\) 0 0
\(424\) −13.0797 −0.635207
\(425\) 1.80605 + 0.434830i 0.0876063 + 0.0210924i
\(426\) 0 0
\(427\) 12.4931i 0.604584i
\(428\) 1.22801 1.22801i 0.0593579 0.0593579i
\(429\) 0 0
\(430\) 6.00543 6.00543i 0.289608 0.289608i
\(431\) 19.6916 + 19.6916i 0.948510 + 0.948510i 0.998738 0.0502281i \(-0.0159948\pi\)
−0.0502281 + 0.998738i \(0.515995\pi\)
\(432\) 0 0
\(433\) 27.9567i 1.34352i 0.740771 + 0.671758i \(0.234460\pi\)
−0.740771 + 0.671758i \(0.765540\pi\)
\(434\) 3.14123i 0.150784i
\(435\) 0 0
\(436\) −2.65112 2.65112i −0.126966 0.126966i
\(437\) −0.457828 + 0.457828i −0.0219009 + 0.0219009i
\(438\) 0 0
\(439\) −1.51580 + 1.51580i −0.0723453 + 0.0723453i −0.742354 0.670008i \(-0.766291\pi\)
0.670008 + 0.742354i \(0.266291\pi\)
\(440\) 23.4187i 1.11644i
\(441\) 0 0
\(442\) −42.6692 10.2732i −2.02957 0.488645i
\(443\) 26.1035 1.24022 0.620108 0.784516i \(-0.287089\pi\)
0.620108 + 0.784516i \(0.287089\pi\)
\(444\) 0 0
\(445\) −6.32060 + 6.32060i −0.299625 + 0.299625i
\(446\) 44.2342 2.09455
\(447\) 0 0
\(448\) 4.64425 + 4.64425i 0.219420 + 0.219420i
\(449\) 16.3399 + 16.3399i 0.771126 + 0.771126i 0.978303 0.207177i \(-0.0664277\pi\)
−0.207177 + 0.978303i \(0.566428\pi\)
\(450\) 0 0
\(451\) 46.2661i 2.17859i
\(452\) 3.78289 + 3.78289i 0.177932 + 0.177932i
\(453\) 0 0
\(454\) 24.2003 24.2003i 1.13578 1.13578i
\(455\) 16.4458 0.770993
\(456\) 0 0
\(457\) 28.4649i 1.33153i −0.746160 0.665766i \(-0.768105\pi\)
0.746160 0.665766i \(-0.231895\pi\)
\(458\) 31.0301 1.44994
\(459\) 0 0
\(460\) −0.431498 −0.0201187
\(461\) 23.9790i 1.11681i 0.829567 + 0.558407i \(0.188587\pi\)
−0.829567 + 0.558407i \(0.811413\pi\)
\(462\) 0 0
\(463\) −20.5076 −0.953068 −0.476534 0.879156i \(-0.658107\pi\)
−0.476534 + 0.879156i \(0.658107\pi\)
\(464\) −16.0134 + 16.0134i −0.743403 + 0.743403i
\(465\) 0 0
\(466\) 4.15589 + 4.15589i 0.192518 + 0.192518i
\(467\) 17.9740i 0.831739i −0.909424 0.415869i \(-0.863477\pi\)
0.909424 0.415869i \(-0.136523\pi\)
\(468\) 0 0
\(469\) −3.50503 3.50503i −0.161847 0.161847i
\(470\) −16.9955 16.9955i −0.783945 0.783945i
\(471\) 0 0
\(472\) −4.06078 −0.186912
\(473\) 6.58286 6.58286i 0.302680 0.302680i
\(474\) 0 0
\(475\) 0.447284 0.0205228
\(476\) −0.996656 + 0.609865i −0.0456816 + 0.0279531i
\(477\) 0 0
\(478\) 10.5892i 0.484339i
\(479\) −16.6378 + 16.6378i −0.760202 + 0.760202i −0.976359 0.216157i \(-0.930648\pi\)
0.216157 + 0.976359i \(0.430648\pi\)
\(480\) 0 0
\(481\) −28.7265 + 28.7265i −1.30981 + 1.30981i
\(482\) −17.5815 17.5815i −0.800816 0.800816i
\(483\) 0 0
\(484\) 1.12055i 0.0509341i
\(485\) 6.94279i 0.315256i
\(486\) 0 0
\(487\) 0.249268 + 0.249268i 0.0112954 + 0.0112954i 0.712732 0.701437i \(-0.247458\pi\)
−0.701437 + 0.712732i \(0.747458\pi\)
\(488\) 22.9149 22.9149i 1.03731 1.03731i
\(489\) 0 0
\(490\) 2.49457 2.49457i 0.112693 0.112693i
\(491\) 9.73907i 0.439518i −0.975554 0.219759i \(-0.929473\pi\)
0.975554 0.219759i \(-0.0705271\pi\)
\(492\) 0 0
\(493\) 10.8629 + 17.7524i 0.489239 + 0.799526i
\(494\) −10.5674 −0.475449
\(495\) 0 0
\(496\) −6.59476 + 6.59476i −0.296113 + 0.296113i
\(497\) −7.82176 −0.350854
\(498\) 0 0
\(499\) 18.5957 + 18.5957i 0.832459 + 0.832459i 0.987853 0.155393i \(-0.0496645\pi\)
−0.155393 + 0.987853i \(0.549664\pi\)
\(500\) −2.12837 2.12837i −0.0951836 0.0951836i
\(501\) 0 0
\(502\) 19.1507i 0.854738i
\(503\) −2.35428 2.35428i −0.104972 0.104972i 0.652670 0.757642i \(-0.273649\pi\)
−0.757642 + 0.652670i \(0.773649\pi\)
\(504\) 0 0
\(505\) 1.66004 1.66004i 0.0738706 0.0738706i
\(506\) −3.81106 −0.169422
\(507\) 0 0
\(508\) 6.29753i 0.279408i
\(509\) −13.6249 −0.603914 −0.301957 0.953321i \(-0.597640\pi\)
−0.301957 + 0.953321i \(0.597640\pi\)
\(510\) 0 0
\(511\) −4.58296 −0.202738
\(512\) 16.1349i 0.713070i
\(513\) 0 0
\(514\) −21.8438 −0.963488
\(515\) −2.61651 + 2.61651i −0.115297 + 0.115297i
\(516\) 0 0
\(517\) −18.6297 18.6297i −0.819331 0.819331i
\(518\) 8.71467i 0.382901i
\(519\) 0 0
\(520\) 30.1650 + 30.1650i 1.32282 + 1.32282i
\(521\) 1.76032 + 1.76032i 0.0771212 + 0.0771212i 0.744615 0.667494i \(-0.232633\pi\)
−0.667494 + 0.744615i \(0.732633\pi\)
\(522\) 0 0
\(523\) −5.84412 −0.255546 −0.127773 0.991803i \(-0.540783\pi\)
−0.127773 + 0.991803i \(0.540783\pi\)
\(524\) −1.62416 + 1.62416i −0.0709518 + 0.0709518i
\(525\) 0 0
\(526\) −27.1001 −1.18162
\(527\) 4.47363 + 7.31091i 0.194874 + 0.318468i
\(528\) 0 0
\(529\) 22.5746i 0.981506i
\(530\) −12.5786 + 12.5786i −0.546379 + 0.546379i
\(531\) 0 0
\(532\) −0.198934 + 0.198934i −0.00862489 + 0.00862489i
\(533\) 59.5941 + 59.5941i 2.58131 + 2.58131i
\(534\) 0 0
\(535\) 14.3071i 0.618551i
\(536\) 12.8578i 0.555374i
\(537\) 0 0
\(538\) 4.59631 + 4.59631i 0.198161 + 0.198161i
\(539\) 2.73442 2.73442i 0.117780 0.117780i
\(540\) 0 0
\(541\) −17.7427 + 17.7427i −0.762819 + 0.762819i −0.976831 0.214012i \(-0.931347\pi\)
0.214012 + 0.976831i \(0.431347\pi\)
\(542\) 40.4632i 1.73804i
\(543\) 0 0
\(544\) −6.37982 1.53603i −0.273532 0.0658565i
\(545\) 30.8874 1.32307
\(546\) 0 0
\(547\) −31.4484 + 31.4484i −1.34463 + 1.34463i −0.453253 + 0.891382i \(0.649736\pi\)
−0.891382 + 0.453253i \(0.850264\pi\)
\(548\) −2.17278 −0.0928168
\(549\) 0 0
\(550\) 1.86164 + 1.86164i 0.0793808 + 0.0793808i
\(551\) 3.54340 + 3.54340i 0.150954 + 0.150954i
\(552\) 0 0
\(553\) 0.960701i 0.0408532i
\(554\) 9.39649 + 9.39649i 0.399218 + 0.399218i
\(555\) 0 0
\(556\) 0.980268 0.980268i 0.0415726 0.0415726i
\(557\) −23.7598 −1.00674 −0.503368 0.864072i \(-0.667906\pi\)
−0.503368 + 0.864072i \(0.667906\pi\)
\(558\) 0 0
\(559\) 16.9584i 0.717265i
\(560\) 10.4743 0.442620
\(561\) 0 0
\(562\) −20.4180 −0.861282
\(563\) 41.4704i 1.74777i 0.486134 + 0.873884i \(0.338407\pi\)
−0.486134 + 0.873884i \(0.661593\pi\)
\(564\) 0 0
\(565\) −44.0734 −1.85418
\(566\) 27.4542 27.4542i 1.15399 1.15399i
\(567\) 0 0
\(568\) −14.3467 14.3467i −0.601973 0.601973i
\(569\) 2.56184i 0.107398i 0.998557 + 0.0536990i \(0.0171011\pi\)
−0.998557 + 0.0536990i \(0.982899\pi\)
\(570\) 0 0
\(571\) 16.2523 + 16.2523i 0.680137 + 0.680137i 0.960031 0.279894i \(-0.0902992\pi\)
−0.279894 + 0.960031i \(0.590299\pi\)
\(572\) −5.45864 5.45864i −0.228237 0.228237i
\(573\) 0 0
\(574\) 18.0789 0.754600
\(575\) 0.207779 0.207779i 0.00866500 0.00866500i
\(576\) 0 0
\(577\) −6.98932 −0.290969 −0.145485 0.989361i \(-0.546474\pi\)
−0.145485 + 0.989361i \(0.546474\pi\)
\(578\) −11.6919 + 22.8735i −0.486321 + 0.951413i
\(579\) 0 0
\(580\) 3.33962i 0.138670i
\(581\) −9.11323 + 9.11323i −0.378081 + 0.378081i
\(582\) 0 0
\(583\) −13.7880 + 13.7880i −0.571041 + 0.571041i
\(584\) −8.40607 8.40607i −0.347846 0.347846i
\(585\) 0 0
\(586\) 29.1724i 1.20510i
\(587\) 22.3808i 0.923753i −0.886944 0.461877i \(-0.847176\pi\)
0.886944 0.461877i \(-0.152824\pi\)
\(588\) 0 0
\(589\) 1.45927 + 1.45927i 0.0601282 + 0.0601282i
\(590\) −3.90519 + 3.90519i −0.160774 + 0.160774i
\(591\) 0 0
\(592\) −18.2958 + 18.2958i −0.751951 + 0.751951i
\(593\) 14.3719i 0.590183i −0.955469 0.295092i \(-0.904650\pi\)
0.955469 0.295092i \(-0.0953502\pi\)
\(594\) 0 0
\(595\) 2.25319 9.35855i 0.0923719 0.383663i
\(596\) 3.90376 0.159904
\(597\) 0 0
\(598\) −4.90893 + 4.90893i −0.200741 + 0.200741i
\(599\) −13.0016 −0.531231 −0.265616 0.964079i \(-0.585575\pi\)
−0.265616 + 0.964079i \(0.585575\pi\)
\(600\) 0 0
\(601\) −9.67071 9.67071i −0.394477 0.394477i 0.481803 0.876280i \(-0.339982\pi\)
−0.876280 + 0.481803i \(0.839982\pi\)
\(602\) −2.57232 2.57232i −0.104840 0.104840i
\(603\) 0 0
\(604\) 5.83563i 0.237448i
\(605\) 6.52760 + 6.52760i 0.265385 + 0.265385i
\(606\) 0 0
\(607\) −9.95811 + 9.95811i −0.404187 + 0.404187i −0.879706 0.475519i \(-0.842260\pi\)
0.475519 + 0.879706i \(0.342260\pi\)
\(608\) −1.58002 −0.0640781
\(609\) 0 0
\(610\) 44.0738i 1.78450i
\(611\) −47.9927 −1.94158
\(612\) 0 0
\(613\) 31.7030 1.28047 0.640236 0.768178i \(-0.278836\pi\)
0.640236 + 0.768178i \(0.278836\pi\)
\(614\) 0.338856i 0.0136751i
\(615\) 0 0
\(616\) 10.0310 0.404159
\(617\) −10.5201 + 10.5201i −0.423524 + 0.423524i −0.886415 0.462891i \(-0.846812\pi\)
0.462891 + 0.886415i \(0.346812\pi\)
\(618\) 0 0
\(619\) 15.2920 + 15.2920i 0.614638 + 0.614638i 0.944151 0.329513i \(-0.106885\pi\)
−0.329513 + 0.944151i \(0.606885\pi\)
\(620\) 1.37535i 0.0552353i
\(621\) 0 0
\(622\) −34.5227 34.5227i −1.38423 1.38423i
\(623\) 2.70731 + 2.70731i 0.108466 + 0.108466i
\(624\) 0 0
\(625\) 27.0497 1.08199
\(626\) 10.5455 10.5455i 0.421482 0.421482i
\(627\) 0 0
\(628\) 6.52882 0.260528
\(629\) 12.4111 + 20.2826i 0.494865 + 0.808720i
\(630\) 0 0
\(631\) 17.3657i 0.691319i 0.938360 + 0.345659i \(0.112345\pi\)
−0.938360 + 0.345659i \(0.887655\pi\)
\(632\) 1.76212 1.76212i 0.0700933 0.0700933i
\(633\) 0 0
\(634\) −4.08478 + 4.08478i −0.162227 + 0.162227i
\(635\) −36.6853 36.6853i −1.45581 1.45581i
\(636\) 0 0
\(637\) 7.04427i 0.279104i
\(638\) 29.4961i 1.16776i
\(639\) 0 0
\(640\) 21.6390 + 21.6390i 0.855357 + 0.855357i
\(641\) 3.19471 3.19471i 0.126183 0.126183i −0.641195 0.767378i \(-0.721561\pi\)
0.767378 + 0.641195i \(0.221561\pi\)
\(642\) 0 0
\(643\) 4.29555 4.29555i 0.169400 0.169400i −0.617316 0.786716i \(-0.711780\pi\)
0.786716 + 0.617316i \(0.211780\pi\)
\(644\) 0.184824i 0.00728309i
\(645\) 0 0
\(646\) −1.44780 + 6.01340i −0.0569631 + 0.236594i
\(647\) −44.3110 −1.74204 −0.871022 0.491245i \(-0.836542\pi\)
−0.871022 + 0.491245i \(0.836542\pi\)
\(648\) 0 0
\(649\) −4.28068 + 4.28068i −0.168031 + 0.168031i
\(650\) 4.79587 0.188110
\(651\) 0 0
\(652\) 0.965798 + 0.965798i 0.0378236 + 0.0378236i
\(653\) −35.1940 35.1940i −1.37725 1.37725i −0.849237 0.528012i \(-0.822937\pi\)
−0.528012 0.849237i \(-0.677063\pi\)
\(654\) 0 0
\(655\) 18.9226i 0.739368i
\(656\) 37.9553 + 37.9553i 1.48190 + 1.48190i
\(657\) 0 0
\(658\) −7.27972 + 7.27972i −0.283793 + 0.283793i
\(659\) −32.2608 −1.25670 −0.628351 0.777930i \(-0.716270\pi\)
−0.628351 + 0.777930i \(0.716270\pi\)
\(660\) 0 0
\(661\) 43.8186i 1.70435i −0.523260 0.852173i \(-0.675284\pi\)
0.523260 0.852173i \(-0.324716\pi\)
\(662\) −30.9671 −1.20357
\(663\) 0 0
\(664\) −33.4310 −1.29737
\(665\) 2.31772i 0.0898774i
\(666\) 0 0
\(667\) 3.29207 0.127470
\(668\) 2.83703 2.83703i 0.109768 0.109768i
\(669\) 0 0
\(670\) −12.3652 12.3652i −0.477710 0.477710i
\(671\) 48.3115i 1.86505i
\(672\) 0 0
\(673\) −1.49798 1.49798i −0.0577430 0.0577430i 0.677646 0.735389i \(-0.263000\pi\)
−0.735389 + 0.677646i \(0.763000\pi\)
\(674\) 24.7654 + 24.7654i 0.953928 + 0.953928i
\(675\) 0 0
\(676\) −10.3782 −0.399161
\(677\) −7.71518 + 7.71518i −0.296519 + 0.296519i −0.839649 0.543130i \(-0.817239\pi\)
0.543130 + 0.839649i \(0.317239\pi\)
\(678\) 0 0
\(679\) −2.97382 −0.114125
\(680\) 21.2983 13.0326i 0.816751 0.499779i
\(681\) 0 0
\(682\) 12.1473i 0.465144i
\(683\) 3.26234 3.26234i 0.124830 0.124830i −0.641932 0.766762i \(-0.721867\pi\)
0.766762 + 0.641932i \(0.221867\pi\)
\(684\) 0 0
\(685\) 12.6572 12.6572i 0.483608 0.483608i
\(686\) −1.06850 1.06850i −0.0407956 0.0407956i
\(687\) 0 0
\(688\) 10.8008i 0.411775i
\(689\) 35.5200i 1.35320i
\(690\) 0 0
\(691\) −25.3809 25.3809i −0.965534 0.965534i 0.0338916 0.999426i \(-0.489210\pi\)
−0.999426 + 0.0338916i \(0.989210\pi\)
\(692\) 4.07871 4.07871i 0.155049 0.155049i
\(693\) 0 0
\(694\) −1.15937 + 1.15937i −0.0440090 + 0.0440090i
\(695\) 11.4208i 0.433216i
\(696\) 0 0
\(697\) 42.0770 25.7474i 1.59378 0.975252i
\(698\) −19.4430 −0.735929
\(699\) 0 0
\(700\) 0.0902837 0.0902837i 0.00341240 0.00341240i
\(701\) −10.4646 −0.395244 −0.197622 0.980278i \(-0.563322\pi\)
−0.197622 + 0.980278i \(0.563322\pi\)
\(702\) 0 0
\(703\) 4.04844 + 4.04844i 0.152690 + 0.152690i
\(704\) 17.9596 + 17.9596i 0.676877 + 0.676877i
\(705\) 0 0
\(706\) 10.3010i 0.387682i
\(707\) −0.711046 0.711046i −0.0267416 0.0267416i
\(708\) 0 0
\(709\) −15.6687 + 15.6687i −0.588451 + 0.588451i −0.937212 0.348760i \(-0.886603\pi\)
0.348760 + 0.937212i \(0.386603\pi\)
\(710\) −27.5940 −1.03558
\(711\) 0 0
\(712\) 9.93151i 0.372199i
\(713\) 1.35577 0.0507739
\(714\) 0 0
\(715\) 63.5970 2.37839
\(716\) 4.26825i 0.159512i
\(717\) 0 0
\(718\) −10.1467 −0.378672
\(719\) 22.3270 22.3270i 0.832657 0.832657i −0.155223 0.987880i \(-0.549609\pi\)
0.987880 + 0.155223i \(0.0496095\pi\)
\(720\) 0 0
\(721\) 1.12073 + 1.12073i 0.0417383 + 0.0417383i
\(722\) 27.2214i 1.01308i
\(723\) 0 0
\(724\) 0.939415 + 0.939415i 0.0349131 + 0.0349131i
\(725\) −1.60813 1.60813i −0.0597243 0.0597243i
\(726\) 0 0
\(727\) −8.26117 −0.306390 −0.153195 0.988196i \(-0.548956\pi\)
−0.153195 + 0.988196i \(0.548956\pi\)
\(728\) 12.9206 12.9206i 0.478869 0.478869i
\(729\) 0 0
\(730\) −16.1680 −0.598405
\(731\) −9.65023 2.32342i −0.356927 0.0859348i
\(732\) 0 0
\(733\) 2.49710i 0.0922326i −0.998936 0.0461163i \(-0.985316\pi\)
0.998936 0.0461163i \(-0.0146845\pi\)
\(734\) 20.8448 20.8448i 0.769395 0.769395i
\(735\) 0 0
\(736\) −0.733974 + 0.733974i −0.0270546 + 0.0270546i
\(737\) −13.5541 13.5541i −0.499273 0.499273i
\(738\) 0 0
\(739\) 42.6527i 1.56900i −0.620127 0.784502i \(-0.712919\pi\)
0.620127 0.784502i \(-0.287081\pi\)
\(740\) 3.81561i 0.140265i
\(741\) 0 0
\(742\) 5.38780 + 5.38780i 0.197792 + 0.197792i
\(743\) −1.94900 + 1.94900i −0.0715017 + 0.0715017i −0.741953 0.670452i \(-0.766100\pi\)
0.670452 + 0.741953i \(0.266100\pi\)
\(744\) 0 0
\(745\) −22.7408 + 22.7408i −0.833158 + 0.833158i
\(746\) 17.4856i 0.640195i
\(747\) 0 0
\(748\) −3.85412 + 2.35838i −0.140921 + 0.0862309i
\(749\) 6.12819 0.223919
\(750\) 0 0
\(751\) 37.4310 37.4310i 1.36588 1.36588i 0.499645 0.866230i \(-0.333464\pi\)
0.866230 0.499645i \(-0.166536\pi\)
\(752\) −30.5664 −1.11464
\(753\) 0 0
\(754\) 37.9931 + 37.9931i 1.38363 + 1.38363i
\(755\) −33.9946 33.9946i −1.23719 1.23719i
\(756\) 0 0
\(757\) 40.7526i 1.48118i 0.671957 + 0.740590i \(0.265454\pi\)
−0.671957 + 0.740590i \(0.734546\pi\)
\(758\) −15.1591 15.1591i −0.550604 0.550604i
\(759\) 0 0
\(760\) 4.25117 4.25117i 0.154206 0.154206i
\(761\) 15.2173 0.551628 0.275814 0.961211i \(-0.411053\pi\)
0.275814 + 0.961211i \(0.411053\pi\)
\(762\) 0 0
\(763\) 13.2301i 0.478960i
\(764\) −5.00459 −0.181060
\(765\) 0 0
\(766\) 15.1965 0.549071
\(767\) 11.0277i 0.398185i
\(768\) 0 0
\(769\) 5.04641 0.181978 0.0909891 0.995852i \(-0.470997\pi\)
0.0909891 + 0.995852i \(0.470997\pi\)
\(770\) 9.64662 9.64662i 0.347640 0.347640i
\(771\) 0 0
\(772\) 2.96221 + 2.96221i 0.106612 + 0.106612i
\(773\) 23.6553i 0.850823i 0.905000 + 0.425411i \(0.139871\pi\)
−0.905000 + 0.425411i \(0.860129\pi\)
\(774\) 0 0
\(775\) −0.662271 0.662271i −0.0237895 0.0237895i
\(776\) −5.45458 5.45458i −0.195808 0.195808i
\(777\) 0 0
\(778\) 22.8792 0.820258
\(779\) 8.39864 8.39864i 0.300913 0.300913i
\(780\) 0 0
\(781\) −30.2472 −1.08233
\(782\) 2.12088 + 3.46600i 0.0758426 + 0.123944i
\(783\) 0 0
\(784\) 4.48647i 0.160231i
\(785\) −38.0327 + 38.0327i −1.35744 + 1.35744i
\(786\) 0 0
\(787\) 26.5970 26.5970i 0.948081 0.948081i −0.0506365 0.998717i \(-0.516125\pi\)
0.998717 + 0.0506365i \(0.0161250\pi\)
\(788\) 0.912034 + 0.912034i 0.0324899 + 0.0324899i
\(789\) 0 0
\(790\) 3.38921i 0.120583i
\(791\) 18.8780i 0.671225i
\(792\) 0 0
\(793\) −62.2288 62.2288i −2.20981 2.20981i
\(794\) 30.5694 30.5694i 1.08487 1.08487i
\(795\) 0 0
\(796\) −4.05508 + 4.05508i −0.143728 + 0.143728i
\(797\) 39.1927i 1.38828i −0.719841 0.694139i \(-0.755785\pi\)
0.719841 0.694139i \(-0.244215\pi\)
\(798\) 0 0
\(799\) −6.57533 + 27.3104i −0.232619 + 0.966172i
\(800\) 0.717070 0.0253523
\(801\) 0 0
\(802\) 6.73857 6.73857i 0.237947 0.237947i
\(803\) −17.7226 −0.625416
\(804\) 0 0
\(805\) −1.07667 1.07667i −0.0379475 0.0379475i
\(806\) 15.6466 + 15.6466i 0.551128 + 0.551128i
\(807\) 0 0
\(808\) 2.60840i 0.0917632i
\(809\) −1.40949 1.40949i −0.0495551 0.0495551i 0.681895 0.731450i \(-0.261156\pi\)
−0.731450 + 0.681895i \(0.761156\pi\)
\(810\) 0 0
\(811\) 9.31564 9.31564i 0.327116 0.327116i −0.524373 0.851489i \(-0.675700\pi\)
0.851489 + 0.524373i \(0.175700\pi\)
\(812\) 1.43046 0.0501994
\(813\) 0 0
\(814\) 33.7001i 1.18119i
\(815\) −11.2522 −0.394148
\(816\) 0 0
\(817\) −2.38996 −0.0836142
\(818\) 0.815964i 0.0285295i
\(819\) 0 0
\(820\) 7.91563 0.276426
\(821\) 30.5863 30.5863i 1.06747 1.06747i 0.0699175 0.997553i \(-0.477726\pi\)
0.997553 0.0699175i \(-0.0222736\pi\)
\(822\) 0 0
\(823\) 3.51823 + 3.51823i 0.122638 + 0.122638i 0.765762 0.643124i \(-0.222362\pi\)
−0.643124 + 0.765762i \(0.722362\pi\)
\(824\) 4.11130i 0.143224i
\(825\) 0 0
\(826\) 1.67272 + 1.67272i 0.0582012 + 0.0582012i
\(827\) 18.1677 + 18.1677i 0.631753 + 0.631753i 0.948507 0.316755i \(-0.102593\pi\)
−0.316755 + 0.948507i \(0.602593\pi\)
\(828\) 0 0
\(829\) 19.6638 0.682952 0.341476 0.939891i \(-0.389073\pi\)
0.341476 + 0.939891i \(0.389073\pi\)
\(830\) −32.1501 + 32.1501i −1.11595 + 1.11595i
\(831\) 0 0
\(832\) 46.2665 1.60400
\(833\) −4.00856 0.965114i −0.138888 0.0334392i
\(834\) 0 0
\(835\) 33.0534i 1.14386i
\(836\) −0.769289 + 0.769289i −0.0266064 + 0.0266064i
\(837\) 0 0
\(838\) 33.7050 33.7050i 1.16432 1.16432i
\(839\) −20.2884 20.2884i −0.700435 0.700435i 0.264069 0.964504i \(-0.414935\pi\)
−0.964504 + 0.264069i \(0.914935\pi\)
\(840\) 0 0
\(841\) 3.52070i 0.121404i
\(842\) 2.50451i 0.0863111i
\(843\) 0 0
\(844\) −0.302362 0.302362i −0.0104077 0.0104077i
\(845\) 60.4567 60.4567i 2.07977 2.07977i
\(846\) 0 0
\(847\) 2.79598 2.79598i 0.0960709 0.0960709i
\(848\) 22.6225i 0.776861i
\(849\) 0 0
\(850\) 0.657067 2.72910i 0.0225372 0.0936075i
\(851\) 3.76129 0.128935
\(852\) 0 0
\(853\) −8.46564 + 8.46564i −0.289858 + 0.289858i −0.837024 0.547166i \(-0.815707\pi\)
0.547166 + 0.837024i \(0.315707\pi\)
\(854\) −18.8782 −0.645999
\(855\) 0 0
\(856\) 11.2403 + 11.2403i 0.384187 + 0.384187i
\(857\) −14.8086 14.8086i −0.505852 0.505852i 0.407399 0.913250i \(-0.366436\pi\)
−0.913250 + 0.407399i \(0.866436\pi\)
\(858\) 0 0
\(859\) 17.7440i 0.605416i −0.953083 0.302708i \(-0.902109\pi\)
0.953083 0.302708i \(-0.0978908\pi\)
\(860\) −1.12626 1.12626i −0.0384050 0.0384050i
\(861\) 0 0
\(862\) 29.7557 29.7557i 1.01348 1.01348i
\(863\) 51.0360 1.73729 0.868643 0.495438i \(-0.164992\pi\)
0.868643 + 0.495438i \(0.164992\pi\)
\(864\) 0 0
\(865\) 47.5198i 1.61572i
\(866\) 42.2451 1.43555
\(867\) 0 0
\(868\) 0.589104 0.0199955
\(869\) 3.71508i 0.126026i
\(870\) 0 0
\(871\) −34.9174 −1.18313
\(872\) 24.2666 24.2666i 0.821770 0.821770i
\(873\) 0 0
\(874\) 0.691818 + 0.691818i 0.0234011 + 0.0234011i
\(875\) 10.6213i 0.359067i
\(876\) 0 0
\(877\) 35.0271 + 35.0271i 1.18278 + 1.18278i 0.979020 + 0.203762i \(0.0653168\pi\)
0.203762 + 0.979020i \(0.434683\pi\)
\(878\) 2.29051 + 2.29051i 0.0773010 + 0.0773010i
\(879\) 0 0
\(880\) 40.5047 1.36541
\(881\) −30.7682 + 30.7682i −1.03661 + 1.03661i −0.0373037 + 0.999304i \(0.511877\pi\)
−0.999304 + 0.0373037i \(0.988123\pi\)
\(882\) 0 0
\(883\) 4.04610 0.136162 0.0680810 0.997680i \(-0.478312\pi\)
0.0680810 + 0.997680i \(0.478312\pi\)
\(884\) −1.92663 + 8.00216i −0.0647994 + 0.269142i
\(885\) 0 0
\(886\) 39.4447i 1.32517i
\(887\) 5.63293 5.63293i 0.189135 0.189135i −0.606187 0.795322i \(-0.707302\pi\)
0.795322 + 0.606187i \(0.207302\pi\)
\(888\) 0 0
\(889\) −15.7135 + 15.7135i −0.527013 + 0.527013i
\(890\) 9.55099 + 9.55099i 0.320150 + 0.320150i
\(891\) 0 0
\(892\) 8.29566i 0.277759i
\(893\) 6.76365i 0.226337i
\(894\) 0 0
\(895\) 24.8640 + 24.8640i 0.831113 + 0.831113i
\(896\) 9.26867 9.26867i 0.309644 0.309644i
\(897\) 0 0
\(898\) 24.6910 24.6910i 0.823949 0.823949i
\(899\) 10.4931i 0.349964i
\(900\) 0 0
\(901\) 20.2127 + 4.86648i 0.673384 + 0.162126i
\(902\) 69.9122 2.32782
\(903\) 0 0
\(904\) −34.6261 + 34.6261i −1.15165 + 1.15165i
\(905\) −10.9448 −0.363819
\(906\) 0 0
\(907\) 9.69792 + 9.69792i 0.322014 + 0.322014i 0.849539 0.527525i \(-0.176880\pi\)
−0.527525 + 0.849539i \(0.676880\pi\)
\(908\) −4.53852 4.53852i −0.150616 0.150616i
\(909\) 0 0
\(910\) 24.8511i 0.823807i
\(911\) 23.3268 + 23.3268i 0.772851 + 0.772851i 0.978604 0.205753i \(-0.0659644\pi\)
−0.205753 + 0.978604i \(0.565964\pi\)
\(912\) 0 0
\(913\) −35.2414 + 35.2414i −1.16632 + 1.16632i
\(914\) −43.0130 −1.42274
\(915\) 0 0
\(916\) 5.81937i 0.192277i
\(917\) −8.10515 −0.267656
\(918\) 0 0
\(919\) −42.3458 −1.39686 −0.698430 0.715678i \(-0.746118\pi\)
−0.698430 + 0.715678i \(0.746118\pi\)
\(920\) 3.94964i 0.130216i
\(921\) 0 0
\(922\) 36.2344 1.19332
\(923\) −38.9606 + 38.9606i −1.28240 + 1.28240i
\(924\) 0 0
\(925\) −1.83733 1.83733i −0.0604111 0.0604111i
\(926\) 30.9888i 1.01835i
\(927\) 0 0
\(928\) 5.68066 + 5.68066i 0.186477 + 0.186477i
\(929\) −5.25405 5.25405i −0.172380 0.172380i 0.615644 0.788024i \(-0.288896\pi\)
−0.788024 + 0.615644i \(0.788896\pi\)
\(930\) 0 0
\(931\) −0.992753 −0.0325362
\(932\) 0.779393 0.779393i 0.0255299 0.0255299i
\(933\) 0 0
\(934\) −27.1604 −0.888714
\(935\) 8.71322 36.1900i 0.284953 1.18354i
\(936\) 0 0
\(937\) 2.79023i 0.0911529i 0.998961 + 0.0455765i \(0.0145125\pi\)
−0.998961 + 0.0455765i \(0.985488\pi\)
\(938\) −5.29641 + 5.29641i −0.172934 + 0.172934i
\(939\) 0 0
\(940\) −3.18733 + 3.18733i −0.103959 + 0.103959i
\(941\) −18.1581 18.1581i −0.591937 0.591937i 0.346217 0.938154i \(-0.387466\pi\)
−0.938154 + 0.346217i \(0.887466\pi\)
\(942\) 0 0
\(943\) 7.80294i 0.254099i
\(944\) 7.02347i 0.228594i
\(945\) 0 0
\(946\) −9.94729 9.94729i −0.323414 0.323414i
\(947\) −16.9612 + 16.9612i −0.551165 + 0.551165i −0.926777 0.375612i \(-0.877433\pi\)
0.375612 + 0.926777i \(0.377433\pi\)
\(948\) 0 0
\(949\) −22.8280 + 22.8280i −0.741027 + 0.741027i
\(950\) 0.675885i 0.0219286i
\(951\) 0 0
\(952\) −5.58229 9.12272i −0.180923 0.295669i
\(953\) 5.89788 0.191051 0.0955255 0.995427i \(-0.469547\pi\)
0.0955255 + 0.995427i \(0.469547\pi\)
\(954\) 0 0
\(955\) 29.1535 29.1535i 0.943385 0.943385i
\(956\) −1.98589 −0.0642284
\(957\) 0 0
\(958\) 25.1412 + 25.1412i 0.812276 + 0.812276i
\(959\) −5.42149 5.42149i −0.175069 0.175069i
\(960\) 0 0
\(961\) 26.6787i 0.860602i
\(962\) 43.4082 + 43.4082i 1.39954 + 1.39954i
\(963\) 0 0
\(964\) −3.29723 + 3.29723i −0.106197 + 0.106197i
\(965\) −34.5118 −1.11097
\(966\) 0 0
\(967\) 41.8868i 1.34699i −0.739192 0.673495i \(-0.764792\pi\)
0.739192 0.673495i \(-0.235208\pi\)
\(968\) 10.2568 0.329665
\(969\) 0 0
\(970\) −10.4912 −0.336851
\(971\) 43.4097i 1.39308i −0.717517 0.696541i \(-0.754721\pi\)
0.717517 0.696541i \(-0.245279\pi\)
\(972\) 0 0
\(973\) 4.89189 0.156827
\(974\) 0.376666 0.376666i 0.0120691 0.0120691i
\(975\) 0 0
\(976\) −39.6333 39.6333i −1.26863 1.26863i
\(977\) 33.0140i 1.05621i −0.849179 0.528105i \(-0.822903\pi\)
0.849179 0.528105i \(-0.177097\pi\)
\(978\) 0 0
\(979\) 10.4693 + 10.4693i 0.334601 + 0.334601i
\(980\) −0.467830 0.467830i −0.0149443 0.0149443i
\(981\) 0 0
\(982\) −14.7166 −0.469625
\(983\) 31.2458 31.2458i 0.996586 0.996586i −0.00340834 0.999994i \(-0.501085\pi\)
0.999994 + 0.00340834i \(0.00108491\pi\)
\(984\) 0 0
\(985\) −10.6258 −0.338567
\(986\) 26.8254 16.4148i 0.854294 0.522752i
\(987\) 0 0
\(988\) 1.98180i 0.0630495i
\(989\) −1.11022 + 1.11022i −0.0353030 + 0.0353030i
\(990\) 0 0
\(991\) −6.79452 + 6.79452i −0.215835 + 0.215835i −0.806741 0.590906i \(-0.798771\pi\)
0.590906 + 0.806741i \(0.298771\pi\)
\(992\) 2.33945 + 2.33945i 0.0742777 + 0.0742777i
\(993\) 0 0
\(994\) 11.8194i 0.374888i
\(995\) 47.2445i 1.49775i
\(996\) 0 0
\(997\) −34.4116 34.4116i −1.08983 1.08983i −0.995546 0.0942822i \(-0.969944\pi\)
−0.0942822 0.995546i \(-0.530056\pi\)
\(998\) 28.0998 28.0998i 0.889484 0.889484i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1071.2.n.b.820.4 20
3.2 odd 2 357.2.k.b.106.7 yes 20
17.13 even 4 inner 1071.2.n.b.64.7 20
51.8 odd 8 6069.2.a.be.1.7 10
51.26 odd 8 6069.2.a.bd.1.7 10
51.47 odd 4 357.2.k.b.64.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.4 20 51.47 odd 4
357.2.k.b.106.7 yes 20 3.2 odd 2
1071.2.n.b.64.7 20 17.13 even 4 inner
1071.2.n.b.820.4 20 1.1 even 1 trivial
6069.2.a.bd.1.7 10 51.26 odd 8
6069.2.a.be.1.7 10 51.8 odd 8