Properties

Label 1080.2.m.c.539.9
Level $1080$
Weight $2$
Character 1080.539
Analytic conductor $8.624$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(539,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.539");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 539.9
Character \(\chi\) \(=\) 1080.539
Dual form 1080.2.m.c.539.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08245 - 0.910116i) q^{2} +(0.343378 + 1.97030i) q^{4} +(-1.75989 - 1.37942i) q^{5} -1.14666 q^{7} +(1.42152 - 2.44526i) q^{8} +(0.649552 + 3.09485i) q^{10} +0.489523i q^{11} +6.59916 q^{13} +(1.24119 + 1.04359i) q^{14} +(-3.76418 + 1.35312i) q^{16} -4.58091 q^{17} -6.55167 q^{19} +(2.11357 - 3.94117i) q^{20} +(0.445523 - 0.529883i) q^{22} -6.55060i q^{23} +(1.19441 + 4.85524i) q^{25} +(-7.14323 - 6.00600i) q^{26} +(-0.393737 - 2.25926i) q^{28} +0.212237 q^{29} -0.796718i q^{31} +(5.30602 + 1.96117i) q^{32} +(4.95859 + 4.16916i) q^{34} +(2.01799 + 1.58172i) q^{35} -4.78762 q^{37} +(7.09183 + 5.96278i) q^{38} +(-5.87474 + 2.34252i) q^{40} +6.42519i q^{41} +2.15455i q^{43} +(-0.964509 + 0.168092i) q^{44} +(-5.96180 + 7.09067i) q^{46} -1.38063i q^{47} -5.68518 q^{49} +(3.12595 - 6.34259i) q^{50} +(2.26601 + 13.0023i) q^{52} +7.06462i q^{53} +(0.675258 - 0.861506i) q^{55} +(-1.62999 + 2.80387i) q^{56} +(-0.229735 - 0.193160i) q^{58} +8.26229i q^{59} +7.61815i q^{61} +(-0.725106 + 0.862404i) q^{62} +(-3.95859 - 6.95195i) q^{64} +(-11.6138 - 9.10300i) q^{65} +11.2181i q^{67} +(-1.57299 - 9.02578i) q^{68} +(-0.744813 - 3.54873i) q^{70} -11.3201 q^{71} -9.32981i q^{73} +(5.18234 + 4.35729i) q^{74} +(-2.24970 - 12.9088i) q^{76} -0.561315i q^{77} -6.01760i q^{79} +(8.49105 + 2.81105i) q^{80} +(5.84767 - 6.95492i) q^{82} -14.6045 q^{83} +(8.06189 + 6.31900i) q^{85} +(1.96089 - 2.33218i) q^{86} +(1.19701 + 0.695865i) q^{88} +15.7617i q^{89} -7.56697 q^{91} +(12.9067 - 2.24933i) q^{92} +(-1.25653 + 1.49446i) q^{94} +(11.5302 + 9.03749i) q^{95} -6.13586i q^{97} +(6.15390 + 5.17417i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{4} - 4 q^{10} + 4 q^{16} - 16 q^{19} - 4 q^{34} + 16 q^{40} + 36 q^{46} + 48 q^{49} + 52 q^{64} + 28 q^{70} - 64 q^{76} + 92 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.08245 0.910116i −0.765405 0.643549i
\(3\) 0 0
\(4\) 0.343378 + 1.97030i 0.171689 + 0.985151i
\(5\) −1.75989 1.37942i −0.787046 0.616895i
\(6\) 0 0
\(7\) −1.14666 −0.433396 −0.216698 0.976239i \(-0.569529\pi\)
−0.216698 + 0.976239i \(0.569529\pi\)
\(8\) 1.42152 2.44526i 0.502581 0.864530i
\(9\) 0 0
\(10\) 0.649552 + 3.09485i 0.205406 + 0.978677i
\(11\) 0.489523i 0.147597i 0.997273 + 0.0737984i \(0.0235121\pi\)
−0.997273 + 0.0737984i \(0.976488\pi\)
\(12\) 0 0
\(13\) 6.59916 1.83028 0.915139 0.403140i \(-0.132081\pi\)
0.915139 + 0.403140i \(0.132081\pi\)
\(14\) 1.24119 + 1.04359i 0.331723 + 0.278911i
\(15\) 0 0
\(16\) −3.76418 + 1.35312i −0.941046 + 0.338279i
\(17\) −4.58091 −1.11103 −0.555517 0.831505i \(-0.687480\pi\)
−0.555517 + 0.831505i \(0.687480\pi\)
\(18\) 0 0
\(19\) −6.55167 −1.50306 −0.751528 0.659701i \(-0.770683\pi\)
−0.751528 + 0.659701i \(0.770683\pi\)
\(20\) 2.11357 3.94117i 0.472608 0.881273i
\(21\) 0 0
\(22\) 0.445523 0.529883i 0.0949858 0.112971i
\(23\) 6.55060i 1.36589i −0.730468 0.682947i \(-0.760698\pi\)
0.730468 0.682947i \(-0.239302\pi\)
\(24\) 0 0
\(25\) 1.19441 + 4.85524i 0.238881 + 0.971049i
\(26\) −7.14323 6.00600i −1.40090 1.17787i
\(27\) 0 0
\(28\) −0.393737 2.25926i −0.0744093 0.426960i
\(29\) 0.212237 0.0394114 0.0197057 0.999806i \(-0.493727\pi\)
0.0197057 + 0.999806i \(0.493727\pi\)
\(30\) 0 0
\(31\) 0.796718i 0.143095i −0.997437 0.0715474i \(-0.977206\pi\)
0.997437 0.0715474i \(-0.0227937\pi\)
\(32\) 5.30602 + 1.96117i 0.937980 + 0.346688i
\(33\) 0 0
\(34\) 4.95859 + 4.16916i 0.850391 + 0.715005i
\(35\) 2.01799 + 1.58172i 0.341102 + 0.267359i
\(36\) 0 0
\(37\) −4.78762 −0.787081 −0.393540 0.919307i \(-0.628750\pi\)
−0.393540 + 0.919307i \(0.628750\pi\)
\(38\) 7.09183 + 5.96278i 1.15045 + 0.967290i
\(39\) 0 0
\(40\) −5.87474 + 2.34252i −0.928879 + 0.370384i
\(41\) 6.42519i 1.00345i 0.865028 + 0.501723i \(0.167300\pi\)
−0.865028 + 0.501723i \(0.832700\pi\)
\(42\) 0 0
\(43\) 2.15455i 0.328565i 0.986413 + 0.164283i \(0.0525309\pi\)
−0.986413 + 0.164283i \(0.947469\pi\)
\(44\) −0.964509 + 0.168092i −0.145405 + 0.0253408i
\(45\) 0 0
\(46\) −5.96180 + 7.09067i −0.879020 + 1.04546i
\(47\) 1.38063i 0.201385i −0.994918 0.100693i \(-0.967894\pi\)
0.994918 0.100693i \(-0.0321059\pi\)
\(48\) 0 0
\(49\) −5.68518 −0.812168
\(50\) 3.12595 6.34259i 0.442077 0.896977i
\(51\) 0 0
\(52\) 2.26601 + 13.0023i 0.314239 + 1.80310i
\(53\) 7.06462i 0.970400i 0.874403 + 0.485200i \(0.161253\pi\)
−0.874403 + 0.485200i \(0.838747\pi\)
\(54\) 0 0
\(55\) 0.675258 0.861506i 0.0910518 0.116165i
\(56\) −1.62999 + 2.80387i −0.217817 + 0.374683i
\(57\) 0 0
\(58\) −0.229735 0.193160i −0.0301657 0.0253632i
\(59\) 8.26229i 1.07566i 0.843054 + 0.537829i \(0.180756\pi\)
−0.843054 + 0.537829i \(0.819244\pi\)
\(60\) 0 0
\(61\) 7.61815i 0.975405i 0.873010 + 0.487702i \(0.162165\pi\)
−0.873010 + 0.487702i \(0.837835\pi\)
\(62\) −0.725106 + 0.862404i −0.0920885 + 0.109525i
\(63\) 0 0
\(64\) −3.95859 6.95195i −0.494824 0.868993i
\(65\) −11.6138 9.10300i −1.44051 1.12909i
\(66\) 0 0
\(67\) 11.2181i 1.37051i 0.728304 + 0.685254i \(0.240309\pi\)
−0.728304 + 0.685254i \(0.759691\pi\)
\(68\) −1.57299 9.02578i −0.190753 1.09454i
\(69\) 0 0
\(70\) −0.744813 3.54873i −0.0890222 0.424154i
\(71\) −11.3201 −1.34344 −0.671722 0.740804i \(-0.734445\pi\)
−0.671722 + 0.740804i \(0.734445\pi\)
\(72\) 0 0
\(73\) 9.32981i 1.09197i −0.837795 0.545986i \(-0.816155\pi\)
0.837795 0.545986i \(-0.183845\pi\)
\(74\) 5.18234 + 4.35729i 0.602435 + 0.506525i
\(75\) 0 0
\(76\) −2.24970 12.9088i −0.258058 1.48074i
\(77\) 0.561315i 0.0639678i
\(78\) 0 0
\(79\) 6.01760i 0.677033i −0.940960 0.338517i \(-0.890075\pi\)
0.940960 0.338517i \(-0.109925\pi\)
\(80\) 8.49105 + 2.81105i 0.949329 + 0.314285i
\(81\) 0 0
\(82\) 5.84767 6.95492i 0.645767 0.768043i
\(83\) −14.6045 −1.60305 −0.801527 0.597958i \(-0.795979\pi\)
−0.801527 + 0.597958i \(0.795979\pi\)
\(84\) 0 0
\(85\) 8.06189 + 6.31900i 0.874435 + 0.685391i
\(86\) 1.96089 2.33218i 0.211448 0.251485i
\(87\) 0 0
\(88\) 1.19701 + 0.695865i 0.127602 + 0.0741795i
\(89\) 15.7617i 1.67074i 0.549691 + 0.835368i \(0.314746\pi\)
−0.549691 + 0.835368i \(0.685254\pi\)
\(90\) 0 0
\(91\) −7.56697 −0.793234
\(92\) 12.9067 2.24933i 1.34561 0.234509i
\(93\) 0 0
\(94\) −1.25653 + 1.49446i −0.129601 + 0.154141i
\(95\) 11.5302 + 9.03749i 1.18297 + 0.927227i
\(96\) 0 0
\(97\) 6.13586i 0.623002i −0.950246 0.311501i \(-0.899168\pi\)
0.950246 0.311501i \(-0.100832\pi\)
\(98\) 6.15390 + 5.17417i 0.621638 + 0.522670i
\(99\) 0 0
\(100\) −9.15616 + 4.02053i −0.915616 + 0.402053i
\(101\) −9.11507 −0.906983 −0.453491 0.891261i \(-0.649822\pi\)
−0.453491 + 0.891261i \(0.649822\pi\)
\(102\) 0 0
\(103\) −3.61978 −0.356668 −0.178334 0.983970i \(-0.557071\pi\)
−0.178334 + 0.983970i \(0.557071\pi\)
\(104\) 9.38080 16.1367i 0.919863 1.58233i
\(105\) 0 0
\(106\) 6.42962 7.64707i 0.624500 0.742749i
\(107\) −8.02627 −0.775929 −0.387965 0.921674i \(-0.626822\pi\)
−0.387965 + 0.921674i \(0.626822\pi\)
\(108\) 0 0
\(109\) 17.4477i 1.67118i 0.549350 + 0.835592i \(0.314875\pi\)
−0.549350 + 0.835592i \(0.685125\pi\)
\(110\) −1.51500 + 0.317971i −0.144450 + 0.0303173i
\(111\) 0 0
\(112\) 4.31623 1.55156i 0.407845 0.146609i
\(113\) −4.83818 −0.455138 −0.227569 0.973762i \(-0.573078\pi\)
−0.227569 + 0.973762i \(0.573078\pi\)
\(114\) 0 0
\(115\) −9.03602 + 11.5283i −0.842613 + 1.07502i
\(116\) 0.0728775 + 0.418171i 0.00676651 + 0.0388262i
\(117\) 0 0
\(118\) 7.51964 8.94349i 0.692239 0.823315i
\(119\) 5.25273 0.481517
\(120\) 0 0
\(121\) 10.7604 0.978215
\(122\) 6.93340 8.24624i 0.627721 0.746579i
\(123\) 0 0
\(124\) 1.56978 0.273576i 0.140970 0.0245678i
\(125\) 4.59539 10.1923i 0.411024 0.911624i
\(126\) 0 0
\(127\) −14.0822 −1.24960 −0.624798 0.780786i \(-0.714819\pi\)
−0.624798 + 0.780786i \(0.714819\pi\)
\(128\) −2.04212 + 11.1279i −0.180499 + 0.983575i
\(129\) 0 0
\(130\) 4.28649 + 20.4234i 0.375950 + 1.79125i
\(131\) 12.5225i 1.09409i 0.837102 + 0.547046i \(0.184248\pi\)
−0.837102 + 0.547046i \(0.815752\pi\)
\(132\) 0 0
\(133\) 7.51251 0.651418
\(134\) 10.2098 12.1430i 0.881989 1.04899i
\(135\) 0 0
\(136\) −6.51184 + 11.2015i −0.558385 + 0.960522i
\(137\) −2.50573 −0.214079 −0.107040 0.994255i \(-0.534137\pi\)
−0.107040 + 0.994255i \(0.534137\pi\)
\(138\) 0 0
\(139\) 2.86529 0.243031 0.121515 0.992590i \(-0.461225\pi\)
0.121515 + 0.992590i \(0.461225\pi\)
\(140\) −2.42353 + 4.51917i −0.204826 + 0.381940i
\(141\) 0 0
\(142\) 12.2533 + 10.3026i 1.02828 + 0.864572i
\(143\) 3.23044i 0.270143i
\(144\) 0 0
\(145\) −0.373513 0.292763i −0.0310186 0.0243127i
\(146\) −8.49120 + 10.0990i −0.702737 + 0.835800i
\(147\) 0 0
\(148\) −1.64397 9.43307i −0.135133 0.775393i
\(149\) 20.0127 1.63950 0.819750 0.572721i \(-0.194112\pi\)
0.819750 + 0.572721i \(0.194112\pi\)
\(150\) 0 0
\(151\) 9.18095i 0.747135i −0.927603 0.373568i \(-0.878134\pi\)
0.927603 0.373568i \(-0.121866\pi\)
\(152\) −9.31329 + 16.0205i −0.755408 + 1.29944i
\(153\) 0 0
\(154\) −0.510862 + 0.607594i −0.0411664 + 0.0489613i
\(155\) −1.09901 + 1.40213i −0.0882745 + 0.112622i
\(156\) 0 0
\(157\) 2.50256 0.199726 0.0998632 0.995001i \(-0.468159\pi\)
0.0998632 + 0.995001i \(0.468159\pi\)
\(158\) −5.47672 + 6.51373i −0.435704 + 0.518205i
\(159\) 0 0
\(160\) −6.63273 10.7707i −0.524363 0.851495i
\(161\) 7.51129i 0.591972i
\(162\) 0 0
\(163\) 16.6545i 1.30448i −0.758012 0.652241i \(-0.773829\pi\)
0.758012 0.652241i \(-0.226171\pi\)
\(164\) −12.6596 + 2.20627i −0.988546 + 0.172281i
\(165\) 0 0
\(166\) 15.8086 + 13.2918i 1.22699 + 1.03164i
\(167\) 0.665315i 0.0514836i 0.999669 + 0.0257418i \(0.00819478\pi\)
−0.999669 + 0.0257418i \(0.991805\pi\)
\(168\) 0 0
\(169\) 30.5489 2.34991
\(170\) −2.97554 14.1772i −0.228213 1.08734i
\(171\) 0 0
\(172\) −4.24511 + 0.739824i −0.323686 + 0.0564111i
\(173\) 7.10945i 0.540522i −0.962787 0.270261i \(-0.912890\pi\)
0.962787 0.270261i \(-0.0871099\pi\)
\(174\) 0 0
\(175\) −1.36957 5.56730i −0.103530 0.420848i
\(176\) −0.662383 1.84266i −0.0499290 0.138895i
\(177\) 0 0
\(178\) 14.3450 17.0612i 1.07520 1.27879i
\(179\) 20.0977i 1.50217i −0.660206 0.751085i \(-0.729531\pi\)
0.660206 0.751085i \(-0.270469\pi\)
\(180\) 0 0
\(181\) 3.67133i 0.272888i 0.990648 + 0.136444i \(0.0435673\pi\)
−0.990648 + 0.136444i \(0.956433\pi\)
\(182\) 8.19083 + 6.88682i 0.607145 + 0.510485i
\(183\) 0 0
\(184\) −16.0179 9.31177i −1.18086 0.686473i
\(185\) 8.42568 + 6.60414i 0.619468 + 0.485546i
\(186\) 0 0
\(187\) 2.24246i 0.163985i
\(188\) 2.72026 0.474078i 0.198395 0.0345757i
\(189\) 0 0
\(190\) −4.25565 20.2764i −0.308737 1.47101i
\(191\) −0.418278 −0.0302656 −0.0151328 0.999885i \(-0.504817\pi\)
−0.0151328 + 0.999885i \(0.504817\pi\)
\(192\) 0 0
\(193\) 13.1064i 0.943417i −0.881754 0.471709i \(-0.843637\pi\)
0.881754 0.471709i \(-0.156363\pi\)
\(194\) −5.58434 + 6.64174i −0.400932 + 0.476849i
\(195\) 0 0
\(196\) −1.95217 11.2015i −0.139440 0.800109i
\(197\) 4.56693i 0.325380i 0.986677 + 0.162690i \(0.0520170\pi\)
−0.986677 + 0.162690i \(0.947983\pi\)
\(198\) 0 0
\(199\) 13.1531i 0.932398i −0.884680 0.466199i \(-0.845623\pi\)
0.884680 0.466199i \(-0.154377\pi\)
\(200\) 13.5702 + 3.98117i 0.959558 + 0.281511i
\(201\) 0 0
\(202\) 9.86657 + 8.29577i 0.694209 + 0.583688i
\(203\) −0.243363 −0.0170807
\(204\) 0 0
\(205\) 8.86303 11.3076i 0.619021 0.789758i
\(206\) 3.91822 + 3.29442i 0.272995 + 0.229533i
\(207\) 0 0
\(208\) −24.8404 + 8.92944i −1.72237 + 0.619145i
\(209\) 3.20720i 0.221846i
\(210\) 0 0
\(211\) −0.897033 −0.0617543 −0.0308772 0.999523i \(-0.509830\pi\)
−0.0308772 + 0.999523i \(0.509830\pi\)
\(212\) −13.9194 + 2.42584i −0.955990 + 0.166607i
\(213\) 0 0
\(214\) 8.68801 + 7.30484i 0.593900 + 0.499349i
\(215\) 2.97202 3.79176i 0.202690 0.258596i
\(216\) 0 0
\(217\) 0.913562i 0.0620167i
\(218\) 15.8794 18.8862i 1.07549 1.27913i
\(219\) 0 0
\(220\) 1.92930 + 1.03464i 0.130073 + 0.0697554i
\(221\) −30.2302 −2.03350
\(222\) 0 0
\(223\) 9.57525 0.641206 0.320603 0.947214i \(-0.396114\pi\)
0.320603 + 0.947214i \(0.396114\pi\)
\(224\) −6.08418 2.24878i −0.406516 0.150253i
\(225\) 0 0
\(226\) 5.23707 + 4.40331i 0.348365 + 0.292903i
\(227\) −15.7980 −1.04855 −0.524276 0.851549i \(-0.675664\pi\)
−0.524276 + 0.851549i \(0.675664\pi\)
\(228\) 0 0
\(229\) 15.6346i 1.03317i −0.856237 0.516583i \(-0.827204\pi\)
0.856237 0.516583i \(-0.172796\pi\)
\(230\) 20.2731 4.25495i 1.33677 0.280563i
\(231\) 0 0
\(232\) 0.301698 0.518974i 0.0198074 0.0340723i
\(233\) 5.68606 0.372506 0.186253 0.982502i \(-0.440366\pi\)
0.186253 + 0.982502i \(0.440366\pi\)
\(234\) 0 0
\(235\) −1.90447 + 2.42975i −0.124234 + 0.158500i
\(236\) −16.2792 + 2.83709i −1.05969 + 0.184679i
\(237\) 0 0
\(238\) −5.68580 4.78060i −0.368556 0.309880i
\(239\) −29.6817 −1.91995 −0.959974 0.280090i \(-0.909636\pi\)
−0.959974 + 0.280090i \(0.909636\pi\)
\(240\) 0 0
\(241\) −3.70042 −0.238365 −0.119183 0.992872i \(-0.538027\pi\)
−0.119183 + 0.992872i \(0.538027\pi\)
\(242\) −11.6475 9.79318i −0.748731 0.629529i
\(243\) 0 0
\(244\) −15.0101 + 2.61591i −0.960921 + 0.167466i
\(245\) 10.0053 + 7.84224i 0.639213 + 0.501022i
\(246\) 0 0
\(247\) −43.2355 −2.75101
\(248\) −1.94818 1.13255i −0.123710 0.0719168i
\(249\) 0 0
\(250\) −14.2504 + 6.85024i −0.901275 + 0.433247i
\(251\) 29.2951i 1.84909i 0.381074 + 0.924545i \(0.375554\pi\)
−0.381074 + 0.924545i \(0.624446\pi\)
\(252\) 0 0
\(253\) 3.20667 0.201602
\(254\) 15.2433 + 12.8165i 0.956447 + 0.804176i
\(255\) 0 0
\(256\) 12.3381 10.1868i 0.771134 0.636673i
\(257\) 15.4159 0.961615 0.480807 0.876826i \(-0.340344\pi\)
0.480807 + 0.876826i \(0.340344\pi\)
\(258\) 0 0
\(259\) 5.48976 0.341117
\(260\) 13.9478 26.0084i 0.865003 1.61297i
\(261\) 0 0
\(262\) 11.3969 13.5549i 0.704102 0.837424i
\(263\) 13.1012i 0.807854i 0.914791 + 0.403927i \(0.132355\pi\)
−0.914791 + 0.403927i \(0.867645\pi\)
\(264\) 0 0
\(265\) 9.74507 12.4329i 0.598635 0.763749i
\(266\) −8.13189 6.83726i −0.498598 0.419219i
\(267\) 0 0
\(268\) −22.1030 + 3.85205i −1.35016 + 0.235301i
\(269\) −0.677971 −0.0413366 −0.0206683 0.999786i \(-0.506579\pi\)
−0.0206683 + 0.999786i \(0.506579\pi\)
\(270\) 0 0
\(271\) 26.6785i 1.62060i −0.586015 0.810300i \(-0.699304\pi\)
0.586015 0.810300i \(-0.300696\pi\)
\(272\) 17.2434 6.19851i 1.04553 0.375840i
\(273\) 0 0
\(274\) 2.71232 + 2.28051i 0.163857 + 0.137770i
\(275\) −2.37676 + 0.584690i −0.143324 + 0.0352581i
\(276\) 0 0
\(277\) −15.0012 −0.901333 −0.450667 0.892692i \(-0.648814\pi\)
−0.450667 + 0.892692i \(0.648814\pi\)
\(278\) −3.10152 2.60775i −0.186017 0.156402i
\(279\) 0 0
\(280\) 6.73631 2.68606i 0.402572 0.160523i
\(281\) 21.2166i 1.26567i −0.774285 0.632837i \(-0.781890\pi\)
0.774285 0.632837i \(-0.218110\pi\)
\(282\) 0 0
\(283\) 26.1597i 1.55504i 0.628861 + 0.777518i \(0.283521\pi\)
−0.628861 + 0.777518i \(0.716479\pi\)
\(284\) −3.88706 22.3039i −0.230655 1.32350i
\(285\) 0 0
\(286\) 2.94008 3.49678i 0.173850 0.206769i
\(287\) 7.36749i 0.434889i
\(288\) 0 0
\(289\) 3.98476 0.234397
\(290\) 0.137859 + 0.656841i 0.00809535 + 0.0385710i
\(291\) 0 0
\(292\) 18.3825 3.20365i 1.07576 0.187480i
\(293\) 15.2115i 0.888663i −0.895862 0.444332i \(-0.853441\pi\)
0.895862 0.444332i \(-0.146559\pi\)
\(294\) 0 0
\(295\) 11.3972 14.5407i 0.663569 0.846593i
\(296\) −6.80568 + 11.7070i −0.395572 + 0.680455i
\(297\) 0 0
\(298\) −21.6626 18.2138i −1.25488 1.05510i
\(299\) 43.2284i 2.49996i
\(300\) 0 0
\(301\) 2.47052i 0.142399i
\(302\) −8.35573 + 9.93788i −0.480818 + 0.571861i
\(303\) 0 0
\(304\) 24.6617 8.86518i 1.41444 0.508453i
\(305\) 10.5086 13.4071i 0.601722 0.767688i
\(306\) 0 0
\(307\) 14.0725i 0.803159i −0.915824 0.401580i \(-0.868461\pi\)
0.915824 0.401580i \(-0.131539\pi\)
\(308\) 1.10596 0.192743i 0.0630180 0.0109826i
\(309\) 0 0
\(310\) 2.46572 0.517510i 0.140044 0.0293926i
\(311\) 1.78682 0.101321 0.0506605 0.998716i \(-0.483867\pi\)
0.0506605 + 0.998716i \(0.483867\pi\)
\(312\) 0 0
\(313\) 0.380682i 0.0215174i 0.999942 + 0.0107587i \(0.00342467\pi\)
−0.999942 + 0.0107587i \(0.996575\pi\)
\(314\) −2.70889 2.27762i −0.152872 0.128534i
\(315\) 0 0
\(316\) 11.8565 2.06631i 0.666980 0.116239i
\(317\) 16.1536i 0.907278i −0.891185 0.453639i \(-0.850126\pi\)
0.891185 0.453639i \(-0.149874\pi\)
\(318\) 0 0
\(319\) 0.103895i 0.00581700i
\(320\) −2.62298 + 17.6952i −0.146629 + 0.989192i
\(321\) 0 0
\(322\) 6.83614 8.13056i 0.380963 0.453098i
\(323\) 30.0126 1.66995
\(324\) 0 0
\(325\) 7.88208 + 32.0405i 0.437219 + 1.77729i
\(326\) −15.1575 + 18.0276i −0.839498 + 0.998456i
\(327\) 0 0
\(328\) 15.7113 + 9.13351i 0.867509 + 0.504314i
\(329\) 1.58311i 0.0872795i
\(330\) 0 0
\(331\) −9.53637 −0.524166 −0.262083 0.965045i \(-0.584409\pi\)
−0.262083 + 0.965045i \(0.584409\pi\)
\(332\) −5.01487 28.7753i −0.275227 1.57925i
\(333\) 0 0
\(334\) 0.605514 0.720168i 0.0331323 0.0394058i
\(335\) 15.4744 19.7426i 0.845459 1.07865i
\(336\) 0 0
\(337\) 24.7926i 1.35054i −0.737572 0.675269i \(-0.764028\pi\)
0.737572 0.675269i \(-0.235972\pi\)
\(338\) −33.0675 27.8030i −1.79864 1.51228i
\(339\) 0 0
\(340\) −9.68206 + 18.0542i −0.525083 + 0.979125i
\(341\) 0.390012 0.0211204
\(342\) 0 0
\(343\) 14.5455 0.785386
\(344\) 5.26842 + 3.06272i 0.284054 + 0.165131i
\(345\) 0 0
\(346\) −6.47043 + 7.69560i −0.347852 + 0.413718i
\(347\) 30.6459 1.64516 0.822579 0.568650i \(-0.192534\pi\)
0.822579 + 0.568650i \(0.192534\pi\)
\(348\) 0 0
\(349\) 24.1005i 1.29007i 0.764153 + 0.645035i \(0.223157\pi\)
−0.764153 + 0.645035i \(0.776843\pi\)
\(350\) −3.58440 + 7.27277i −0.191594 + 0.388746i
\(351\) 0 0
\(352\) −0.960037 + 2.59742i −0.0511701 + 0.138443i
\(353\) −14.3991 −0.766385 −0.383192 0.923669i \(-0.625175\pi\)
−0.383192 + 0.923669i \(0.625175\pi\)
\(354\) 0 0
\(355\) 19.9220 + 15.6151i 1.05735 + 0.828763i
\(356\) −31.0553 + 5.41222i −1.64593 + 0.286847i
\(357\) 0 0
\(358\) −18.2912 + 21.7546i −0.966720 + 1.14977i
\(359\) 8.68429 0.458340 0.229170 0.973386i \(-0.426399\pi\)
0.229170 + 0.973386i \(0.426399\pi\)
\(360\) 0 0
\(361\) 23.9244 1.25918
\(362\) 3.34134 3.97402i 0.175617 0.208870i
\(363\) 0 0
\(364\) −2.59833 14.9092i −0.136190 0.781455i
\(365\) −12.8697 + 16.4194i −0.673631 + 0.859431i
\(366\) 0 0
\(367\) −24.8041 −1.29477 −0.647383 0.762165i \(-0.724136\pi\)
−0.647383 + 0.762165i \(0.724136\pi\)
\(368\) 8.86373 + 24.6576i 0.462054 + 1.28537i
\(369\) 0 0
\(370\) −3.10981 14.8170i −0.161671 0.770298i
\(371\) 8.10069i 0.420567i
\(372\) 0 0
\(373\) 25.4828 1.31945 0.659726 0.751506i \(-0.270672\pi\)
0.659726 + 0.751506i \(0.270672\pi\)
\(374\) −2.04090 + 2.42735i −0.105533 + 0.125515i
\(375\) 0 0
\(376\) −3.37600 1.96258i −0.174104 0.101213i
\(377\) 1.40058 0.0721338
\(378\) 0 0
\(379\) −24.6997 −1.26874 −0.634368 0.773031i \(-0.718740\pi\)
−0.634368 + 0.773031i \(0.718740\pi\)
\(380\) −13.8474 + 25.8213i −0.710356 + 1.32460i
\(381\) 0 0
\(382\) 0.452764 + 0.380682i 0.0231654 + 0.0194774i
\(383\) 1.39738i 0.0714026i −0.999363 0.0357013i \(-0.988634\pi\)
0.999363 0.0357013i \(-0.0113665\pi\)
\(384\) 0 0
\(385\) −0.774289 + 0.987852i −0.0394614 + 0.0503456i
\(386\) −11.9283 + 14.1869i −0.607135 + 0.722096i
\(387\) 0 0
\(388\) 12.0895 2.10692i 0.613751 0.106963i
\(389\) 24.5591 1.24520 0.622599 0.782541i \(-0.286077\pi\)
0.622599 + 0.782541i \(0.286077\pi\)
\(390\) 0 0
\(391\) 30.0077i 1.51755i
\(392\) −8.08157 + 13.9017i −0.408181 + 0.702144i
\(393\) 0 0
\(394\) 4.15643 4.94345i 0.209398 0.249047i
\(395\) −8.30080 + 10.5903i −0.417658 + 0.532856i
\(396\) 0 0
\(397\) −29.3723 −1.47415 −0.737077 0.675809i \(-0.763794\pi\)
−0.737077 + 0.675809i \(0.763794\pi\)
\(398\) −11.9708 + 14.2375i −0.600044 + 0.713662i
\(399\) 0 0
\(400\) −11.0657 16.6599i −0.553284 0.832993i
\(401\) 14.9880i 0.748465i 0.927335 + 0.374233i \(0.122094\pi\)
−0.927335 + 0.374233i \(0.877906\pi\)
\(402\) 0 0
\(403\) 5.25767i 0.261903i
\(404\) −3.12992 17.9594i −0.155719 0.893515i
\(405\) 0 0
\(406\) 0.263427 + 0.221488i 0.0130737 + 0.0109923i
\(407\) 2.34365i 0.116171i
\(408\) 0 0
\(409\) −20.3845 −1.00795 −0.503973 0.863719i \(-0.668129\pi\)
−0.503973 + 0.863719i \(0.668129\pi\)
\(410\) −19.8850 + 4.17349i −0.982050 + 0.206114i
\(411\) 0 0
\(412\) −1.24295 7.13206i −0.0612359 0.351371i
\(413\) 9.47401i 0.466186i
\(414\) 0 0
\(415\) 25.7023 + 20.1458i 1.26168 + 0.988916i
\(416\) 35.0153 + 12.9420i 1.71676 + 0.634536i
\(417\) 0 0
\(418\) −2.91892 + 3.47162i −0.142769 + 0.169802i
\(419\) 8.04348i 0.392950i −0.980509 0.196475i \(-0.937051\pi\)
0.980509 0.196475i \(-0.0629494\pi\)
\(420\) 0 0
\(421\) 25.5919i 1.24728i 0.781714 + 0.623638i \(0.214346\pi\)
−0.781714 + 0.623638i \(0.785654\pi\)
\(422\) 0.970990 + 0.816404i 0.0472671 + 0.0397419i
\(423\) 0 0
\(424\) 17.2748 + 10.0425i 0.838940 + 0.487705i
\(425\) −5.47147 22.2414i −0.265405 1.07887i
\(426\) 0 0
\(427\) 8.73541i 0.422736i
\(428\) −2.75605 15.8142i −0.133219 0.764408i
\(429\) 0 0
\(430\) −6.66799 + 1.39949i −0.321559 + 0.0674894i
\(431\) 3.17732 0.153046 0.0765231 0.997068i \(-0.475618\pi\)
0.0765231 + 0.997068i \(0.475618\pi\)
\(432\) 0 0
\(433\) 21.8507i 1.05008i 0.851079 + 0.525038i \(0.175949\pi\)
−0.851079 + 0.525038i \(0.824051\pi\)
\(434\) 0.831448 0.988882i 0.0399108 0.0474679i
\(435\) 0 0
\(436\) −34.3772 + 5.99115i −1.64637 + 0.286924i
\(437\) 42.9173i 2.05301i
\(438\) 0 0
\(439\) 1.44034i 0.0687435i 0.999409 + 0.0343717i \(0.0109430\pi\)
−0.999409 + 0.0343717i \(0.989057\pi\)
\(440\) −1.14672 2.87583i −0.0546676 0.137100i
\(441\) 0 0
\(442\) 32.7225 + 27.5130i 1.55645 + 1.30866i
\(443\) 30.9735 1.47160 0.735798 0.677201i \(-0.236807\pi\)
0.735798 + 0.677201i \(0.236807\pi\)
\(444\) 0 0
\(445\) 21.7420 27.7388i 1.03067 1.31495i
\(446\) −10.3647 8.71459i −0.490782 0.412648i
\(447\) 0 0
\(448\) 4.53914 + 7.97150i 0.214454 + 0.376618i
\(449\) 9.93183i 0.468712i 0.972151 + 0.234356i \(0.0752982\pi\)
−0.972151 + 0.234356i \(0.924702\pi\)
\(450\) 0 0
\(451\) −3.14528 −0.148106
\(452\) −1.66133 9.53268i −0.0781422 0.448380i
\(453\) 0 0
\(454\) 17.1005 + 14.3780i 0.802567 + 0.674794i
\(455\) 13.3170 + 10.4380i 0.624311 + 0.489342i
\(456\) 0 0
\(457\) 21.6719i 1.01377i 0.862014 + 0.506885i \(0.169203\pi\)
−0.862014 + 0.506885i \(0.830797\pi\)
\(458\) −14.2293 + 16.9236i −0.664893 + 0.790790i
\(459\) 0 0
\(460\) −25.8170 13.8451i −1.20373 0.645532i
\(461\) −3.57008 −0.166275 −0.0831376 0.996538i \(-0.526494\pi\)
−0.0831376 + 0.996538i \(0.526494\pi\)
\(462\) 0 0
\(463\) −25.5094 −1.18552 −0.592762 0.805378i \(-0.701962\pi\)
−0.592762 + 0.805378i \(0.701962\pi\)
\(464\) −0.798898 + 0.287181i −0.0370879 + 0.0133321i
\(465\) 0 0
\(466\) −6.15485 5.17497i −0.285118 0.239726i
\(467\) 20.4328 0.945516 0.472758 0.881192i \(-0.343258\pi\)
0.472758 + 0.881192i \(0.343258\pi\)
\(468\) 0 0
\(469\) 12.8633i 0.593972i
\(470\) 4.27284 0.896790i 0.197091 0.0413658i
\(471\) 0 0
\(472\) 20.2035 + 11.7450i 0.929939 + 0.540606i
\(473\) −1.05470 −0.0484952
\(474\) 0 0
\(475\) −7.82536 31.8099i −0.359052 1.45954i
\(476\) 1.80367 + 10.3495i 0.0826713 + 0.474367i
\(477\) 0 0
\(478\) 32.1288 + 27.0138i 1.46954 + 1.23558i
\(479\) −18.6566 −0.852442 −0.426221 0.904619i \(-0.640155\pi\)
−0.426221 + 0.904619i \(0.640155\pi\)
\(480\) 0 0
\(481\) −31.5943 −1.44058
\(482\) 4.00551 + 3.36781i 0.182446 + 0.153400i
\(483\) 0 0
\(484\) 3.69488 + 21.2012i 0.167949 + 0.963690i
\(485\) −8.46392 + 10.7984i −0.384327 + 0.490331i
\(486\) 0 0
\(487\) 12.2903 0.556929 0.278464 0.960447i \(-0.410175\pi\)
0.278464 + 0.960447i \(0.410175\pi\)
\(488\) 18.6284 + 10.8293i 0.843266 + 0.490220i
\(489\) 0 0
\(490\) −3.69282 17.5948i −0.166824 0.794850i
\(491\) 12.6888i 0.572637i −0.958135 0.286318i \(-0.907569\pi\)
0.958135 0.286318i \(-0.0924315\pi\)
\(492\) 0 0
\(493\) −0.972238 −0.0437874
\(494\) 46.8001 + 39.3493i 2.10564 + 1.77041i
\(495\) 0 0
\(496\) 1.07805 + 2.99899i 0.0484060 + 0.134659i
\(497\) 12.9802 0.582242
\(498\) 0 0
\(499\) −16.7725 −0.750838 −0.375419 0.926855i \(-0.622501\pi\)
−0.375419 + 0.926855i \(0.622501\pi\)
\(500\) 21.6598 + 5.55451i 0.968656 + 0.248405i
\(501\) 0 0
\(502\) 26.6619 31.7103i 1.18998 1.41530i
\(503\) 21.8493i 0.974213i 0.873343 + 0.487106i \(0.161948\pi\)
−0.873343 + 0.487106i \(0.838052\pi\)
\(504\) 0 0
\(505\) 16.0415 + 12.5735i 0.713837 + 0.559513i
\(506\) −3.47105 2.91844i −0.154307 0.129741i
\(507\) 0 0
\(508\) −4.83553 27.7463i −0.214542 1.23104i
\(509\) 15.6889 0.695397 0.347699 0.937606i \(-0.386963\pi\)
0.347699 + 0.937606i \(0.386963\pi\)
\(510\) 0 0
\(511\) 10.6981i 0.473255i
\(512\) −22.6265 0.202518i −0.999960 0.00895011i
\(513\) 0 0
\(514\) −16.6868 14.0302i −0.736025 0.618846i
\(515\) 6.37041 + 4.99319i 0.280714 + 0.220026i
\(516\) 0 0
\(517\) 0.675850 0.0297239
\(518\) −5.94237 4.99632i −0.261093 0.219526i
\(519\) 0 0
\(520\) −38.7684 + 15.4586i −1.70011 + 0.677906i
\(521\) 36.4911i 1.59870i −0.600862 0.799352i \(-0.705176\pi\)
0.600862 0.799352i \(-0.294824\pi\)
\(522\) 0 0
\(523\) 37.2814i 1.63020i 0.579318 + 0.815102i \(0.303319\pi\)
−0.579318 + 0.815102i \(0.696681\pi\)
\(524\) −24.6730 + 4.29994i −1.07785 + 0.187844i
\(525\) 0 0
\(526\) 11.9236 14.1813i 0.519894 0.618335i
\(527\) 3.64970i 0.158983i
\(528\) 0 0
\(529\) −19.9103 −0.865666
\(530\) −21.8639 + 4.58883i −0.949708 + 0.199326i
\(531\) 0 0
\(532\) 2.57963 + 14.8019i 0.111841 + 0.641745i
\(533\) 42.4009i 1.83658i
\(534\) 0 0
\(535\) 14.1253 + 11.0716i 0.610692 + 0.478667i
\(536\) 27.4311 + 15.9467i 1.18484 + 0.688792i
\(537\) 0 0
\(538\) 0.733867 + 0.617032i 0.0316392 + 0.0266021i
\(539\) 2.78303i 0.119874i
\(540\) 0 0
\(541\) 32.7256i 1.40699i −0.710703 0.703493i \(-0.751623\pi\)
0.710703 0.703493i \(-0.248377\pi\)
\(542\) −24.2805 + 28.8780i −1.04294 + 1.24042i
\(543\) 0 0
\(544\) −24.3064 8.98393i −1.04213 0.385183i
\(545\) 24.0677 30.7060i 1.03095 1.31530i
\(546\) 0 0
\(547\) 9.73699i 0.416324i 0.978094 + 0.208162i \(0.0667481\pi\)
−0.978094 + 0.208162i \(0.933252\pi\)
\(548\) −0.860414 4.93705i −0.0367551 0.210900i
\(549\) 0 0
\(550\) 3.10485 + 1.53023i 0.132391 + 0.0652491i
\(551\) −1.39051 −0.0592375
\(552\) 0 0
\(553\) 6.90013i 0.293423i
\(554\) 16.2380 + 13.6528i 0.689885 + 0.580052i
\(555\) 0 0
\(556\) 0.983879 + 5.64549i 0.0417258 + 0.239422i
\(557\) 6.15870i 0.260953i −0.991451 0.130476i \(-0.958349\pi\)
0.991451 0.130476i \(-0.0416506\pi\)
\(558\) 0 0
\(559\) 14.2182i 0.601365i
\(560\) −9.73632 3.22331i −0.411435 0.136210i
\(561\) 0 0
\(562\) −19.3095 + 22.9658i −0.814524 + 0.968754i
\(563\) −5.69834 −0.240156 −0.120078 0.992764i \(-0.538315\pi\)
−0.120078 + 0.992764i \(0.538315\pi\)
\(564\) 0 0
\(565\) 8.51465 + 6.67388i 0.358214 + 0.280772i
\(566\) 23.8084 28.3165i 1.00074 1.19023i
\(567\) 0 0
\(568\) −16.0916 + 27.6805i −0.675190 + 1.16145i
\(569\) 11.5832i 0.485595i 0.970077 + 0.242797i \(0.0780650\pi\)
−0.970077 + 0.242797i \(0.921935\pi\)
\(570\) 0 0
\(571\) 22.2369 0.930585 0.465293 0.885157i \(-0.345949\pi\)
0.465293 + 0.885157i \(0.345949\pi\)
\(572\) −6.36495 + 1.10926i −0.266132 + 0.0463806i
\(573\) 0 0
\(574\) −6.70527 + 7.97491i −0.279873 + 0.332866i
\(575\) 31.8047 7.82408i 1.32635 0.326287i
\(576\) 0 0
\(577\) 0.506621i 0.0210909i 0.999944 + 0.0105454i \(0.00335678\pi\)
−0.999944 + 0.0105454i \(0.996643\pi\)
\(578\) −4.31328 3.62659i −0.179409 0.150846i
\(579\) 0 0
\(580\) 0.448576 0.836462i 0.0186261 0.0347322i
\(581\) 16.7464 0.694757
\(582\) 0 0
\(583\) −3.45830 −0.143228
\(584\) −22.8138 13.2625i −0.944042 0.548804i
\(585\) 0 0
\(586\) −13.8442 + 16.4656i −0.571898 + 0.680187i
\(587\) −20.7492 −0.856412 −0.428206 0.903681i \(-0.640854\pi\)
−0.428206 + 0.903681i \(0.640854\pi\)
\(588\) 0 0
\(589\) 5.21983i 0.215079i
\(590\) −25.5705 + 5.36679i −1.05272 + 0.220947i
\(591\) 0 0
\(592\) 18.0215 6.47822i 0.740679 0.266253i
\(593\) 35.1903 1.44509 0.722546 0.691323i \(-0.242972\pi\)
0.722546 + 0.691323i \(0.242972\pi\)
\(594\) 0 0
\(595\) −9.24422 7.24572i −0.378976 0.297046i
\(596\) 6.87191 + 39.4310i 0.281484 + 1.61516i
\(597\) 0 0
\(598\) −39.3429 + 46.7924i −1.60885 + 1.91348i
\(599\) 1.94245 0.0793664 0.0396832 0.999212i \(-0.487365\pi\)
0.0396832 + 0.999212i \(0.487365\pi\)
\(600\) 0 0
\(601\) −10.1652 −0.414646 −0.207323 0.978272i \(-0.566475\pi\)
−0.207323 + 0.978272i \(0.566475\pi\)
\(602\) −2.24846 + 2.67421i −0.0916405 + 0.108993i
\(603\) 0 0
\(604\) 18.0893 3.15254i 0.736041 0.128275i
\(605\) −18.9370 14.8431i −0.769900 0.603456i
\(606\) 0 0
\(607\) 9.55777 0.387938 0.193969 0.981008i \(-0.437864\pi\)
0.193969 + 0.981008i \(0.437864\pi\)
\(608\) −34.7633 12.8489i −1.40984 0.521092i
\(609\) 0 0
\(610\) −23.5770 + 4.94839i −0.954606 + 0.200354i
\(611\) 9.11099i 0.368591i
\(612\) 0 0
\(613\) −17.3616 −0.701229 −0.350615 0.936520i \(-0.614027\pi\)
−0.350615 + 0.936520i \(0.614027\pi\)
\(614\) −12.8076 + 15.2327i −0.516872 + 0.614742i
\(615\) 0 0
\(616\) −1.37256 0.797918i −0.0553021 0.0321490i
\(617\) −18.8571 −0.759160 −0.379580 0.925159i \(-0.623931\pi\)
−0.379580 + 0.925159i \(0.623931\pi\)
\(618\) 0 0
\(619\) 21.7161 0.872843 0.436422 0.899742i \(-0.356246\pi\)
0.436422 + 0.899742i \(0.356246\pi\)
\(620\) −3.14000 1.68392i −0.126106 0.0676277i
\(621\) 0 0
\(622\) −1.93413 1.62621i −0.0775516 0.0652050i
\(623\) 18.0733i 0.724090i
\(624\) 0 0
\(625\) −22.1468 + 11.5983i −0.885871 + 0.463931i
\(626\) 0.346464 0.412067i 0.0138475 0.0164695i
\(627\) 0 0
\(628\) 0.859326 + 4.93081i 0.0342908 + 0.196761i
\(629\) 21.9317 0.874474
\(630\) 0 0
\(631\) 36.4253i 1.45007i −0.688713 0.725034i \(-0.741824\pi\)
0.688713 0.725034i \(-0.258176\pi\)
\(632\) −14.7146 8.55412i −0.585316 0.340264i
\(633\) 0 0
\(634\) −14.7017 + 17.4854i −0.583878 + 0.694435i
\(635\) 24.7831 + 19.4253i 0.983489 + 0.770869i
\(636\) 0 0
\(637\) −37.5174 −1.48649
\(638\) 0.0945564 0.112461i 0.00374352 0.00445236i
\(639\) 0 0
\(640\) 18.9439 16.7669i 0.748824 0.662769i
\(641\) 16.9125i 0.668003i 0.942573 + 0.334002i \(0.108399\pi\)
−0.942573 + 0.334002i \(0.891601\pi\)
\(642\) 0 0
\(643\) 12.8665i 0.507406i 0.967282 + 0.253703i \(0.0816486\pi\)
−0.967282 + 0.253703i \(0.918351\pi\)
\(644\) −14.7995 + 2.57921i −0.583182 + 0.101635i
\(645\) 0 0
\(646\) −32.4870 27.3150i −1.27819 1.07469i
\(647\) 2.93265i 0.115294i 0.998337 + 0.0576472i \(0.0183599\pi\)
−0.998337 + 0.0576472i \(0.981640\pi\)
\(648\) 0 0
\(649\) −4.04459 −0.158764
\(650\) 20.6287 41.8557i 0.809123 1.64172i
\(651\) 0 0
\(652\) 32.8144 5.71879i 1.28511 0.223965i
\(653\) 40.6276i 1.58988i −0.606687 0.794941i \(-0.707502\pi\)
0.606687 0.794941i \(-0.292498\pi\)
\(654\) 0 0
\(655\) 17.2737 22.0381i 0.674940 0.861101i
\(656\) −8.69404 24.1856i −0.339445 0.944289i
\(657\) 0 0
\(658\) 1.44081 1.71363i 0.0561687 0.0668042i
\(659\) 18.3239i 0.713796i −0.934143 0.356898i \(-0.883834\pi\)
0.934143 0.356898i \(-0.116166\pi\)
\(660\) 0 0
\(661\) 5.77979i 0.224808i 0.993663 + 0.112404i \(0.0358550\pi\)
−0.993663 + 0.112404i \(0.964145\pi\)
\(662\) 10.3226 + 8.67920i 0.401199 + 0.337327i
\(663\) 0 0
\(664\) −20.7605 + 35.7118i −0.805666 + 1.38589i
\(665\) −13.2212 10.3629i −0.512695 0.401856i
\(666\) 0 0
\(667\) 1.39028i 0.0538318i
\(668\) −1.31087 + 0.228455i −0.0507192 + 0.00883918i
\(669\) 0 0
\(670\) −34.7183 + 7.28673i −1.34128 + 0.281511i
\(671\) −3.72927 −0.143967
\(672\) 0 0
\(673\) 18.2760i 0.704489i 0.935908 + 0.352244i \(0.114581\pi\)
−0.935908 + 0.352244i \(0.885419\pi\)
\(674\) −22.5641 + 26.8366i −0.869137 + 1.03371i
\(675\) 0 0
\(676\) 10.4898 + 60.1905i 0.403455 + 2.31502i
\(677\) 19.8228i 0.761853i −0.924605 0.380926i \(-0.875605\pi\)
0.924605 0.380926i \(-0.124395\pi\)
\(678\) 0 0
\(679\) 7.03572i 0.270006i
\(680\) 26.9117 10.7309i 1.03202 0.411510i
\(681\) 0 0
\(682\) −0.422167 0.354956i −0.0161656 0.0135920i
\(683\) −34.8118 −1.33204 −0.666018 0.745935i \(-0.732003\pi\)
−0.666018 + 0.745935i \(0.732003\pi\)
\(684\) 0 0
\(685\) 4.40981 + 3.45645i 0.168490 + 0.132064i
\(686\) −15.7448 13.2381i −0.601138 0.505434i
\(687\) 0 0
\(688\) −2.91535 8.11010i −0.111147 0.309195i
\(689\) 46.6205i 1.77610i
\(690\) 0 0
\(691\) −25.7607 −0.979982 −0.489991 0.871727i \(-0.663000\pi\)
−0.489991 + 0.871727i \(0.663000\pi\)
\(692\) 14.0078 2.44123i 0.532496 0.0928017i
\(693\) 0 0
\(694\) −33.1725 27.8913i −1.25921 1.05874i
\(695\) −5.04259 3.95244i −0.191276 0.149925i
\(696\) 0 0
\(697\) 29.4332i 1.11486i
\(698\) 21.9342 26.0875i 0.830223 0.987426i
\(699\) 0 0
\(700\) 10.4990 4.61017i 0.396824 0.174248i
\(701\) −31.8004 −1.20109 −0.600543 0.799592i \(-0.705049\pi\)
−0.600543 + 0.799592i \(0.705049\pi\)
\(702\) 0 0
\(703\) 31.3669 1.18303
\(704\) 3.40314 1.93782i 0.128261 0.0730344i
\(705\) 0 0
\(706\) 15.5862 + 13.1048i 0.586595 + 0.493206i
\(707\) 10.4519 0.393082
\(708\) 0 0
\(709\) 41.6760i 1.56517i −0.622541 0.782587i \(-0.713900\pi\)
0.622541 0.782587i \(-0.286100\pi\)
\(710\) −7.35296 35.0339i −0.275952 1.31480i
\(711\) 0 0
\(712\) 38.5414 + 22.4055i 1.44440 + 0.839681i
\(713\) −5.21898 −0.195452
\(714\) 0 0
\(715\) 4.45613 5.68522i 0.166650 0.212615i
\(716\) 39.5985 6.90110i 1.47986 0.257906i
\(717\) 0 0
\(718\) −9.40028 7.90371i −0.350815 0.294964i
\(719\) −21.2412 −0.792164 −0.396082 0.918215i \(-0.629630\pi\)
−0.396082 + 0.918215i \(0.629630\pi\)
\(720\) 0 0
\(721\) 4.15065 0.154578
\(722\) −25.8968 21.7739i −0.963780 0.810342i
\(723\) 0 0
\(724\) −7.23363 + 1.26065i −0.268836 + 0.0468519i
\(725\) 0.253497 + 1.03046i 0.00941465 + 0.0382704i
\(726\) 0 0
\(727\) 15.7303 0.583405 0.291703 0.956509i \(-0.405778\pi\)
0.291703 + 0.956509i \(0.405778\pi\)
\(728\) −10.7566 + 18.5032i −0.398665 + 0.685774i
\(729\) 0 0
\(730\) 28.8743 6.06019i 1.06869 0.224298i
\(731\) 9.86979i 0.365047i
\(732\) 0 0
\(733\) 11.7966 0.435718 0.217859 0.975980i \(-0.430093\pi\)
0.217859 + 0.975980i \(0.430093\pi\)
\(734\) 26.8491 + 22.5746i 0.991020 + 0.833245i
\(735\) 0 0
\(736\) 12.8468 34.7576i 0.473539 1.28118i
\(737\) −5.49152 −0.202283
\(738\) 0 0
\(739\) 36.7306 1.35116 0.675579 0.737288i \(-0.263894\pi\)
0.675579 + 0.737288i \(0.263894\pi\)
\(740\) −10.1190 + 18.8689i −0.371980 + 0.693633i
\(741\) 0 0
\(742\) −7.37257 + 8.76856i −0.270655 + 0.321904i
\(743\) 37.2346i 1.36600i −0.730416 0.683002i \(-0.760674\pi\)
0.730416 0.683002i \(-0.239326\pi\)
\(744\) 0 0
\(745\) −35.2200 27.6058i −1.29036 1.01140i
\(746\) −27.5838 23.1923i −1.00991 0.849132i
\(747\) 0 0
\(748\) 4.41833 0.770013i 0.161550 0.0281545i
\(749\) 9.20338 0.336284
\(750\) 0 0
\(751\) 35.3474i 1.28984i 0.764248 + 0.644922i \(0.223110\pi\)
−0.764248 + 0.644922i \(0.776890\pi\)
\(752\) 1.86815 + 5.19694i 0.0681246 + 0.189513i
\(753\) 0 0
\(754\) −1.51606 1.27469i −0.0552115 0.0464216i
\(755\) −12.6644 + 16.1574i −0.460904 + 0.588030i
\(756\) 0 0
\(757\) −23.6211 −0.858524 −0.429262 0.903180i \(-0.641226\pi\)
−0.429262 + 0.903180i \(0.641226\pi\)
\(758\) 26.7360 + 22.4795i 0.971097 + 0.816494i
\(759\) 0 0
\(760\) 38.4894 15.3474i 1.39616 0.556708i
\(761\) 29.4215i 1.06653i −0.845949 0.533264i \(-0.820965\pi\)
0.845949 0.533264i \(-0.179035\pi\)
\(762\) 0 0
\(763\) 20.0065i 0.724284i
\(764\) −0.143628 0.824135i −0.00519627 0.0298161i
\(765\) 0 0
\(766\) −1.27178 + 1.51259i −0.0459511 + 0.0546519i
\(767\) 54.5242i 1.96875i
\(768\) 0 0
\(769\) 10.4615 0.377253 0.188627 0.982049i \(-0.439596\pi\)
0.188627 + 0.982049i \(0.439596\pi\)
\(770\) 1.73719 0.364603i 0.0626038 0.0131394i
\(771\) 0 0
\(772\) 25.8235 4.50044i 0.929409 0.161975i
\(773\) 47.2231i 1.69850i 0.527993 + 0.849249i \(0.322945\pi\)
−0.527993 + 0.849249i \(0.677055\pi\)
\(774\) 0 0
\(775\) 3.86826 0.951606i 0.138952 0.0341827i
\(776\) −15.0038 8.72222i −0.538604 0.313109i
\(777\) 0 0
\(778\) −26.5840 22.3517i −0.953081 0.801346i
\(779\) 42.0957i 1.50824i
\(780\) 0 0
\(781\) 5.54143i 0.198288i
\(782\) 27.3105 32.4817i 0.976621 1.16154i
\(783\) 0 0
\(784\) 21.4000 7.69272i 0.764287 0.274740i
\(785\) −4.40423 3.45208i −0.157194 0.123210i
\(786\) 0 0
\(787\) 15.4485i 0.550681i 0.961347 + 0.275340i \(0.0887905\pi\)
−0.961347 + 0.275340i \(0.911209\pi\)
\(788\) −8.99822 + 1.56818i −0.320548 + 0.0558642i
\(789\) 0 0
\(790\) 18.6236 3.90875i 0.662597 0.139067i
\(791\) 5.54773 0.197255
\(792\) 0 0
\(793\) 50.2734i 1.78526i
\(794\) 31.7939 + 26.7322i 1.12832 + 0.948690i
\(795\) 0 0
\(796\) 25.9156 4.51648i 0.918553 0.160083i
\(797\) 41.5439i 1.47156i −0.677220 0.735781i \(-0.736815\pi\)
0.677220 0.735781i \(-0.263185\pi\)
\(798\) 0 0
\(799\) 6.32454i 0.223746i
\(800\) −3.18439 + 28.1044i −0.112585 + 0.993642i
\(801\) 0 0
\(802\) 13.6408 16.2237i 0.481674 0.572879i
\(803\) 4.56716 0.161172
\(804\) 0 0
\(805\) 10.3612 13.2190i 0.365185 0.465909i
\(806\) −4.78509 + 5.69114i −0.168548 + 0.200462i
\(807\) 0 0
\(808\) −12.9572 + 22.2887i −0.455833 + 0.784114i
\(809\) 19.3029i 0.678654i 0.940669 + 0.339327i \(0.110199\pi\)
−0.940669 + 0.339327i \(0.889801\pi\)
\(810\) 0 0
\(811\) 38.3252 1.34578 0.672890 0.739743i \(-0.265053\pi\)
0.672890 + 0.739743i \(0.265053\pi\)
\(812\) −0.0835655 0.479498i −0.00293257 0.0168271i
\(813\) 0 0
\(814\) −2.13300 + 2.53688i −0.0747615 + 0.0889176i
\(815\) −22.9735 + 29.3100i −0.804728 + 1.02669i
\(816\) 0 0
\(817\) 14.1159i 0.493852i
\(818\) 22.0651 + 18.5522i 0.771487 + 0.648663i
\(819\) 0 0
\(820\) 25.3228 + 13.5801i 0.884310 + 0.474236i
\(821\) 13.2266 0.461612 0.230806 0.973000i \(-0.425864\pi\)
0.230806 + 0.973000i \(0.425864\pi\)
\(822\) 0 0
\(823\) 28.2201 0.983689 0.491845 0.870683i \(-0.336323\pi\)
0.491845 + 0.870683i \(0.336323\pi\)
\(824\) −5.14557 + 8.85130i −0.179255 + 0.308350i
\(825\) 0 0
\(826\) −8.62245 + 10.2551i −0.300013 + 0.356821i
\(827\) 21.0109 0.730619 0.365309 0.930886i \(-0.380963\pi\)
0.365309 + 0.930886i \(0.380963\pi\)
\(828\) 0 0
\(829\) 37.3553i 1.29740i 0.761044 + 0.648701i \(0.224687\pi\)
−0.761044 + 0.648701i \(0.775313\pi\)
\(830\) −9.48639 45.1988i −0.329278 1.56887i
\(831\) 0 0
\(832\) −26.1234 45.8770i −0.905664 1.59050i
\(833\) 26.0433 0.902347
\(834\) 0 0
\(835\) 0.917749 1.17088i 0.0317600 0.0405200i
\(836\) 6.31914 1.10128i 0.218552 0.0380886i
\(837\) 0 0
\(838\) −7.32050 + 8.70664i −0.252883 + 0.300766i
\(839\) −43.2068 −1.49166 −0.745832 0.666134i \(-0.767948\pi\)
−0.745832 + 0.666134i \(0.767948\pi\)
\(840\) 0 0
\(841\) −28.9550 −0.998447
\(842\) 23.2916 27.7019i 0.802683 0.954670i
\(843\) 0 0
\(844\) −0.308022 1.76743i −0.0106025 0.0608373i
\(845\) −53.7626 42.1397i −1.84949 1.44965i
\(846\) 0 0
\(847\) −12.3384 −0.423954
\(848\) −9.55926 26.5925i −0.328266 0.913190i
\(849\) 0 0
\(850\) −14.3197 + 29.0548i −0.491162 + 0.996573i
\(851\) 31.3618i 1.07507i
\(852\) 0 0
\(853\) −29.4729 −1.00913 −0.504566 0.863373i \(-0.668348\pi\)
−0.504566 + 0.863373i \(0.668348\pi\)
\(854\) −7.95023 + 9.45561i −0.272051 + 0.323564i
\(855\) 0 0
\(856\) −11.4095 + 19.6263i −0.389968 + 0.670814i
\(857\) 38.3026 1.30839 0.654196 0.756325i \(-0.273007\pi\)
0.654196 + 0.756325i \(0.273007\pi\)
\(858\) 0 0
\(859\) 21.9526 0.749014 0.374507 0.927224i \(-0.377812\pi\)
0.374507 + 0.927224i \(0.377812\pi\)
\(860\) 8.49144 + 4.55377i 0.289556 + 0.155282i
\(861\) 0 0
\(862\) −3.43928 2.89173i −0.117142 0.0984927i
\(863\) 19.3390i 0.658306i 0.944277 + 0.329153i \(0.106763\pi\)
−0.944277 + 0.329153i \(0.893237\pi\)
\(864\) 0 0
\(865\) −9.80691 + 12.5118i −0.333445 + 0.425415i
\(866\) 19.8866 23.6522i 0.675775 0.803733i
\(867\) 0 0
\(868\) −1.79999 + 0.313697i −0.0610958 + 0.0106476i
\(869\) 2.94576 0.0999280
\(870\) 0 0
\(871\) 74.0299i 2.50841i
\(872\) 42.6641 + 24.8021i 1.44479 + 0.839907i
\(873\) 0 0
\(874\) 39.0597 46.4557i 1.32122 1.57139i
\(875\) −5.26934 + 11.6870i −0.178136 + 0.395094i
\(876\) 0 0
\(877\) −12.2495 −0.413637 −0.206818 0.978379i \(-0.566311\pi\)
−0.206818 + 0.978379i \(0.566311\pi\)
\(878\) 1.31087 1.55909i 0.0442398 0.0526166i
\(879\) 0 0
\(880\) −1.37608 + 4.15657i −0.0463875 + 0.140118i
\(881\) 10.6156i 0.357649i −0.983881 0.178825i \(-0.942771\pi\)
0.983881 0.178825i \(-0.0572294\pi\)
\(882\) 0 0
\(883\) 46.6874i 1.57115i −0.618764 0.785577i \(-0.712366\pi\)
0.618764 0.785577i \(-0.287634\pi\)
\(884\) −10.3804 59.5626i −0.349130 2.00331i
\(885\) 0 0
\(886\) −33.5272 28.1895i −1.12637 0.947044i
\(887\) 16.3552i 0.549153i −0.961565 0.274576i \(-0.911462\pi\)
0.961565 0.274576i \(-0.0885376\pi\)
\(888\) 0 0
\(889\) 16.1475 0.541569
\(890\) −48.7801 + 10.2380i −1.63511 + 0.343180i
\(891\) 0 0
\(892\) 3.28793 + 18.8661i 0.110088 + 0.631685i
\(893\) 9.04542i 0.302694i
\(894\) 0 0
\(895\) −27.7231 + 35.3696i −0.926681 + 1.18228i
\(896\) 2.34161 12.7599i 0.0782277 0.426277i
\(897\) 0 0
\(898\) 9.03912 10.7507i 0.301639 0.358755i
\(899\) 0.169093i 0.00563957i
\(900\) 0 0
\(901\) 32.3624i 1.07815i
\(902\) 3.40460 + 2.86257i 0.113361 + 0.0953132i
\(903\) 0 0
\(904\) −6.87755 + 11.8306i −0.228744 + 0.393480i
\(905\) 5.06430 6.46113i 0.168343 0.214775i
\(906\) 0 0
\(907\) 52.1267i 1.73084i −0.501049 0.865419i \(-0.667052\pi\)
0.501049 0.865419i \(-0.332948\pi\)
\(908\) −5.42470 31.1269i −0.180025 1.03298i
\(909\) 0 0
\(910\) −4.91514 23.4186i −0.162935 0.776320i
\(911\) 44.8923 1.48735 0.743674 0.668542i \(-0.233081\pi\)
0.743674 + 0.668542i \(0.233081\pi\)
\(912\) 0 0
\(913\) 7.14926i 0.236606i
\(914\) 19.7240 23.4587i 0.652410 0.775944i
\(915\) 0 0
\(916\) 30.8049 5.36859i 1.01782 0.177383i
\(917\) 14.3590i 0.474175i
\(918\) 0 0
\(919\) 32.5801i 1.07472i 0.843354 + 0.537359i \(0.180578\pi\)
−0.843354 + 0.537359i \(0.819422\pi\)
\(920\) 15.3449 + 38.4831i 0.505906 + 1.26875i
\(921\) 0 0
\(922\) 3.86442 + 3.24919i 0.127268 + 0.107006i
\(923\) −74.7028 −2.45887
\(924\) 0 0
\(925\) −5.71837 23.2451i −0.188019 0.764294i
\(926\) 27.6126 + 23.2165i 0.907406 + 0.762943i
\(927\) 0 0
\(928\) 1.12613 + 0.416232i 0.0369671 + 0.0136635i
\(929\) 40.9245i 1.34269i 0.741146 + 0.671344i \(0.234283\pi\)
−0.741146 + 0.671344i \(0.765717\pi\)
\(930\) 0 0
\(931\) 37.2474 1.22073
\(932\) 1.95247 + 11.2033i 0.0639553 + 0.366975i
\(933\) 0 0
\(934\) −22.1174 18.5962i −0.723703 0.608486i
\(935\) −3.09330 + 3.94648i −0.101162 + 0.129064i
\(936\) 0 0
\(937\) 48.3115i 1.57827i 0.614220 + 0.789135i \(0.289471\pi\)
−0.614220 + 0.789135i \(0.710529\pi\)
\(938\) −11.7071 + 13.9238i −0.382250 + 0.454629i
\(939\) 0 0
\(940\) −5.44130 2.91805i −0.177476 0.0951763i
\(941\) 24.8258 0.809298 0.404649 0.914472i \(-0.367394\pi\)
0.404649 + 0.914472i \(0.367394\pi\)
\(942\) 0 0
\(943\) 42.0888 1.37060
\(944\) −11.1799 31.1008i −0.363873 1.01224i
\(945\) 0 0
\(946\) 1.14166 + 0.959900i 0.0371185 + 0.0312090i
\(947\) −26.7823 −0.870307 −0.435153 0.900356i \(-0.643306\pi\)
−0.435153 + 0.900356i \(0.643306\pi\)
\(948\) 0 0
\(949\) 61.5689i 1.99861i
\(950\) −20.4802 + 41.5545i −0.664466 + 1.34821i
\(951\) 0 0
\(952\) 7.46684 12.8443i 0.242002 0.416286i
\(953\) −3.99329 −0.129355 −0.0646777 0.997906i \(-0.520602\pi\)
−0.0646777 + 0.997906i \(0.520602\pi\)
\(954\) 0 0
\(955\) 0.736123 + 0.576981i 0.0238204 + 0.0186707i
\(956\) −10.1920 58.4819i −0.329634 1.89144i
\(957\) 0 0
\(958\) 20.1948 + 16.9797i 0.652463 + 0.548588i
\(959\) 2.87321 0.0927810
\(960\) 0 0
\(961\) 30.3652 0.979524
\(962\) 34.1991 + 28.7545i 1.10262 + 0.927081i
\(963\) 0 0
\(964\) −1.27064 7.29095i −0.0409247 0.234826i
\(965\) −18.0792 + 23.0657i −0.581989 + 0.742513i
\(966\) 0 0
\(967\) −56.6352 −1.82127 −0.910633 0.413216i \(-0.864405\pi\)
−0.910633 + 0.413216i \(0.864405\pi\)
\(968\) 15.2960 26.3119i 0.491633 0.845696i
\(969\) 0 0
\(970\) 18.9895 3.98556i 0.609718 0.127969i
\(971\) 0.738503i 0.0236997i 0.999930 + 0.0118499i \(0.00377201\pi\)
−0.999930 + 0.0118499i \(0.996228\pi\)
\(972\) 0 0
\(973\) −3.28551 −0.105329
\(974\) −13.3036 11.1856i −0.426276 0.358411i
\(975\) 0 0
\(976\) −10.3083 28.6761i −0.329959 0.917900i
\(977\) −61.6990 −1.97393 −0.986964 0.160943i \(-0.948547\pi\)
−0.986964 + 0.160943i \(0.948547\pi\)
\(978\) 0 0
\(979\) −7.71572 −0.246596
\(980\) −12.0160 + 22.4063i −0.383837 + 0.715742i
\(981\) 0 0
\(982\) −11.5483 + 13.7349i −0.368520 + 0.438299i
\(983\) 39.8608i 1.27136i −0.771952 0.635681i \(-0.780719\pi\)
0.771952 0.635681i \(-0.219281\pi\)
\(984\) 0 0
\(985\) 6.29970 8.03727i 0.200725 0.256089i
\(986\) 1.05240 + 0.884849i 0.0335151 + 0.0281793i
\(987\) 0 0
\(988\) −14.8461 85.1870i −0.472318 2.71016i
\(989\) 14.1136 0.448785
\(990\) 0 0
\(991\) 56.9673i 1.80963i −0.425808 0.904814i \(-0.640010\pi\)
0.425808 0.904814i \(-0.359990\pi\)
\(992\) 1.56250 4.22740i 0.0496093 0.134220i
\(993\) 0 0
\(994\) −14.0504 11.8135i −0.445651 0.374702i
\(995\) −18.1436 + 23.1480i −0.575191 + 0.733839i
\(996\) 0 0
\(997\) −20.2875 −0.642512 −0.321256 0.946992i \(-0.604105\pi\)
−0.321256 + 0.946992i \(0.604105\pi\)
\(998\) 18.1553 + 15.2649i 0.574695 + 0.483201i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.m.c.539.9 48
3.2 odd 2 inner 1080.2.m.c.539.40 yes 48
4.3 odd 2 4320.2.m.c.2159.10 48
5.4 even 2 inner 1080.2.m.c.539.39 yes 48
8.3 odd 2 inner 1080.2.m.c.539.12 yes 48
8.5 even 2 4320.2.m.c.2159.39 48
12.11 even 2 4320.2.m.c.2159.40 48
15.14 odd 2 inner 1080.2.m.c.539.10 yes 48
20.19 odd 2 4320.2.m.c.2159.11 48
24.5 odd 2 4320.2.m.c.2159.9 48
24.11 even 2 inner 1080.2.m.c.539.37 yes 48
40.19 odd 2 inner 1080.2.m.c.539.38 yes 48
40.29 even 2 4320.2.m.c.2159.38 48
60.59 even 2 4320.2.m.c.2159.37 48
120.29 odd 2 4320.2.m.c.2159.12 48
120.59 even 2 inner 1080.2.m.c.539.11 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.m.c.539.9 48 1.1 even 1 trivial
1080.2.m.c.539.10 yes 48 15.14 odd 2 inner
1080.2.m.c.539.11 yes 48 120.59 even 2 inner
1080.2.m.c.539.12 yes 48 8.3 odd 2 inner
1080.2.m.c.539.37 yes 48 24.11 even 2 inner
1080.2.m.c.539.38 yes 48 40.19 odd 2 inner
1080.2.m.c.539.39 yes 48 5.4 even 2 inner
1080.2.m.c.539.40 yes 48 3.2 odd 2 inner
4320.2.m.c.2159.9 48 24.5 odd 2
4320.2.m.c.2159.10 48 4.3 odd 2
4320.2.m.c.2159.11 48 20.19 odd 2
4320.2.m.c.2159.12 48 120.29 odd 2
4320.2.m.c.2159.37 48 60.59 even 2
4320.2.m.c.2159.38 48 40.29 even 2
4320.2.m.c.2159.39 48 8.5 even 2
4320.2.m.c.2159.40 48 12.11 even 2