Properties

Label 1078.2.e.r
Level $1078$
Weight $2$
Character orbit 1078.e
Analytic conductor $8.608$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1078,2,Mod(67,1078)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1078, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1078.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{4} - \beta_{3} q^{6} - q^{8} + 5 \beta_{2} q^{9} + (\beta_{2} + 1) q^{11} + ( - \beta_{3} - \beta_1) q^{12} - \beta_{3} q^{13} + \beta_{2} q^{16}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 4 q^{8} - 10 q^{9} + 2 q^{11} - 2 q^{16} + 10 q^{18} + 4 q^{22} - 16 q^{23} + 10 q^{25} + 8 q^{29} + 2 q^{32} + 20 q^{36} - 4 q^{37} + 16 q^{39} - 16 q^{43} + 2 q^{44} + 16 q^{46}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
0.500000 + 0.866025i −1.41421 + 2.44949i −0.500000 + 0.866025i 0 −2.82843 0 −1.00000 −2.50000 4.33013i 0
67.2 0.500000 + 0.866025i 1.41421 2.44949i −0.500000 + 0.866025i 0 2.82843 0 −1.00000 −2.50000 4.33013i 0
177.1 0.500000 0.866025i −1.41421 2.44949i −0.500000 0.866025i 0 −2.82843 0 −1.00000 −2.50000 + 4.33013i 0
177.2 0.500000 0.866025i 1.41421 + 2.44949i −0.500000 0.866025i 0 2.82843 0 −1.00000 −2.50000 + 4.33013i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.e.r 4
7.b odd 2 1 inner 1078.2.e.r 4
7.c even 3 1 1078.2.a.r 2
7.c even 3 1 inner 1078.2.e.r 4
7.d odd 6 1 1078.2.a.r 2
7.d odd 6 1 inner 1078.2.e.r 4
21.g even 6 1 9702.2.a.dn 2
21.h odd 6 1 9702.2.a.dn 2
28.f even 6 1 8624.2.a.by 2
28.g odd 6 1 8624.2.a.by 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1078.2.a.r 2 7.c even 3 1
1078.2.a.r 2 7.d odd 6 1
1078.2.e.r 4 1.a even 1 1 trivial
1078.2.e.r 4 7.b odd 2 1 inner
1078.2.e.r 4 7.c even 3 1 inner
1078.2.e.r 4 7.d odd 6 1 inner
8624.2.a.by 2 28.f even 6 1
8624.2.a.by 2 28.g odd 6 1
9702.2.a.dn 2 21.g even 6 1
9702.2.a.dn 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\):

\( T_{3}^{4} + 8T_{3}^{2} + 64 \) Copy content Toggle raw display
\( T_{5} \) Copy content Toggle raw display
\( T_{13}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$19$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$23$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T^{2} + 14 T + 196)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$61$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$67$ \( (T^{2} + 4 T + 16)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 200 T^{2} + 40000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 16 T + 256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 128 T^{2} + 16384 \) Copy content Toggle raw display
$97$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
show more
show less