Properties

Label 1078.2.a.n.1.2
Level $1078$
Weight $2$
Character 1078.1
Self dual yes
Analytic conductor $8.608$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1078,2,Mod(1,1078)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1078, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1078.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.60787333789\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 1078.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.64575 q^{3} +1.00000 q^{4} -3.64575 q^{5} -2.64575 q^{6} -1.00000 q^{8} +4.00000 q^{9} +3.64575 q^{10} +1.00000 q^{11} +2.64575 q^{12} -5.00000 q^{13} -9.64575 q^{15} +1.00000 q^{16} -6.00000 q^{17} -4.00000 q^{18} +0.354249 q^{19} -3.64575 q^{20} -1.00000 q^{22} -3.64575 q^{23} -2.64575 q^{24} +8.29150 q^{25} +5.00000 q^{26} +2.64575 q^{27} -4.29150 q^{29} +9.64575 q^{30} +4.00000 q^{31} -1.00000 q^{32} +2.64575 q^{33} +6.00000 q^{34} +4.00000 q^{36} -1.64575 q^{37} -0.354249 q^{38} -13.2288 q^{39} +3.64575 q^{40} +4.93725 q^{41} -4.00000 q^{43} +1.00000 q^{44} -14.5830 q^{45} +3.64575 q^{46} -13.2915 q^{47} +2.64575 q^{48} -8.29150 q^{50} -15.8745 q^{51} -5.00000 q^{52} -3.64575 q^{53} -2.64575 q^{54} -3.64575 q^{55} +0.937254 q^{57} +4.29150 q^{58} +0.645751 q^{59} -9.64575 q^{60} -3.70850 q^{61} -4.00000 q^{62} +1.00000 q^{64} +18.2288 q^{65} -2.64575 q^{66} +3.93725 q^{67} -6.00000 q^{68} -9.64575 q^{69} +9.64575 q^{71} -4.00000 q^{72} -5.64575 q^{73} +1.64575 q^{74} +21.9373 q^{75} +0.354249 q^{76} +13.2288 q^{78} +2.64575 q^{79} -3.64575 q^{80} -5.00000 q^{81} -4.93725 q^{82} -13.2915 q^{83} +21.8745 q^{85} +4.00000 q^{86} -11.3542 q^{87} -1.00000 q^{88} +14.5830 q^{89} +14.5830 q^{90} -3.64575 q^{92} +10.5830 q^{93} +13.2915 q^{94} -1.29150 q^{95} -2.64575 q^{96} +5.70850 q^{97} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 2 q^{5} - 2 q^{8} + 8 q^{9} + 2 q^{10} + 2 q^{11} - 10 q^{13} - 14 q^{15} + 2 q^{16} - 12 q^{17} - 8 q^{18} + 6 q^{19} - 2 q^{20} - 2 q^{22} - 2 q^{23} + 6 q^{25} + 10 q^{26} + 2 q^{29}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.64575 1.52753 0.763763 0.645497i \(-0.223350\pi\)
0.763763 + 0.645497i \(0.223350\pi\)
\(4\) 1.00000 0.500000
\(5\) −3.64575 −1.63043 −0.815215 0.579159i \(-0.803381\pi\)
−0.815215 + 0.579159i \(0.803381\pi\)
\(6\) −2.64575 −1.08012
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 4.00000 1.33333
\(10\) 3.64575 1.15289
\(11\) 1.00000 0.301511
\(12\) 2.64575 0.763763
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −9.64575 −2.49052
\(16\) 1.00000 0.250000
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) −4.00000 −0.942809
\(19\) 0.354249 0.0812702 0.0406351 0.999174i \(-0.487062\pi\)
0.0406351 + 0.999174i \(0.487062\pi\)
\(20\) −3.64575 −0.815215
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −3.64575 −0.760192 −0.380096 0.924947i \(-0.624109\pi\)
−0.380096 + 0.924947i \(0.624109\pi\)
\(24\) −2.64575 −0.540062
\(25\) 8.29150 1.65830
\(26\) 5.00000 0.980581
\(27\) 2.64575 0.509175
\(28\) 0 0
\(29\) −4.29150 −0.796912 −0.398456 0.917187i \(-0.630454\pi\)
−0.398456 + 0.917187i \(0.630454\pi\)
\(30\) 9.64575 1.76107
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −1.00000 −0.176777
\(33\) 2.64575 0.460566
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 4.00000 0.666667
\(37\) −1.64575 −0.270560 −0.135280 0.990807i \(-0.543193\pi\)
−0.135280 + 0.990807i \(0.543193\pi\)
\(38\) −0.354249 −0.0574667
\(39\) −13.2288 −2.11830
\(40\) 3.64575 0.576444
\(41\) 4.93725 0.771070 0.385535 0.922693i \(-0.374017\pi\)
0.385535 + 0.922693i \(0.374017\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 1.00000 0.150756
\(45\) −14.5830 −2.17391
\(46\) 3.64575 0.537537
\(47\) −13.2915 −1.93876 −0.969382 0.245556i \(-0.921030\pi\)
−0.969382 + 0.245556i \(0.921030\pi\)
\(48\) 2.64575 0.381881
\(49\) 0 0
\(50\) −8.29150 −1.17260
\(51\) −15.8745 −2.22288
\(52\) −5.00000 −0.693375
\(53\) −3.64575 −0.500782 −0.250391 0.968145i \(-0.580559\pi\)
−0.250391 + 0.968145i \(0.580559\pi\)
\(54\) −2.64575 −0.360041
\(55\) −3.64575 −0.491593
\(56\) 0 0
\(57\) 0.937254 0.124142
\(58\) 4.29150 0.563502
\(59\) 0.645751 0.0840697 0.0420348 0.999116i \(-0.486616\pi\)
0.0420348 + 0.999116i \(0.486616\pi\)
\(60\) −9.64575 −1.24526
\(61\) −3.70850 −0.474824 −0.237412 0.971409i \(-0.576299\pi\)
−0.237412 + 0.971409i \(0.576299\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 18.2288 2.26100
\(66\) −2.64575 −0.325669
\(67\) 3.93725 0.481012 0.240506 0.970648i \(-0.422687\pi\)
0.240506 + 0.970648i \(0.422687\pi\)
\(68\) −6.00000 −0.727607
\(69\) −9.64575 −1.16121
\(70\) 0 0
\(71\) 9.64575 1.14474 0.572370 0.819995i \(-0.306024\pi\)
0.572370 + 0.819995i \(0.306024\pi\)
\(72\) −4.00000 −0.471405
\(73\) −5.64575 −0.660785 −0.330393 0.943844i \(-0.607181\pi\)
−0.330393 + 0.943844i \(0.607181\pi\)
\(74\) 1.64575 0.191315
\(75\) 21.9373 2.53310
\(76\) 0.354249 0.0406351
\(77\) 0 0
\(78\) 13.2288 1.49786
\(79\) 2.64575 0.297670 0.148835 0.988862i \(-0.452448\pi\)
0.148835 + 0.988862i \(0.452448\pi\)
\(80\) −3.64575 −0.407607
\(81\) −5.00000 −0.555556
\(82\) −4.93725 −0.545228
\(83\) −13.2915 −1.45893 −0.729466 0.684017i \(-0.760231\pi\)
−0.729466 + 0.684017i \(0.760231\pi\)
\(84\) 0 0
\(85\) 21.8745 2.37262
\(86\) 4.00000 0.431331
\(87\) −11.3542 −1.21730
\(88\) −1.00000 −0.106600
\(89\) 14.5830 1.54580 0.772898 0.634531i \(-0.218807\pi\)
0.772898 + 0.634531i \(0.218807\pi\)
\(90\) 14.5830 1.53718
\(91\) 0 0
\(92\) −3.64575 −0.380096
\(93\) 10.5830 1.09741
\(94\) 13.2915 1.37091
\(95\) −1.29150 −0.132505
\(96\) −2.64575 −0.270031
\(97\) 5.70850 0.579610 0.289805 0.957086i \(-0.406410\pi\)
0.289805 + 0.957086i \(0.406410\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 8.29150 0.829150
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 15.8745 1.57181
\(103\) −12.9373 −1.27475 −0.637373 0.770556i \(-0.719979\pi\)
−0.637373 + 0.770556i \(0.719979\pi\)
\(104\) 5.00000 0.490290
\(105\) 0 0
\(106\) 3.64575 0.354107
\(107\) 4.93725 0.477302 0.238651 0.971105i \(-0.423295\pi\)
0.238651 + 0.971105i \(0.423295\pi\)
\(108\) 2.64575 0.254588
\(109\) 10.5830 1.01367 0.506834 0.862044i \(-0.330816\pi\)
0.506834 + 0.862044i \(0.330816\pi\)
\(110\) 3.64575 0.347609
\(111\) −4.35425 −0.413287
\(112\) 0 0
\(113\) −7.70850 −0.725154 −0.362577 0.931954i \(-0.618103\pi\)
−0.362577 + 0.931954i \(0.618103\pi\)
\(114\) −0.937254 −0.0877819
\(115\) 13.2915 1.23944
\(116\) −4.29150 −0.398456
\(117\) −20.0000 −1.84900
\(118\) −0.645751 −0.0594462
\(119\) 0 0
\(120\) 9.64575 0.880533
\(121\) 1.00000 0.0909091
\(122\) 3.70850 0.335752
\(123\) 13.0627 1.17783
\(124\) 4.00000 0.359211
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) 0.0627461 0.00556781 0.00278391 0.999996i \(-0.499114\pi\)
0.00278391 + 0.999996i \(0.499114\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −10.5830 −0.931782
\(130\) −18.2288 −1.59877
\(131\) −15.6458 −1.36698 −0.683488 0.729962i \(-0.739538\pi\)
−0.683488 + 0.729962i \(0.739538\pi\)
\(132\) 2.64575 0.230283
\(133\) 0 0
\(134\) −3.93725 −0.340127
\(135\) −9.64575 −0.830174
\(136\) 6.00000 0.514496
\(137\) 18.8745 1.61256 0.806279 0.591535i \(-0.201478\pi\)
0.806279 + 0.591535i \(0.201478\pi\)
\(138\) 9.64575 0.821101
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) −35.1660 −2.96151
\(142\) −9.64575 −0.809453
\(143\) −5.00000 −0.418121
\(144\) 4.00000 0.333333
\(145\) 15.6458 1.29931
\(146\) 5.64575 0.467246
\(147\) 0 0
\(148\) −1.64575 −0.135280
\(149\) −4.70850 −0.385735 −0.192868 0.981225i \(-0.561779\pi\)
−0.192868 + 0.981225i \(0.561779\pi\)
\(150\) −21.9373 −1.79117
\(151\) −3.35425 −0.272965 −0.136482 0.990642i \(-0.543580\pi\)
−0.136482 + 0.990642i \(0.543580\pi\)
\(152\) −0.354249 −0.0287334
\(153\) −24.0000 −1.94029
\(154\) 0 0
\(155\) −14.5830 −1.17134
\(156\) −13.2288 −1.05915
\(157\) 21.1660 1.68923 0.844616 0.535373i \(-0.179829\pi\)
0.844616 + 0.535373i \(0.179829\pi\)
\(158\) −2.64575 −0.210485
\(159\) −9.64575 −0.764958
\(160\) 3.64575 0.288222
\(161\) 0 0
\(162\) 5.00000 0.392837
\(163\) −4.64575 −0.363883 −0.181942 0.983309i \(-0.558238\pi\)
−0.181942 + 0.983309i \(0.558238\pi\)
\(164\) 4.93725 0.385535
\(165\) −9.64575 −0.750921
\(166\) 13.2915 1.03162
\(167\) −15.2288 −1.17844 −0.589218 0.807974i \(-0.700564\pi\)
−0.589218 + 0.807974i \(0.700564\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) −21.8745 −1.67770
\(171\) 1.41699 0.108360
\(172\) −4.00000 −0.304997
\(173\) −10.2915 −0.782448 −0.391224 0.920295i \(-0.627948\pi\)
−0.391224 + 0.920295i \(0.627948\pi\)
\(174\) 11.3542 0.860763
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 1.70850 0.128419
\(178\) −14.5830 −1.09304
\(179\) −4.06275 −0.303664 −0.151832 0.988406i \(-0.548517\pi\)
−0.151832 + 0.988406i \(0.548517\pi\)
\(180\) −14.5830 −1.08695
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) −9.81176 −0.725306
\(184\) 3.64575 0.268768
\(185\) 6.00000 0.441129
\(186\) −10.5830 −0.775984
\(187\) −6.00000 −0.438763
\(188\) −13.2915 −0.969382
\(189\) 0 0
\(190\) 1.29150 0.0936954
\(191\) −13.2915 −0.961739 −0.480870 0.876792i \(-0.659679\pi\)
−0.480870 + 0.876792i \(0.659679\pi\)
\(192\) 2.64575 0.190941
\(193\) −11.5203 −0.829246 −0.414623 0.909993i \(-0.636087\pi\)
−0.414623 + 0.909993i \(0.636087\pi\)
\(194\) −5.70850 −0.409846
\(195\) 48.2288 3.45373
\(196\) 0 0
\(197\) 18.8745 1.34475 0.672377 0.740209i \(-0.265274\pi\)
0.672377 + 0.740209i \(0.265274\pi\)
\(198\) −4.00000 −0.284268
\(199\) 22.2288 1.57575 0.787877 0.615832i \(-0.211180\pi\)
0.787877 + 0.615832i \(0.211180\pi\)
\(200\) −8.29150 −0.586298
\(201\) 10.4170 0.734758
\(202\) 3.00000 0.211079
\(203\) 0 0
\(204\) −15.8745 −1.11144
\(205\) −18.0000 −1.25717
\(206\) 12.9373 0.901381
\(207\) −14.5830 −1.01359
\(208\) −5.00000 −0.346688
\(209\) 0.354249 0.0245039
\(210\) 0 0
\(211\) −14.9373 −1.02832 −0.514161 0.857693i \(-0.671897\pi\)
−0.514161 + 0.857693i \(0.671897\pi\)
\(212\) −3.64575 −0.250391
\(213\) 25.5203 1.74862
\(214\) −4.93725 −0.337504
\(215\) 14.5830 0.994553
\(216\) −2.64575 −0.180021
\(217\) 0 0
\(218\) −10.5830 −0.716772
\(219\) −14.9373 −1.00937
\(220\) −3.64575 −0.245797
\(221\) 30.0000 2.01802
\(222\) 4.35425 0.292238
\(223\) 12.3542 0.827302 0.413651 0.910436i \(-0.364253\pi\)
0.413651 + 0.910436i \(0.364253\pi\)
\(224\) 0 0
\(225\) 33.1660 2.21107
\(226\) 7.70850 0.512762
\(227\) 13.2915 0.882188 0.441094 0.897461i \(-0.354591\pi\)
0.441094 + 0.897461i \(0.354591\pi\)
\(228\) 0.937254 0.0620712
\(229\) 16.0000 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(230\) −13.2915 −0.876416
\(231\) 0 0
\(232\) 4.29150 0.281751
\(233\) 16.9373 1.10960 0.554798 0.831985i \(-0.312795\pi\)
0.554798 + 0.831985i \(0.312795\pi\)
\(234\) 20.0000 1.30744
\(235\) 48.4575 3.16102
\(236\) 0.645751 0.0420348
\(237\) 7.00000 0.454699
\(238\) 0 0
\(239\) 9.22876 0.596959 0.298479 0.954416i \(-0.403521\pi\)
0.298479 + 0.954416i \(0.403521\pi\)
\(240\) −9.64575 −0.622631
\(241\) −22.8118 −1.46943 −0.734717 0.678373i \(-0.762685\pi\)
−0.734717 + 0.678373i \(0.762685\pi\)
\(242\) −1.00000 −0.0642824
\(243\) −21.1660 −1.35780
\(244\) −3.70850 −0.237412
\(245\) 0 0
\(246\) −13.0627 −0.832850
\(247\) −1.77124 −0.112702
\(248\) −4.00000 −0.254000
\(249\) −35.1660 −2.22856
\(250\) 12.0000 0.758947
\(251\) −7.29150 −0.460236 −0.230118 0.973163i \(-0.573911\pi\)
−0.230118 + 0.973163i \(0.573911\pi\)
\(252\) 0 0
\(253\) −3.64575 −0.229206
\(254\) −0.0627461 −0.00393704
\(255\) 57.8745 3.62424
\(256\) 1.00000 0.0625000
\(257\) 0.416995 0.0260114 0.0130057 0.999915i \(-0.495860\pi\)
0.0130057 + 0.999915i \(0.495860\pi\)
\(258\) 10.5830 0.658869
\(259\) 0 0
\(260\) 18.2288 1.13050
\(261\) −17.1660 −1.06255
\(262\) 15.6458 0.966598
\(263\) 4.06275 0.250520 0.125260 0.992124i \(-0.460024\pi\)
0.125260 + 0.992124i \(0.460024\pi\)
\(264\) −2.64575 −0.162835
\(265\) 13.2915 0.816491
\(266\) 0 0
\(267\) 38.5830 2.36124
\(268\) 3.93725 0.240506
\(269\) −26.5830 −1.62079 −0.810397 0.585881i \(-0.800749\pi\)
−0.810397 + 0.585881i \(0.800749\pi\)
\(270\) 9.64575 0.587022
\(271\) 17.9373 1.08961 0.544805 0.838563i \(-0.316604\pi\)
0.544805 + 0.838563i \(0.316604\pi\)
\(272\) −6.00000 −0.363803
\(273\) 0 0
\(274\) −18.8745 −1.14025
\(275\) 8.29150 0.499996
\(276\) −9.64575 −0.580606
\(277\) −11.7085 −0.703495 −0.351748 0.936095i \(-0.614413\pi\)
−0.351748 + 0.936095i \(0.614413\pi\)
\(278\) −4.00000 −0.239904
\(279\) 16.0000 0.957895
\(280\) 0 0
\(281\) −7.06275 −0.421328 −0.210664 0.977559i \(-0.567563\pi\)
−0.210664 + 0.977559i \(0.567563\pi\)
\(282\) 35.1660 2.09411
\(283\) 7.64575 0.454493 0.227246 0.973837i \(-0.427028\pi\)
0.227246 + 0.973837i \(0.427028\pi\)
\(284\) 9.64575 0.572370
\(285\) −3.41699 −0.202405
\(286\) 5.00000 0.295656
\(287\) 0 0
\(288\) −4.00000 −0.235702
\(289\) 19.0000 1.11765
\(290\) −15.6458 −0.918750
\(291\) 15.1033 0.885369
\(292\) −5.64575 −0.330393
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) −2.35425 −0.137070
\(296\) 1.64575 0.0956574
\(297\) 2.64575 0.153522
\(298\) 4.70850 0.272756
\(299\) 18.2288 1.05420
\(300\) 21.9373 1.26655
\(301\) 0 0
\(302\) 3.35425 0.193015
\(303\) −7.93725 −0.455983
\(304\) 0.354249 0.0203176
\(305\) 13.5203 0.774168
\(306\) 24.0000 1.37199
\(307\) 4.22876 0.241348 0.120674 0.992692i \(-0.461494\pi\)
0.120674 + 0.992692i \(0.461494\pi\)
\(308\) 0 0
\(309\) −34.2288 −1.94721
\(310\) 14.5830 0.828259
\(311\) −16.9373 −0.960424 −0.480212 0.877153i \(-0.659440\pi\)
−0.480212 + 0.877153i \(0.659440\pi\)
\(312\) 13.2288 0.748931
\(313\) −2.41699 −0.136617 −0.0683083 0.997664i \(-0.521760\pi\)
−0.0683083 + 0.997664i \(0.521760\pi\)
\(314\) −21.1660 −1.19447
\(315\) 0 0
\(316\) 2.64575 0.148835
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 9.64575 0.540907
\(319\) −4.29150 −0.240278
\(320\) −3.64575 −0.203804
\(321\) 13.0627 0.729091
\(322\) 0 0
\(323\) −2.12549 −0.118266
\(324\) −5.00000 −0.277778
\(325\) −41.4575 −2.29965
\(326\) 4.64575 0.257304
\(327\) 28.0000 1.54840
\(328\) −4.93725 −0.272614
\(329\) 0 0
\(330\) 9.64575 0.530981
\(331\) −15.3542 −0.843946 −0.421973 0.906608i \(-0.638662\pi\)
−0.421973 + 0.906608i \(0.638662\pi\)
\(332\) −13.2915 −0.729466
\(333\) −6.58301 −0.360746
\(334\) 15.2288 0.833280
\(335\) −14.3542 −0.784256
\(336\) 0 0
\(337\) 24.9373 1.35842 0.679209 0.733945i \(-0.262323\pi\)
0.679209 + 0.733945i \(0.262323\pi\)
\(338\) −12.0000 −0.652714
\(339\) −20.3948 −1.10769
\(340\) 21.8745 1.18631
\(341\) 4.00000 0.216612
\(342\) −1.41699 −0.0766223
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 35.1660 1.89327
\(346\) 10.2915 0.553275
\(347\) 26.8118 1.43933 0.719665 0.694321i \(-0.244295\pi\)
0.719665 + 0.694321i \(0.244295\pi\)
\(348\) −11.3542 −0.608652
\(349\) −29.8745 −1.59915 −0.799573 0.600569i \(-0.794941\pi\)
−0.799573 + 0.600569i \(0.794941\pi\)
\(350\) 0 0
\(351\) −13.2288 −0.706099
\(352\) −1.00000 −0.0533002
\(353\) 35.1660 1.87170 0.935849 0.352401i \(-0.114635\pi\)
0.935849 + 0.352401i \(0.114635\pi\)
\(354\) −1.70850 −0.0908056
\(355\) −35.1660 −1.86642
\(356\) 14.5830 0.772898
\(357\) 0 0
\(358\) 4.06275 0.214723
\(359\) −10.0627 −0.531091 −0.265546 0.964098i \(-0.585552\pi\)
−0.265546 + 0.964098i \(0.585552\pi\)
\(360\) 14.5830 0.768592
\(361\) −18.8745 −0.993395
\(362\) −10.0000 −0.525588
\(363\) 2.64575 0.138866
\(364\) 0 0
\(365\) 20.5830 1.07736
\(366\) 9.81176 0.512869
\(367\) 9.77124 0.510055 0.255027 0.966934i \(-0.417916\pi\)
0.255027 + 0.966934i \(0.417916\pi\)
\(368\) −3.64575 −0.190048
\(369\) 19.7490 1.02809
\(370\) −6.00000 −0.311925
\(371\) 0 0
\(372\) 10.5830 0.548703
\(373\) −10.8745 −0.563061 −0.281530 0.959552i \(-0.590842\pi\)
−0.281530 + 0.959552i \(0.590842\pi\)
\(374\) 6.00000 0.310253
\(375\) −31.7490 −1.63951
\(376\) 13.2915 0.685457
\(377\) 21.4575 1.10512
\(378\) 0 0
\(379\) 21.9373 1.12684 0.563421 0.826170i \(-0.309485\pi\)
0.563421 + 0.826170i \(0.309485\pi\)
\(380\) −1.29150 −0.0662527
\(381\) 0.166010 0.00850497
\(382\) 13.2915 0.680052
\(383\) 34.1033 1.74260 0.871298 0.490755i \(-0.163279\pi\)
0.871298 + 0.490755i \(0.163279\pi\)
\(384\) −2.64575 −0.135015
\(385\) 0 0
\(386\) 11.5203 0.586366
\(387\) −16.0000 −0.813326
\(388\) 5.70850 0.289805
\(389\) −20.8118 −1.05520 −0.527599 0.849493i \(-0.676908\pi\)
−0.527599 + 0.849493i \(0.676908\pi\)
\(390\) −48.2288 −2.44216
\(391\) 21.8745 1.10624
\(392\) 0 0
\(393\) −41.3948 −2.08809
\(394\) −18.8745 −0.950884
\(395\) −9.64575 −0.485330
\(396\) 4.00000 0.201008
\(397\) −31.1660 −1.56418 −0.782089 0.623167i \(-0.785846\pi\)
−0.782089 + 0.623167i \(0.785846\pi\)
\(398\) −22.2288 −1.11423
\(399\) 0 0
\(400\) 8.29150 0.414575
\(401\) 0.416995 0.0208237 0.0104119 0.999946i \(-0.496686\pi\)
0.0104119 + 0.999946i \(0.496686\pi\)
\(402\) −10.4170 −0.519552
\(403\) −20.0000 −0.996271
\(404\) −3.00000 −0.149256
\(405\) 18.2288 0.905794
\(406\) 0 0
\(407\) −1.64575 −0.0815769
\(408\) 15.8745 0.785905
\(409\) −18.9373 −0.936387 −0.468193 0.883626i \(-0.655095\pi\)
−0.468193 + 0.883626i \(0.655095\pi\)
\(410\) 18.0000 0.888957
\(411\) 49.9373 2.46322
\(412\) −12.9373 −0.637373
\(413\) 0 0
\(414\) 14.5830 0.716716
\(415\) 48.4575 2.37869
\(416\) 5.00000 0.245145
\(417\) 10.5830 0.518252
\(418\) −0.354249 −0.0173269
\(419\) −21.8745 −1.06864 −0.534320 0.845282i \(-0.679432\pi\)
−0.534320 + 0.845282i \(0.679432\pi\)
\(420\) 0 0
\(421\) −33.1660 −1.61641 −0.808206 0.588900i \(-0.799561\pi\)
−0.808206 + 0.588900i \(0.799561\pi\)
\(422\) 14.9373 0.727134
\(423\) −53.1660 −2.58502
\(424\) 3.64575 0.177053
\(425\) −49.7490 −2.41318
\(426\) −25.5203 −1.23646
\(427\) 0 0
\(428\) 4.93725 0.238651
\(429\) −13.2288 −0.638690
\(430\) −14.5830 −0.703255
\(431\) 2.77124 0.133486 0.0667430 0.997770i \(-0.478739\pi\)
0.0667430 + 0.997770i \(0.478739\pi\)
\(432\) 2.64575 0.127294
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 0 0
\(435\) 41.3948 1.98473
\(436\) 10.5830 0.506834
\(437\) −1.29150 −0.0617809
\(438\) 14.9373 0.713730
\(439\) 11.9373 0.569734 0.284867 0.958567i \(-0.408051\pi\)
0.284867 + 0.958567i \(0.408051\pi\)
\(440\) 3.64575 0.173804
\(441\) 0 0
\(442\) −30.0000 −1.42695
\(443\) −18.4575 −0.876943 −0.438471 0.898745i \(-0.644480\pi\)
−0.438471 + 0.898745i \(0.644480\pi\)
\(444\) −4.35425 −0.206643
\(445\) −53.1660 −2.52031
\(446\) −12.3542 −0.584991
\(447\) −12.4575 −0.589220
\(448\) 0 0
\(449\) 9.87451 0.466007 0.233003 0.972476i \(-0.425145\pi\)
0.233003 + 0.972476i \(0.425145\pi\)
\(450\) −33.1660 −1.56346
\(451\) 4.93725 0.232486
\(452\) −7.70850 −0.362577
\(453\) −8.87451 −0.416961
\(454\) −13.2915 −0.623801
\(455\) 0 0
\(456\) −0.937254 −0.0438909
\(457\) −39.1660 −1.83211 −0.916054 0.401054i \(-0.868644\pi\)
−0.916054 + 0.401054i \(0.868644\pi\)
\(458\) −16.0000 −0.747631
\(459\) −15.8745 −0.740959
\(460\) 13.2915 0.619720
\(461\) 32.1660 1.49812 0.749060 0.662502i \(-0.230505\pi\)
0.749060 + 0.662502i \(0.230505\pi\)
\(462\) 0 0
\(463\) −22.4575 −1.04369 −0.521845 0.853041i \(-0.674756\pi\)
−0.521845 + 0.853041i \(0.674756\pi\)
\(464\) −4.29150 −0.199228
\(465\) −38.5830 −1.78924
\(466\) −16.9373 −0.784603
\(467\) −10.7085 −0.495530 −0.247765 0.968820i \(-0.579696\pi\)
−0.247765 + 0.968820i \(0.579696\pi\)
\(468\) −20.0000 −0.924500
\(469\) 0 0
\(470\) −48.4575 −2.23518
\(471\) 56.0000 2.58034
\(472\) −0.645751 −0.0297231
\(473\) −4.00000 −0.183920
\(474\) −7.00000 −0.321521
\(475\) 2.93725 0.134770
\(476\) 0 0
\(477\) −14.5830 −0.667710
\(478\) −9.22876 −0.422113
\(479\) 25.9373 1.18510 0.592552 0.805532i \(-0.298121\pi\)
0.592552 + 0.805532i \(0.298121\pi\)
\(480\) 9.64575 0.440266
\(481\) 8.22876 0.375199
\(482\) 22.8118 1.03905
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) −20.8118 −0.945013
\(486\) 21.1660 0.960110
\(487\) −30.5830 −1.38585 −0.692924 0.721011i \(-0.743678\pi\)
−0.692924 + 0.721011i \(0.743678\pi\)
\(488\) 3.70850 0.167876
\(489\) −12.2915 −0.555841
\(490\) 0 0
\(491\) 10.7085 0.483268 0.241634 0.970367i \(-0.422317\pi\)
0.241634 + 0.970367i \(0.422317\pi\)
\(492\) 13.0627 0.588914
\(493\) 25.7490 1.15968
\(494\) 1.77124 0.0796920
\(495\) −14.5830 −0.655457
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 35.1660 1.57583
\(499\) 17.8745 0.800173 0.400086 0.916477i \(-0.368980\pi\)
0.400086 + 0.916477i \(0.368980\pi\)
\(500\) −12.0000 −0.536656
\(501\) −40.2915 −1.80009
\(502\) 7.29150 0.325436
\(503\) 19.9373 0.888958 0.444479 0.895789i \(-0.353389\pi\)
0.444479 + 0.895789i \(0.353389\pi\)
\(504\) 0 0
\(505\) 10.9373 0.486701
\(506\) 3.64575 0.162073
\(507\) 31.7490 1.41002
\(508\) 0.0627461 0.00278391
\(509\) −20.5830 −0.912326 −0.456163 0.889896i \(-0.650777\pi\)
−0.456163 + 0.889896i \(0.650777\pi\)
\(510\) −57.8745 −2.56273
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0.937254 0.0413808
\(514\) −0.416995 −0.0183929
\(515\) 47.1660 2.07838
\(516\) −10.5830 −0.465891
\(517\) −13.2915 −0.584560
\(518\) 0 0
\(519\) −27.2288 −1.19521
\(520\) −18.2288 −0.799384
\(521\) 2.12549 0.0931195 0.0465598 0.998916i \(-0.485174\pi\)
0.0465598 + 0.998916i \(0.485174\pi\)
\(522\) 17.1660 0.751336
\(523\) −15.5203 −0.678654 −0.339327 0.940669i \(-0.610199\pi\)
−0.339327 + 0.940669i \(0.610199\pi\)
\(524\) −15.6458 −0.683488
\(525\) 0 0
\(526\) −4.06275 −0.177144
\(527\) −24.0000 −1.04546
\(528\) 2.64575 0.115142
\(529\) −9.70850 −0.422109
\(530\) −13.2915 −0.577346
\(531\) 2.58301 0.112093
\(532\) 0 0
\(533\) −24.6863 −1.06928
\(534\) −38.5830 −1.66965
\(535\) −18.0000 −0.778208
\(536\) −3.93725 −0.170063
\(537\) −10.7490 −0.463854
\(538\) 26.5830 1.14607
\(539\) 0 0
\(540\) −9.64575 −0.415087
\(541\) −8.29150 −0.356480 −0.178240 0.983987i \(-0.557040\pi\)
−0.178240 + 0.983987i \(0.557040\pi\)
\(542\) −17.9373 −0.770471
\(543\) 26.4575 1.13540
\(544\) 6.00000 0.257248
\(545\) −38.5830 −1.65271
\(546\) 0 0
\(547\) 27.5203 1.17668 0.588341 0.808613i \(-0.299781\pi\)
0.588341 + 0.808613i \(0.299781\pi\)
\(548\) 18.8745 0.806279
\(549\) −14.8340 −0.633099
\(550\) −8.29150 −0.353551
\(551\) −1.52026 −0.0647652
\(552\) 9.64575 0.410550
\(553\) 0 0
\(554\) 11.7085 0.497446
\(555\) 15.8745 0.673835
\(556\) 4.00000 0.169638
\(557\) 31.7490 1.34525 0.672624 0.739984i \(-0.265167\pi\)
0.672624 + 0.739984i \(0.265167\pi\)
\(558\) −16.0000 −0.677334
\(559\) 20.0000 0.845910
\(560\) 0 0
\(561\) −15.8745 −0.670222
\(562\) 7.06275 0.297924
\(563\) −13.0627 −0.550529 −0.275265 0.961369i \(-0.588765\pi\)
−0.275265 + 0.961369i \(0.588765\pi\)
\(564\) −35.1660 −1.48076
\(565\) 28.1033 1.18231
\(566\) −7.64575 −0.321375
\(567\) 0 0
\(568\) −9.64575 −0.404727
\(569\) −41.1660 −1.72577 −0.862884 0.505401i \(-0.831344\pi\)
−0.862884 + 0.505401i \(0.831344\pi\)
\(570\) 3.41699 0.143122
\(571\) −44.9373 −1.88057 −0.940283 0.340394i \(-0.889439\pi\)
−0.940283 + 0.340394i \(0.889439\pi\)
\(572\) −5.00000 −0.209061
\(573\) −35.1660 −1.46908
\(574\) 0 0
\(575\) −30.2288 −1.26063
\(576\) 4.00000 0.166667
\(577\) 25.4575 1.05981 0.529905 0.848057i \(-0.322228\pi\)
0.529905 + 0.848057i \(0.322228\pi\)
\(578\) −19.0000 −0.790296
\(579\) −30.4797 −1.26669
\(580\) 15.6458 0.649654
\(581\) 0 0
\(582\) −15.1033 −0.626050
\(583\) −3.64575 −0.150992
\(584\) 5.64575 0.233623
\(585\) 72.9150 3.01467
\(586\) 12.0000 0.495715
\(587\) 7.93725 0.327606 0.163803 0.986493i \(-0.447624\pi\)
0.163803 + 0.986493i \(0.447624\pi\)
\(588\) 0 0
\(589\) 1.41699 0.0583863
\(590\) 2.35425 0.0969229
\(591\) 49.9373 2.05414
\(592\) −1.64575 −0.0676400
\(593\) −22.9373 −0.941920 −0.470960 0.882155i \(-0.656092\pi\)
−0.470960 + 0.882155i \(0.656092\pi\)
\(594\) −2.64575 −0.108556
\(595\) 0 0
\(596\) −4.70850 −0.192868
\(597\) 58.8118 2.40701
\(598\) −18.2288 −0.745429
\(599\) −19.7490 −0.806923 −0.403461 0.914997i \(-0.632193\pi\)
−0.403461 + 0.914997i \(0.632193\pi\)
\(600\) −21.9373 −0.895585
\(601\) 24.5830 1.00276 0.501381 0.865227i \(-0.332826\pi\)
0.501381 + 0.865227i \(0.332826\pi\)
\(602\) 0 0
\(603\) 15.7490 0.641350
\(604\) −3.35425 −0.136482
\(605\) −3.64575 −0.148221
\(606\) 7.93725 0.322429
\(607\) −21.2915 −0.864195 −0.432098 0.901827i \(-0.642226\pi\)
−0.432098 + 0.901827i \(0.642226\pi\)
\(608\) −0.354249 −0.0143667
\(609\) 0 0
\(610\) −13.5203 −0.547419
\(611\) 66.4575 2.68858
\(612\) −24.0000 −0.970143
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) −4.22876 −0.170659
\(615\) −47.6235 −1.92037
\(616\) 0 0
\(617\) −16.2915 −0.655871 −0.327936 0.944700i \(-0.606353\pi\)
−0.327936 + 0.944700i \(0.606353\pi\)
\(618\) 34.2288 1.37688
\(619\) −34.5830 −1.39001 −0.695004 0.719006i \(-0.744597\pi\)
−0.695004 + 0.719006i \(0.744597\pi\)
\(620\) −14.5830 −0.585668
\(621\) −9.64575 −0.387071
\(622\) 16.9373 0.679122
\(623\) 0 0
\(624\) −13.2288 −0.529574
\(625\) 2.29150 0.0916601
\(626\) 2.41699 0.0966025
\(627\) 0.937254 0.0374303
\(628\) 21.1660 0.844616
\(629\) 9.87451 0.393722
\(630\) 0 0
\(631\) 34.8118 1.38583 0.692917 0.721017i \(-0.256325\pi\)
0.692917 + 0.721017i \(0.256325\pi\)
\(632\) −2.64575 −0.105242
\(633\) −39.5203 −1.57079
\(634\) −12.0000 −0.476581
\(635\) −0.228757 −0.00907793
\(636\) −9.64575 −0.382479
\(637\) 0 0
\(638\) 4.29150 0.169902
\(639\) 38.5830 1.52632
\(640\) 3.64575 0.144111
\(641\) −18.8745 −0.745498 −0.372749 0.927932i \(-0.621585\pi\)
−0.372749 + 0.927932i \(0.621585\pi\)
\(642\) −13.0627 −0.515545
\(643\) −6.52026 −0.257134 −0.128567 0.991701i \(-0.541038\pi\)
−0.128567 + 0.991701i \(0.541038\pi\)
\(644\) 0 0
\(645\) 38.5830 1.51920
\(646\) 2.12549 0.0836264
\(647\) −38.8118 −1.52585 −0.762924 0.646488i \(-0.776237\pi\)
−0.762924 + 0.646488i \(0.776237\pi\)
\(648\) 5.00000 0.196419
\(649\) 0.645751 0.0253480
\(650\) 41.4575 1.62610
\(651\) 0 0
\(652\) −4.64575 −0.181942
\(653\) 2.35425 0.0921289 0.0460644 0.998938i \(-0.485332\pi\)
0.0460644 + 0.998938i \(0.485332\pi\)
\(654\) −28.0000 −1.09489
\(655\) 57.0405 2.22876
\(656\) 4.93725 0.192767
\(657\) −22.5830 −0.881047
\(658\) 0 0
\(659\) 14.5830 0.568073 0.284037 0.958813i \(-0.408326\pi\)
0.284037 + 0.958813i \(0.408326\pi\)
\(660\) −9.64575 −0.375460
\(661\) −28.5830 −1.11175 −0.555875 0.831266i \(-0.687617\pi\)
−0.555875 + 0.831266i \(0.687617\pi\)
\(662\) 15.3542 0.596760
\(663\) 79.3725 3.08257
\(664\) 13.2915 0.515810
\(665\) 0 0
\(666\) 6.58301 0.255086
\(667\) 15.6458 0.605806
\(668\) −15.2288 −0.589218
\(669\) 32.6863 1.26372
\(670\) 14.3542 0.554553
\(671\) −3.70850 −0.143165
\(672\) 0 0
\(673\) −14.9373 −0.575789 −0.287894 0.957662i \(-0.592955\pi\)
−0.287894 + 0.957662i \(0.592955\pi\)
\(674\) −24.9373 −0.960547
\(675\) 21.9373 0.844365
\(676\) 12.0000 0.461538
\(677\) 2.12549 0.0816893 0.0408446 0.999166i \(-0.486995\pi\)
0.0408446 + 0.999166i \(0.486995\pi\)
\(678\) 20.3948 0.783256
\(679\) 0 0
\(680\) −21.8745 −0.838849
\(681\) 35.1660 1.34756
\(682\) −4.00000 −0.153168
\(683\) −13.9373 −0.533294 −0.266647 0.963794i \(-0.585916\pi\)
−0.266647 + 0.963794i \(0.585916\pi\)
\(684\) 1.41699 0.0541801
\(685\) −68.8118 −2.62916
\(686\) 0 0
\(687\) 42.3320 1.61507
\(688\) −4.00000 −0.152499
\(689\) 18.2288 0.694460
\(690\) −35.1660 −1.33875
\(691\) 18.7712 0.714092 0.357046 0.934087i \(-0.383784\pi\)
0.357046 + 0.934087i \(0.383784\pi\)
\(692\) −10.2915 −0.391224
\(693\) 0 0
\(694\) −26.8118 −1.01776
\(695\) −14.5830 −0.553165
\(696\) 11.3542 0.430382
\(697\) −29.6235 −1.12207
\(698\) 29.8745 1.13077
\(699\) 44.8118 1.69494
\(700\) 0 0
\(701\) −6.87451 −0.259647 −0.129823 0.991537i \(-0.541441\pi\)
−0.129823 + 0.991537i \(0.541441\pi\)
\(702\) 13.2288 0.499287
\(703\) −0.583005 −0.0219885
\(704\) 1.00000 0.0376889
\(705\) 128.207 4.82854
\(706\) −35.1660 −1.32349
\(707\) 0 0
\(708\) 1.70850 0.0642093
\(709\) −6.81176 −0.255821 −0.127911 0.991786i \(-0.540827\pi\)
−0.127911 + 0.991786i \(0.540827\pi\)
\(710\) 35.1660 1.31976
\(711\) 10.5830 0.396894
\(712\) −14.5830 −0.546521
\(713\) −14.5830 −0.546138
\(714\) 0 0
\(715\) 18.2288 0.681717
\(716\) −4.06275 −0.151832
\(717\) 24.4170 0.911869
\(718\) 10.0627 0.375538
\(719\) 3.87451 0.144495 0.0722474 0.997387i \(-0.476983\pi\)
0.0722474 + 0.997387i \(0.476983\pi\)
\(720\) −14.5830 −0.543477
\(721\) 0 0
\(722\) 18.8745 0.702436
\(723\) −60.3542 −2.24460
\(724\) 10.0000 0.371647
\(725\) −35.5830 −1.32152
\(726\) −2.64575 −0.0981930
\(727\) 17.2915 0.641306 0.320653 0.947197i \(-0.396098\pi\)
0.320653 + 0.947197i \(0.396098\pi\)
\(728\) 0 0
\(729\) −41.0000 −1.51852
\(730\) −20.5830 −0.761811
\(731\) 24.0000 0.887672
\(732\) −9.81176 −0.362653
\(733\) −41.4575 −1.53127 −0.765634 0.643276i \(-0.777575\pi\)
−0.765634 + 0.643276i \(0.777575\pi\)
\(734\) −9.77124 −0.360663
\(735\) 0 0
\(736\) 3.64575 0.134384
\(737\) 3.93725 0.145031
\(738\) −19.7490 −0.726971
\(739\) −7.87451 −0.289668 −0.144834 0.989456i \(-0.546265\pi\)
−0.144834 + 0.989456i \(0.546265\pi\)
\(740\) 6.00000 0.220564
\(741\) −4.68627 −0.172154
\(742\) 0 0
\(743\) −34.7085 −1.27333 −0.636666 0.771140i \(-0.719687\pi\)
−0.636666 + 0.771140i \(0.719687\pi\)
\(744\) −10.5830 −0.387992
\(745\) 17.1660 0.628914
\(746\) 10.8745 0.398144
\(747\) −53.1660 −1.94524
\(748\) −6.00000 −0.219382
\(749\) 0 0
\(750\) 31.7490 1.15931
\(751\) −16.0000 −0.583848 −0.291924 0.956441i \(-0.594295\pi\)
−0.291924 + 0.956441i \(0.594295\pi\)
\(752\) −13.2915 −0.484691
\(753\) −19.2915 −0.703021
\(754\) −21.4575 −0.781437
\(755\) 12.2288 0.445050
\(756\) 0 0
\(757\) 19.1660 0.696600 0.348300 0.937383i \(-0.386759\pi\)
0.348300 + 0.937383i \(0.386759\pi\)
\(758\) −21.9373 −0.796797
\(759\) −9.64575 −0.350119
\(760\) 1.29150 0.0468477
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) −0.166010 −0.00601393
\(763\) 0 0
\(764\) −13.2915 −0.480870
\(765\) 87.4980 3.16350
\(766\) −34.1033 −1.23220
\(767\) −3.22876 −0.116584
\(768\) 2.64575 0.0954703
\(769\) 15.1660 0.546900 0.273450 0.961886i \(-0.411835\pi\)
0.273450 + 0.961886i \(0.411835\pi\)
\(770\) 0 0
\(771\) 1.10326 0.0397331
\(772\) −11.5203 −0.414623
\(773\) −2.58301 −0.0929042 −0.0464521 0.998921i \(-0.514791\pi\)
−0.0464521 + 0.998921i \(0.514791\pi\)
\(774\) 16.0000 0.575108
\(775\) 33.1660 1.19136
\(776\) −5.70850 −0.204923
\(777\) 0 0
\(778\) 20.8118 0.746138
\(779\) 1.74902 0.0626650
\(780\) 48.2288 1.72687
\(781\) 9.64575 0.345152
\(782\) −21.8745 −0.782231
\(783\) −11.3542 −0.405768
\(784\) 0 0
\(785\) −77.1660 −2.75417
\(786\) 41.3948 1.47650
\(787\) 0.811762 0.0289362 0.0144681 0.999895i \(-0.495395\pi\)
0.0144681 + 0.999895i \(0.495395\pi\)
\(788\) 18.8745 0.672377
\(789\) 10.7490 0.382675
\(790\) 9.64575 0.343180
\(791\) 0 0
\(792\) −4.00000 −0.142134
\(793\) 18.5425 0.658463
\(794\) 31.1660 1.10604
\(795\) 35.1660 1.24721
\(796\) 22.2288 0.787877
\(797\) 35.1660 1.24564 0.622822 0.782364i \(-0.285986\pi\)
0.622822 + 0.782364i \(0.285986\pi\)
\(798\) 0 0
\(799\) 79.7490 2.82132
\(800\) −8.29150 −0.293149
\(801\) 58.3320 2.06106
\(802\) −0.416995 −0.0147246
\(803\) −5.64575 −0.199234
\(804\) 10.4170 0.367379
\(805\) 0 0
\(806\) 20.0000 0.704470
\(807\) −70.3320 −2.47580
\(808\) 3.00000 0.105540
\(809\) 50.5830 1.77840 0.889202 0.457515i \(-0.151260\pi\)
0.889202 + 0.457515i \(0.151260\pi\)
\(810\) −18.2288 −0.640493
\(811\) −27.7490 −0.974400 −0.487200 0.873290i \(-0.661982\pi\)
−0.487200 + 0.873290i \(0.661982\pi\)
\(812\) 0 0
\(813\) 47.4575 1.66441
\(814\) 1.64575 0.0576836
\(815\) 16.9373 0.593286
\(816\) −15.8745 −0.555719
\(817\) −1.41699 −0.0495744
\(818\) 18.9373 0.662126
\(819\) 0 0
\(820\) −18.0000 −0.628587
\(821\) −7.70850 −0.269028 −0.134514 0.990912i \(-0.542947\pi\)
−0.134514 + 0.990912i \(0.542947\pi\)
\(822\) −49.9373 −1.74176
\(823\) −43.8745 −1.52937 −0.764685 0.644405i \(-0.777105\pi\)
−0.764685 + 0.644405i \(0.777105\pi\)
\(824\) 12.9373 0.450691
\(825\) 21.9373 0.763757
\(826\) 0 0
\(827\) −35.3948 −1.23080 −0.615398 0.788216i \(-0.711005\pi\)
−0.615398 + 0.788216i \(0.711005\pi\)
\(828\) −14.5830 −0.506794
\(829\) −43.3948 −1.50716 −0.753581 0.657355i \(-0.771675\pi\)
−0.753581 + 0.657355i \(0.771675\pi\)
\(830\) −48.4575 −1.68198
\(831\) −30.9778 −1.07461
\(832\) −5.00000 −0.173344
\(833\) 0 0
\(834\) −10.5830 −0.366460
\(835\) 55.5203 1.92136
\(836\) 0.354249 0.0122519
\(837\) 10.5830 0.365802
\(838\) 21.8745 0.755642
\(839\) −27.8745 −0.962335 −0.481167 0.876629i \(-0.659787\pi\)
−0.481167 + 0.876629i \(0.659787\pi\)
\(840\) 0 0
\(841\) −10.5830 −0.364931
\(842\) 33.1660 1.14298
\(843\) −18.6863 −0.643589
\(844\) −14.9373 −0.514161
\(845\) −43.7490 −1.50501
\(846\) 53.1660 1.82789
\(847\) 0 0
\(848\) −3.64575 −0.125196
\(849\) 20.2288 0.694249
\(850\) 49.7490 1.70638
\(851\) 6.00000 0.205677
\(852\) 25.5203 0.874310
\(853\) 3.16601 0.108402 0.0542011 0.998530i \(-0.482739\pi\)
0.0542011 + 0.998530i \(0.482739\pi\)
\(854\) 0 0
\(855\) −5.16601 −0.176674
\(856\) −4.93725 −0.168752
\(857\) −36.0000 −1.22974 −0.614868 0.788630i \(-0.710791\pi\)
−0.614868 + 0.788630i \(0.710791\pi\)
\(858\) 13.2288 0.451622
\(859\) −37.8118 −1.29012 −0.645060 0.764132i \(-0.723168\pi\)
−0.645060 + 0.764132i \(0.723168\pi\)
\(860\) 14.5830 0.497276
\(861\) 0 0
\(862\) −2.77124 −0.0943889
\(863\) −49.5203 −1.68569 −0.842845 0.538157i \(-0.819121\pi\)
−0.842845 + 0.538157i \(0.819121\pi\)
\(864\) −2.64575 −0.0900103
\(865\) 37.5203 1.27573
\(866\) −16.0000 −0.543702
\(867\) 50.2693 1.70723
\(868\) 0 0
\(869\) 2.64575 0.0897510
\(870\) −41.3948 −1.40341
\(871\) −19.6863 −0.667044
\(872\) −10.5830 −0.358386
\(873\) 22.8340 0.772813
\(874\) 1.29150 0.0436857
\(875\) 0 0
\(876\) −14.9373 −0.504683
\(877\) 8.87451 0.299671 0.149835 0.988711i \(-0.452126\pi\)
0.149835 + 0.988711i \(0.452126\pi\)
\(878\) −11.9373 −0.402863
\(879\) −31.7490 −1.07087
\(880\) −3.64575 −0.122898
\(881\) −6.87451 −0.231608 −0.115804 0.993272i \(-0.536944\pi\)
−0.115804 + 0.993272i \(0.536944\pi\)
\(882\) 0 0
\(883\) 6.06275 0.204028 0.102014 0.994783i \(-0.467471\pi\)
0.102014 + 0.994783i \(0.467471\pi\)
\(884\) 30.0000 1.00901
\(885\) −6.22876 −0.209377
\(886\) 18.4575 0.620092
\(887\) 13.1033 0.439965 0.219982 0.975504i \(-0.429400\pi\)
0.219982 + 0.975504i \(0.429400\pi\)
\(888\) 4.35425 0.146119
\(889\) 0 0
\(890\) 53.1660 1.78213
\(891\) −5.00000 −0.167506
\(892\) 12.3542 0.413651
\(893\) −4.70850 −0.157564
\(894\) 12.4575 0.416642
\(895\) 14.8118 0.495103
\(896\) 0 0
\(897\) 48.2288 1.61031
\(898\) −9.87451 −0.329517
\(899\) −17.1660 −0.572519
\(900\) 33.1660 1.10553
\(901\) 21.8745 0.728746
\(902\) −4.93725 −0.164393
\(903\) 0 0
\(904\) 7.70850 0.256381
\(905\) −36.4575 −1.21189
\(906\) 8.87451 0.294836
\(907\) −10.4575 −0.347236 −0.173618 0.984813i \(-0.555546\pi\)
−0.173618 + 0.984813i \(0.555546\pi\)
\(908\) 13.2915 0.441094
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) −1.29150 −0.0427894 −0.0213947 0.999771i \(-0.506811\pi\)
−0.0213947 + 0.999771i \(0.506811\pi\)
\(912\) 0.937254 0.0310356
\(913\) −13.2915 −0.439885
\(914\) 39.1660 1.29550
\(915\) 35.7712 1.18256
\(916\) 16.0000 0.528655
\(917\) 0 0
\(918\) 15.8745 0.523937
\(919\) −35.2915 −1.16416 −0.582080 0.813132i \(-0.697761\pi\)
−0.582080 + 0.813132i \(0.697761\pi\)
\(920\) −13.2915 −0.438208
\(921\) 11.1882 0.368665
\(922\) −32.1660 −1.05933
\(923\) −48.2288 −1.58747
\(924\) 0 0
\(925\) −13.6458 −0.448670
\(926\) 22.4575 0.738000
\(927\) −51.7490 −1.69966
\(928\) 4.29150 0.140875
\(929\) −35.5830 −1.16744 −0.583720 0.811955i \(-0.698404\pi\)
−0.583720 + 0.811955i \(0.698404\pi\)
\(930\) 38.5830 1.26519
\(931\) 0 0
\(932\) 16.9373 0.554798
\(933\) −44.8118 −1.46707
\(934\) 10.7085 0.350393
\(935\) 21.8745 0.715373
\(936\) 20.0000 0.653720
\(937\) 46.6863 1.52517 0.762587 0.646886i \(-0.223929\pi\)
0.762587 + 0.646886i \(0.223929\pi\)
\(938\) 0 0
\(939\) −6.39477 −0.208685
\(940\) 48.4575 1.58051
\(941\) 44.6235 1.45469 0.727343 0.686274i \(-0.240755\pi\)
0.727343 + 0.686274i \(0.240755\pi\)
\(942\) −56.0000 −1.82458
\(943\) −18.0000 −0.586161
\(944\) 0.645751 0.0210174
\(945\) 0 0
\(946\) 4.00000 0.130051
\(947\) −33.8745 −1.10077 −0.550387 0.834910i \(-0.685520\pi\)
−0.550387 + 0.834910i \(0.685520\pi\)
\(948\) 7.00000 0.227349
\(949\) 28.2288 0.916344
\(950\) −2.93725 −0.0952971
\(951\) 31.7490 1.02953
\(952\) 0 0
\(953\) −25.5203 −0.826682 −0.413341 0.910576i \(-0.635638\pi\)
−0.413341 + 0.910576i \(0.635638\pi\)
\(954\) 14.5830 0.472142
\(955\) 48.4575 1.56805
\(956\) 9.22876 0.298479
\(957\) −11.3542 −0.367031
\(958\) −25.9373 −0.837995
\(959\) 0 0
\(960\) −9.64575 −0.311315
\(961\) −15.0000 −0.483871
\(962\) −8.22876 −0.265306
\(963\) 19.7490 0.636403
\(964\) −22.8118 −0.734717
\(965\) 42.0000 1.35203
\(966\) 0 0
\(967\) −26.3320 −0.846781 −0.423390 0.905947i \(-0.639160\pi\)
−0.423390 + 0.905947i \(0.639160\pi\)
\(968\) −1.00000 −0.0321412
\(969\) −5.62352 −0.180654
\(970\) 20.8118 0.668225
\(971\) 25.9373 0.832366 0.416183 0.909281i \(-0.363368\pi\)
0.416183 + 0.909281i \(0.363368\pi\)
\(972\) −21.1660 −0.678900
\(973\) 0 0
\(974\) 30.5830 0.979943
\(975\) −109.686 −3.51277
\(976\) −3.70850 −0.118706
\(977\) 36.4575 1.16638 0.583190 0.812336i \(-0.301804\pi\)
0.583190 + 0.812336i \(0.301804\pi\)
\(978\) 12.2915 0.393039
\(979\) 14.5830 0.466075
\(980\) 0 0
\(981\) 42.3320 1.35156
\(982\) −10.7085 −0.341722
\(983\) 37.2915 1.18941 0.594707 0.803942i \(-0.297268\pi\)
0.594707 + 0.803942i \(0.297268\pi\)
\(984\) −13.0627 −0.416425
\(985\) −68.8118 −2.19253
\(986\) −25.7490 −0.820016
\(987\) 0 0
\(988\) −1.77124 −0.0563508
\(989\) 14.5830 0.463713
\(990\) 14.5830 0.463478
\(991\) 56.6863 1.80070 0.900349 0.435168i \(-0.143311\pi\)
0.900349 + 0.435168i \(0.143311\pi\)
\(992\) −4.00000 −0.127000
\(993\) −40.6235 −1.28915
\(994\) 0 0
\(995\) −81.0405 −2.56916
\(996\) −35.1660 −1.11428
\(997\) 42.5830 1.34862 0.674309 0.738450i \(-0.264442\pi\)
0.674309 + 0.738450i \(0.264442\pi\)
\(998\) −17.8745 −0.565808
\(999\) −4.35425 −0.137762
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1078.2.a.n.1.2 2
3.2 odd 2 9702.2.a.dr.1.2 2
4.3 odd 2 8624.2.a.bk.1.1 2
7.2 even 3 1078.2.e.v.67.1 4
7.3 odd 6 154.2.e.f.23.2 4
7.4 even 3 1078.2.e.v.177.1 4
7.5 odd 6 154.2.e.f.67.2 yes 4
7.6 odd 2 1078.2.a.s.1.1 2
21.5 even 6 1386.2.k.s.991.2 4
21.17 even 6 1386.2.k.s.793.2 4
21.20 even 2 9702.2.a.cz.1.1 2
28.3 even 6 1232.2.q.g.177.1 4
28.19 even 6 1232.2.q.g.529.1 4
28.27 even 2 8624.2.a.ca.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
154.2.e.f.23.2 4 7.3 odd 6
154.2.e.f.67.2 yes 4 7.5 odd 6
1078.2.a.n.1.2 2 1.1 even 1 trivial
1078.2.a.s.1.1 2 7.6 odd 2
1078.2.e.v.67.1 4 7.2 even 3
1078.2.e.v.177.1 4 7.4 even 3
1232.2.q.g.177.1 4 28.3 even 6
1232.2.q.g.529.1 4 28.19 even 6
1386.2.k.s.793.2 4 21.17 even 6
1386.2.k.s.991.2 4 21.5 even 6
8624.2.a.bk.1.1 2 4.3 odd 2
8624.2.a.ca.1.2 2 28.27 even 2
9702.2.a.cz.1.1 2 21.20 even 2
9702.2.a.dr.1.2 2 3.2 odd 2