Properties

Label 1080.2.q.d.361.3
Level $1080$
Weight $2$
Character 1080.361
Analytic conductor $8.624$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(361,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Root \(-1.62241 + 0.606458i\) of defining polynomial
Character \(\chi\) \(=\) 1080.361
Dual form 1080.2.q.d.721.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{5} +(2.62241 + 4.54214i) q^{7} +(1.33641 + 2.31473i) q^{11} +(-1.90841 + 3.30545i) q^{13} -3.52884 q^{17} -4.67282 q^{19} +(-2.47842 + 4.29275i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-0.928007 - 1.60735i) q^{29} +(4.33641 - 7.51089i) q^{31} +5.24482 q^{35} -2.67282 q^{37} +(-1.83641 + 3.18076i) q^{41} +(-1.76442 - 3.05606i) q^{43} +(4.63164 + 8.02224i) q^{47} +(-10.2541 + 17.7605i) q^{49} +2.85601 q^{53} +2.67282 q^{55} +(2.10083 - 3.63875i) q^{59} +(3.98040 + 6.89425i) q^{61} +(1.90841 + 3.30545i) q^{65} +(0.429983 - 0.744753i) q^{67} +15.1625 q^{71} +6.28797 q^{73} +(-7.00924 + 12.1404i) q^{77} +(-2.81681 - 4.87886i) q^{79} +(-1.94958 - 3.37678i) q^{83} +(-1.76442 + 3.05606i) q^{85} +11.0000 q^{89} -20.0185 q^{91} +(-2.33641 + 4.04678i) q^{95} +(1.91764 + 3.32145i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 5 q^{7} - 2 q^{11} - 4 q^{17} - 8 q^{19} - 7 q^{23} - 3 q^{25} - 7 q^{29} + 16 q^{31} + 10 q^{35} + 4 q^{37} - q^{41} - 2 q^{43} - 13 q^{47} - 10 q^{49} + 20 q^{53} - 4 q^{55} - 6 q^{59}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0 0
\(7\) 2.62241 + 4.54214i 0.991177 + 1.71677i 0.610374 + 0.792113i \(0.291019\pi\)
0.380803 + 0.924656i \(0.375648\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.33641 + 2.31473i 0.402943 + 0.697918i 0.994080 0.108653i \(-0.0346538\pi\)
−0.591136 + 0.806572i \(0.701321\pi\)
\(12\) 0 0
\(13\) −1.90841 + 3.30545i −0.529296 + 0.916768i 0.470120 + 0.882603i \(0.344211\pi\)
−0.999416 + 0.0341656i \(0.989123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.52884 −0.855869 −0.427934 0.903810i \(-0.640759\pi\)
−0.427934 + 0.903810i \(0.640759\pi\)
\(18\) 0 0
\(19\) −4.67282 −1.07202 −0.536010 0.844212i \(-0.680069\pi\)
−0.536010 + 0.844212i \(0.680069\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.47842 + 4.29275i −0.516787 + 0.895101i 0.483023 + 0.875608i \(0.339539\pi\)
−0.999810 + 0.0194933i \(0.993795\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.928007 1.60735i −0.172327 0.298478i 0.766906 0.641759i \(-0.221795\pi\)
−0.939233 + 0.343281i \(0.888462\pi\)
\(30\) 0 0
\(31\) 4.33641 7.51089i 0.778843 1.34899i −0.153767 0.988107i \(-0.549140\pi\)
0.932609 0.360888i \(-0.117526\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.24482 0.886536
\(36\) 0 0
\(37\) −2.67282 −0.439410 −0.219705 0.975566i \(-0.570509\pi\)
−0.219705 + 0.975566i \(0.570509\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.83641 + 3.18076i −0.286799 + 0.496751i −0.973044 0.230620i \(-0.925925\pi\)
0.686245 + 0.727371i \(0.259258\pi\)
\(42\) 0 0
\(43\) −1.76442 3.05606i −0.269071 0.466045i 0.699551 0.714583i \(-0.253383\pi\)
−0.968622 + 0.248538i \(0.920050\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.63164 + 8.02224i 0.675595 + 1.17016i 0.976295 + 0.216446i \(0.0694464\pi\)
−0.300700 + 0.953719i \(0.597220\pi\)
\(48\) 0 0
\(49\) −10.2541 + 17.7605i −1.46486 + 2.53722i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.85601 0.392304 0.196152 0.980574i \(-0.437155\pi\)
0.196152 + 0.980574i \(0.437155\pi\)
\(54\) 0 0
\(55\) 2.67282 0.360403
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.10083 3.63875i 0.273505 0.473724i −0.696252 0.717797i \(-0.745150\pi\)
0.969757 + 0.244073i \(0.0784837\pi\)
\(60\) 0 0
\(61\) 3.98040 + 6.89425i 0.509638 + 0.882719i 0.999938 + 0.0111647i \(0.00355392\pi\)
−0.490300 + 0.871554i \(0.663113\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.90841 + 3.30545i 0.236709 + 0.409991i
\(66\) 0 0
\(67\) 0.429983 0.744753i 0.0525308 0.0909860i −0.838564 0.544803i \(-0.816605\pi\)
0.891095 + 0.453817i \(0.149938\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.1625 1.79945 0.899726 0.436454i \(-0.143766\pi\)
0.899726 + 0.436454i \(0.143766\pi\)
\(72\) 0 0
\(73\) 6.28797 0.735952 0.367976 0.929835i \(-0.380051\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.00924 + 12.1404i −0.798777 + 1.38352i
\(78\) 0 0
\(79\) −2.81681 4.87886i −0.316916 0.548914i 0.662927 0.748684i \(-0.269314\pi\)
−0.979843 + 0.199770i \(0.935981\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.94958 3.37678i −0.213995 0.370650i 0.738966 0.673742i \(-0.235314\pi\)
−0.952961 + 0.303093i \(0.901981\pi\)
\(84\) 0 0
\(85\) −1.76442 + 3.05606i −0.191378 + 0.331477i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 11.0000 1.16600 0.582999 0.812473i \(-0.301879\pi\)
0.582999 + 0.812473i \(0.301879\pi\)
\(90\) 0 0
\(91\) −20.0185 −2.09851
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.33641 + 4.04678i −0.239711 + 0.415191i
\(96\) 0 0
\(97\) 1.91764 + 3.32145i 0.194707 + 0.337242i 0.946804 0.321810i \(-0.104291\pi\)
−0.752097 + 0.659052i \(0.770958\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.24482 9.08429i −0.521879 0.903921i −0.999676 0.0254505i \(-0.991898\pi\)
0.477797 0.878470i \(-0.341435\pi\)
\(102\) 0 0
\(103\) −2.05239 + 3.55485i −0.202228 + 0.350269i −0.949246 0.314534i \(-0.898152\pi\)
0.747018 + 0.664804i \(0.231485\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.7345 1.90780 0.953901 0.300122i \(-0.0970275\pi\)
0.953901 + 0.300122i \(0.0970275\pi\)
\(108\) 0 0
\(109\) −9.50811 −0.910711 −0.455356 0.890310i \(-0.650488\pi\)
−0.455356 + 0.890310i \(0.650488\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.71598 + 8.16832i −0.443642 + 0.768411i −0.997957 0.0638967i \(-0.979647\pi\)
0.554314 + 0.832307i \(0.312981\pi\)
\(114\) 0 0
\(115\) 2.47842 + 4.29275i 0.231114 + 0.400301i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.25405 16.0285i −0.848318 1.46933i
\(120\) 0 0
\(121\) 1.92801 3.33941i 0.175273 0.303582i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 18.6089 1.65128 0.825638 0.564200i \(-0.190815\pi\)
0.825638 + 0.564200i \(0.190815\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.67282 + 13.2897i −0.670378 + 1.16113i 0.307419 + 0.951574i \(0.400535\pi\)
−0.977797 + 0.209554i \(0.932799\pi\)
\(132\) 0 0
\(133\) −12.2541 21.2246i −1.06256 1.84041i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.244817 + 0.424035i 0.0209161 + 0.0362278i 0.876294 0.481777i \(-0.160008\pi\)
−0.855378 + 0.518005i \(0.826675\pi\)
\(138\) 0 0
\(139\) 5.34565 9.25893i 0.453412 0.785332i −0.545183 0.838317i \(-0.683540\pi\)
0.998595 + 0.0529843i \(0.0168733\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −10.2017 −0.853106
\(144\) 0 0
\(145\) −1.85601 −0.154134
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.93724 3.35540i 0.158705 0.274885i −0.775697 0.631106i \(-0.782601\pi\)
0.934402 + 0.356220i \(0.115935\pi\)
\(150\) 0 0
\(151\) 7.33641 + 12.7070i 0.597029 + 1.03408i 0.993257 + 0.115932i \(0.0369855\pi\)
−0.396228 + 0.918152i \(0.629681\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.33641 7.51089i −0.348309 0.603289i
\(156\) 0 0
\(157\) 6.59046 11.4150i 0.525976 0.911018i −0.473566 0.880758i \(-0.657033\pi\)
0.999542 0.0302592i \(-0.00963329\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −25.9977 −2.04891
\(162\) 0 0
\(163\) 20.8745 1.63502 0.817508 0.575917i \(-0.195355\pi\)
0.817508 + 0.575917i \(0.195355\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.00197644 0.00342329i 0.000152941 0.000264902i −0.865949 0.500132i \(-0.833285\pi\)
0.866102 + 0.499868i \(0.166618\pi\)
\(168\) 0 0
\(169\) −0.784020 1.35796i −0.0603092 0.104459i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.3064 17.8513i −0.783584 1.35721i −0.929841 0.367961i \(-0.880056\pi\)
0.146257 0.989247i \(-0.453277\pi\)
\(174\) 0 0
\(175\) 2.62241 4.54214i 0.198235 0.343354i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.10478 −0.306806 −0.153403 0.988164i \(-0.549023\pi\)
−0.153403 + 0.988164i \(0.549023\pi\)
\(180\) 0 0
\(181\) −4.43196 −0.329425 −0.164712 0.986342i \(-0.552670\pi\)
−0.164712 + 0.986342i \(0.552670\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.33641 + 2.31473i −0.0982550 + 0.170183i
\(186\) 0 0
\(187\) −4.71598 8.16832i −0.344867 0.597326i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.58123 14.8631i −0.620916 1.07546i −0.989316 0.145790i \(-0.953427\pi\)
0.368400 0.929668i \(-0.379906\pi\)
\(192\) 0 0
\(193\) −2.94761 + 5.10541i −0.212173 + 0.367495i −0.952394 0.304868i \(-0.901388\pi\)
0.740221 + 0.672364i \(0.234721\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.8353 1.55570 0.777850 0.628450i \(-0.216310\pi\)
0.777850 + 0.628450i \(0.216310\pi\)
\(198\) 0 0
\(199\) −13.2488 −0.939180 −0.469590 0.882885i \(-0.655598\pi\)
−0.469590 + 0.882885i \(0.655598\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.86723 8.43028i 0.341612 0.591690i
\(204\) 0 0
\(205\) 1.83641 + 3.18076i 0.128261 + 0.222154i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.24482 10.8163i −0.431963 0.748182i
\(210\) 0 0
\(211\) −0.192425 + 0.333290i −0.0132471 + 0.0229447i −0.872573 0.488484i \(-0.837550\pi\)
0.859326 + 0.511428i \(0.170883\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.52884 −0.240665
\(216\) 0 0
\(217\) 45.4874 3.08788
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 6.73445 11.6644i 0.453008 0.784633i
\(222\) 0 0
\(223\) 5.71400 + 9.89694i 0.382638 + 0.662748i 0.991438 0.130575i \(-0.0416823\pi\)
−0.608800 + 0.793323i \(0.708349\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.97003 + 15.5366i 0.595362 + 1.03120i 0.993496 + 0.113870i \(0.0363247\pi\)
−0.398134 + 0.917327i \(0.630342\pi\)
\(228\) 0 0
\(229\) 2.45684 4.25538i 0.162353 0.281203i −0.773359 0.633968i \(-0.781425\pi\)
0.935712 + 0.352765i \(0.114758\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.59442 −0.300990 −0.150495 0.988611i \(-0.548087\pi\)
−0.150495 + 0.988611i \(0.548087\pi\)
\(234\) 0 0
\(235\) 9.26329 0.604270
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 13.1193 22.7233i 0.848617 1.46985i −0.0338255 0.999428i \(-0.510769\pi\)
0.882443 0.470420i \(-0.155898\pi\)
\(240\) 0 0
\(241\) 0.447608 + 0.775280i 0.0288330 + 0.0499402i 0.880082 0.474822i \(-0.157488\pi\)
−0.851249 + 0.524762i \(0.824154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.2541 + 17.7605i 0.655107 + 1.13468i
\(246\) 0 0
\(247\) 8.91764 15.4458i 0.567416 0.982793i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.10478 −0.132853 −0.0664264 0.997791i \(-0.521160\pi\)
−0.0664264 + 0.997791i \(0.521160\pi\)
\(252\) 0 0
\(253\) −13.2488 −0.832943
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.34565 + 4.06278i −0.146317 + 0.253429i −0.929864 0.367904i \(-0.880075\pi\)
0.783546 + 0.621333i \(0.213409\pi\)
\(258\) 0 0
\(259\) −7.00924 12.1404i −0.435533 0.754365i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.90841 + 8.50161i 0.302665 + 0.524232i 0.976739 0.214433i \(-0.0687903\pi\)
−0.674074 + 0.738664i \(0.735457\pi\)
\(264\) 0 0
\(265\) 1.42801 2.47338i 0.0877218 0.151939i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.4504 −1.24688 −0.623442 0.781869i \(-0.714266\pi\)
−0.623442 + 0.781869i \(0.714266\pi\)
\(270\) 0 0
\(271\) −5.03920 −0.306110 −0.153055 0.988218i \(-0.548911\pi\)
−0.153055 + 0.988218i \(0.548911\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.33641 2.31473i 0.0805887 0.139584i
\(276\) 0 0
\(277\) −0.523554 0.906823i −0.0314573 0.0544857i 0.849868 0.526995i \(-0.176682\pi\)
−0.881325 + 0.472510i \(0.843348\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0.879568 + 1.52346i 0.0524706 + 0.0908818i 0.891068 0.453870i \(-0.149957\pi\)
−0.838597 + 0.544752i \(0.816624\pi\)
\(282\) 0 0
\(283\) −1.43922 + 2.49280i −0.0855527 + 0.148182i −0.905627 0.424076i \(-0.860599\pi\)
0.820074 + 0.572258i \(0.193932\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −19.2633 −1.13708
\(288\) 0 0
\(289\) −4.54731 −0.267489
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.4557 21.5739i 0.727671 1.26036i −0.230195 0.973145i \(-0.573936\pi\)
0.957865 0.287218i \(-0.0927303\pi\)
\(294\) 0 0
\(295\) −2.10083 3.63875i −0.122315 0.211856i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.45967 16.3846i −0.547067 0.947547i
\(300\) 0 0
\(301\) 9.25405 16.0285i 0.533395 0.923867i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 7.96080 0.455834
\(306\) 0 0
\(307\) −1.32322 −0.0755203 −0.0377602 0.999287i \(-0.512022\pi\)
−0.0377602 + 0.999287i \(0.512022\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2.47645 4.28933i 0.140426 0.243226i −0.787231 0.616658i \(-0.788486\pi\)
0.927657 + 0.373433i \(0.121819\pi\)
\(312\) 0 0
\(313\) −4.80757 8.32696i −0.271740 0.470668i 0.697567 0.716519i \(-0.254266\pi\)
−0.969308 + 0.245851i \(0.920932\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.15322 10.6577i −0.345599 0.598596i 0.639863 0.768489i \(-0.278991\pi\)
−0.985462 + 0.169893i \(0.945658\pi\)
\(318\) 0 0
\(319\) 2.48040 4.29618i 0.138876 0.240540i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.4896 0.917508
\(324\) 0 0
\(325\) 3.81681 0.211719
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.2921 + 42.0752i −1.33927 + 2.31968i
\(330\) 0 0
\(331\) −0.773654 1.34001i −0.0425239 0.0736535i 0.843980 0.536374i \(-0.180207\pi\)
−0.886504 + 0.462721i \(0.846873\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −0.429983 0.744753i −0.0234925 0.0406902i
\(336\) 0 0
\(337\) −16.1585 + 27.9874i −0.880210 + 1.52457i −0.0291025 + 0.999576i \(0.509265\pi\)
−0.851107 + 0.524992i \(0.824068\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 23.1809 1.25532
\(342\) 0 0
\(343\) −70.8475 −3.82541
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.5420 + 21.7234i −0.673291 + 1.16617i 0.303674 + 0.952776i \(0.401787\pi\)
−0.976965 + 0.213399i \(0.931547\pi\)
\(348\) 0 0
\(349\) −10.3745 17.9691i −0.555333 0.961866i −0.997878 0.0651190i \(-0.979257\pi\)
0.442544 0.896747i \(-0.354076\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.05767 15.6884i −0.482091 0.835007i 0.517697 0.855564i \(-0.326789\pi\)
−0.999789 + 0.0205571i \(0.993456\pi\)
\(354\) 0 0
\(355\) 7.58123 13.1311i 0.402370 0.696925i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.3720 −1.33908 −0.669542 0.742774i \(-0.733510\pi\)
−0.669542 + 0.742774i \(0.733510\pi\)
\(360\) 0 0
\(361\) 2.83528 0.149225
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3.14399 5.44554i 0.164564 0.285033i
\(366\) 0 0
\(367\) −3.09159 5.35480i −0.161380 0.279518i 0.773984 0.633205i \(-0.218261\pi\)
−0.935364 + 0.353687i \(0.884928\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.48963 + 12.9724i 0.388842 + 0.673495i
\(372\) 0 0
\(373\) 8.40727 14.5618i 0.435312 0.753983i −0.562009 0.827131i \(-0.689971\pi\)
0.997321 + 0.0731484i \(0.0233047\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.08405 0.364847
\(378\) 0 0
\(379\) 22.0000 1.13006 0.565032 0.825069i \(-0.308864\pi\)
0.565032 + 0.825069i \(0.308864\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.39804 + 5.88558i −0.173632 + 0.300739i −0.939687 0.342036i \(-0.888884\pi\)
0.766055 + 0.642775i \(0.222217\pi\)
\(384\) 0 0
\(385\) 7.00924 + 12.1404i 0.357224 + 0.618730i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.30757 7.46094i −0.218403 0.378285i 0.735917 0.677072i \(-0.236751\pi\)
−0.954320 + 0.298787i \(0.903418\pi\)
\(390\) 0 0
\(391\) 8.74595 15.1484i 0.442302 0.766089i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.63362 −0.283458
\(396\) 0 0
\(397\) 22.4033 1.12439 0.562195 0.827005i \(-0.309957\pi\)
0.562195 + 0.827005i \(0.309957\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 6.95684 12.0496i 0.347408 0.601729i −0.638380 0.769721i \(-0.720395\pi\)
0.985788 + 0.167993i \(0.0537285\pi\)
\(402\) 0 0
\(403\) 16.5513 + 28.6676i 0.824477 + 1.42804i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −3.57199 6.18687i −0.177057 0.306672i
\(408\) 0 0
\(409\) −15.3064 + 26.5115i −0.756855 + 1.31091i 0.187592 + 0.982247i \(0.439932\pi\)
−0.944447 + 0.328664i \(0.893402\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 22.0369 1.08437
\(414\) 0 0
\(415\) −3.89917 −0.191403
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.86525 + 11.8910i −0.335389 + 0.580911i −0.983560 0.180584i \(-0.942201\pi\)
0.648170 + 0.761496i \(0.275535\pi\)
\(420\) 0 0
\(421\) −7.96080 13.7885i −0.387985 0.672011i 0.604193 0.796838i \(-0.293496\pi\)
−0.992178 + 0.124827i \(0.960162\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.76442 + 3.05606i 0.0855869 + 0.148241i
\(426\) 0 0
\(427\) −20.8765 + 36.1591i −1.01028 + 1.74986i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 25.2672 1.21708 0.608540 0.793523i \(-0.291755\pi\)
0.608540 + 0.793523i \(0.291755\pi\)
\(432\) 0 0
\(433\) 9.24086 0.444088 0.222044 0.975037i \(-0.428727\pi\)
0.222044 + 0.975037i \(0.428727\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.5812 20.0593i 0.554005 0.959565i
\(438\) 0 0
\(439\) 8.71598 + 15.0965i 0.415991 + 0.720518i 0.995532 0.0944256i \(-0.0301014\pi\)
−0.579541 + 0.814943i \(0.696768\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.81483 3.14338i −0.0862254 0.149347i 0.819687 0.572811i \(-0.194147\pi\)
−0.905913 + 0.423464i \(0.860814\pi\)
\(444\) 0 0
\(445\) 5.50000 9.52628i 0.260725 0.451589i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 39.6785 1.87254 0.936271 0.351278i \(-0.114253\pi\)
0.936271 + 0.351278i \(0.114253\pi\)
\(450\) 0 0
\(451\) −9.81681 −0.462256
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.0092 + 17.3365i −0.469240 + 0.812748i
\(456\) 0 0
\(457\) −2.84678 4.93076i −0.133167 0.230651i 0.791729 0.610873i \(-0.209181\pi\)
−0.924896 + 0.380221i \(0.875848\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.65850 + 14.9970i 0.403267 + 0.698479i 0.994118 0.108302i \(-0.0345413\pi\)
−0.590851 + 0.806780i \(0.701208\pi\)
\(462\) 0 0
\(463\) −12.8837 + 22.3153i −0.598757 + 1.03708i 0.394248 + 0.919004i \(0.371005\pi\)
−0.993005 + 0.118074i \(0.962328\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.04711 0.0484544 0.0242272 0.999706i \(-0.492287\pi\)
0.0242272 + 0.999706i \(0.492287\pi\)
\(468\) 0 0
\(469\) 4.51037 0.208269
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.71598 8.16832i 0.216841 0.375580i
\(474\) 0 0
\(475\) 2.33641 + 4.04678i 0.107202 + 0.185679i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.2880 + 19.5513i 0.515761 + 0.893324i 0.999833 + 0.0182955i \(0.00582395\pi\)
−0.484072 + 0.875028i \(0.660843\pi\)
\(480\) 0 0
\(481\) 5.10083 8.83490i 0.232578 0.402837i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.83528 0.174151
\(486\) 0 0
\(487\) 0.923855 0.0418638 0.0209319 0.999781i \(-0.493337\pi\)
0.0209319 + 0.999781i \(0.493337\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.04316 7.00295i 0.182465 0.316039i −0.760254 0.649626i \(-0.774926\pi\)
0.942719 + 0.333587i \(0.108259\pi\)
\(492\) 0 0
\(493\) 3.27478 + 5.67209i 0.147489 + 0.255458i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 39.7622 + 68.8701i 1.78358 + 3.08925i
\(498\) 0 0
\(499\) 6.34169 10.9841i 0.283893 0.491718i −0.688447 0.725287i \(-0.741707\pi\)
0.972340 + 0.233569i \(0.0750405\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.93837 −0.220191 −0.110096 0.993921i \(-0.535116\pi\)
−0.110096 + 0.993921i \(0.535116\pi\)
\(504\) 0 0
\(505\) −10.4896 −0.466783
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.60478 13.1719i 0.337076 0.583833i −0.646805 0.762655i \(-0.723895\pi\)
0.983881 + 0.178822i \(0.0572287\pi\)
\(510\) 0 0
\(511\) 16.4896 + 28.5609i 0.729458 + 1.26346i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.05239 + 3.55485i 0.0904392 + 0.156645i
\(516\) 0 0
\(517\) −12.3796 + 21.4420i −0.544453 + 0.943020i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −22.1809 −0.971764 −0.485882 0.874024i \(-0.661502\pi\)
−0.485882 + 0.874024i \(0.661502\pi\)
\(522\) 0 0
\(523\) −9.46495 −0.413873 −0.206937 0.978354i \(-0.566349\pi\)
−0.206937 + 0.978354i \(0.566349\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.3025 + 26.5047i −0.666587 + 1.15456i
\(528\) 0 0
\(529\) −0.785151 1.35992i −0.0341370 0.0591270i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7.00924 12.1404i −0.303604 0.525857i
\(534\) 0 0
\(535\) 9.86723 17.0905i 0.426597 0.738888i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −54.8145 −2.36103
\(540\) 0 0
\(541\) −2.42405 −0.104218 −0.0521091 0.998641i \(-0.516594\pi\)
−0.0521091 + 0.998641i \(0.516594\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.75405 + 8.23426i −0.203641 + 0.352717i
\(546\) 0 0
\(547\) 7.64088 + 13.2344i 0.326700 + 0.565862i 0.981855 0.189633i \(-0.0607299\pi\)
−0.655155 + 0.755495i \(0.727397\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.33641 + 7.51089i 0.184737 + 0.319974i
\(552\) 0 0
\(553\) 14.7737 25.5887i 0.628240 1.08814i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −38.9793 −1.65160 −0.825802 0.563960i \(-0.809277\pi\)
−0.825802 + 0.563960i \(0.809277\pi\)
\(558\) 0 0
\(559\) 13.4689 0.569674
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.30447 + 3.99146i −0.0971217 + 0.168220i −0.910492 0.413526i \(-0.864297\pi\)
0.813370 + 0.581746i \(0.197630\pi\)
\(564\) 0 0
\(565\) 4.71598 + 8.16832i 0.198403 + 0.343644i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.69129 + 9.85761i 0.238591 + 0.413253i 0.960310 0.278934i \(-0.0899810\pi\)
−0.721719 + 0.692186i \(0.756648\pi\)
\(570\) 0 0
\(571\) −22.6129 + 39.1667i −0.946320 + 1.63907i −0.193233 + 0.981153i \(0.561897\pi\)
−0.753087 + 0.657921i \(0.771436\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.95684 0.206715
\(576\) 0 0
\(577\) 5.14399 0.214147 0.107073 0.994251i \(-0.465852\pi\)
0.107073 + 0.994251i \(0.465852\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.2252 17.7106i 0.424213 0.734759i
\(582\) 0 0
\(583\) 3.81681 + 6.61091i 0.158076 + 0.273796i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −21.6409 37.4831i −0.893215 1.54709i −0.835999 0.548731i \(-0.815111\pi\)
−0.0572160 0.998362i \(-0.518222\pi\)
\(588\) 0 0
\(589\) −20.2633 + 35.0970i −0.834934 + 1.44615i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −33.3641 −1.37010 −0.685050 0.728496i \(-0.740220\pi\)
−0.685050 + 0.728496i \(0.740220\pi\)
\(594\) 0 0
\(595\) −18.5081 −0.758758
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.0577 34.7409i 0.819534 1.41948i −0.0864914 0.996253i \(-0.527566\pi\)
0.906026 0.423223i \(-0.139101\pi\)
\(600\) 0 0
\(601\) 2.98153 + 5.16416i 0.121619 + 0.210650i 0.920406 0.390963i \(-0.127858\pi\)
−0.798787 + 0.601614i \(0.794525\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.92801 3.33941i −0.0783846 0.135766i
\(606\) 0 0
\(607\) 7.57002 13.1117i 0.307258 0.532186i −0.670504 0.741906i \(-0.733922\pi\)
0.977761 + 0.209720i \(0.0672554\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −35.3562 −1.43036
\(612\) 0 0
\(613\) 28.5081 1.15143 0.575716 0.817650i \(-0.304723\pi\)
0.575716 + 0.817650i \(0.304723\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 8.71598 15.0965i 0.350892 0.607763i −0.635514 0.772089i \(-0.719212\pi\)
0.986406 + 0.164326i \(0.0525450\pi\)
\(618\) 0 0
\(619\) −14.8260 25.6795i −0.595909 1.03214i −0.993418 0.114546i \(-0.963459\pi\)
0.397509 0.917598i \(-0.369875\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 28.8465 + 49.9636i 1.15571 + 2.00175i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.43196 0.376077
\(630\) 0 0
\(631\) −40.1233 −1.59728 −0.798641 0.601808i \(-0.794447\pi\)
−0.798641 + 0.601808i \(0.794447\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.30447 16.1158i 0.369237 0.639536i
\(636\) 0 0
\(637\) −39.1378 67.7886i −1.55070 2.68588i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2.20674 + 3.82219i 0.0871612 + 0.150968i 0.906310 0.422613i \(-0.138887\pi\)
−0.819149 + 0.573581i \(0.805554\pi\)
\(642\) 0 0
\(643\) −9.91566 + 17.1744i −0.391036 + 0.677294i −0.992586 0.121541i \(-0.961216\pi\)
0.601551 + 0.798835i \(0.294550\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 42.6873 1.67821 0.839106 0.543967i \(-0.183079\pi\)
0.839106 + 0.543967i \(0.183079\pi\)
\(648\) 0 0
\(649\) 11.2303 0.440828
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.6821 + 32.3583i −0.731085 + 1.26628i 0.225334 + 0.974282i \(0.427653\pi\)
−0.956420 + 0.291996i \(0.905681\pi\)
\(654\) 0 0
\(655\) 7.67282 + 13.2897i 0.299802 + 0.519272i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.71598 4.70422i −0.105800 0.183250i 0.808265 0.588819i \(-0.200407\pi\)
−0.914065 + 0.405569i \(0.867074\pi\)
\(660\) 0 0
\(661\) −8.54731 + 14.8044i −0.332452 + 0.575823i −0.982992 0.183648i \(-0.941209\pi\)
0.650540 + 0.759472i \(0.274543\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.5081 −0.950384
\(666\) 0 0
\(667\) 9.19997 0.356224
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.6389 + 18.4271i −0.410710 + 0.711371i
\(672\) 0 0
\(673\) 19.7005 + 34.1223i 0.759400 + 1.31532i 0.943157 + 0.332347i \(0.107841\pi\)
−0.183757 + 0.982972i \(0.558826\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.13475 + 10.6257i 0.235778 + 0.408379i 0.959498 0.281714i \(-0.0909030\pi\)
−0.723721 + 0.690093i \(0.757570\pi\)
\(678\) 0 0
\(679\) −10.0577 + 17.4204i −0.385978 + 0.668534i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −11.8952 −0.455158 −0.227579 0.973760i \(-0.573081\pi\)
−0.227579 + 0.973760i \(0.573081\pi\)
\(684\) 0 0
\(685\) 0.489634 0.0187080
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.45043 + 9.44042i −0.207645 + 0.359651i
\(690\) 0 0
\(691\) 2.63362 + 4.56156i 0.100188 + 0.173530i 0.911762 0.410719i \(-0.134722\pi\)
−0.811574 + 0.584249i \(0.801389\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.34565 9.25893i −0.202772 0.351211i
\(696\) 0 0
\(697\) 6.48040 11.2244i 0.245463 0.425154i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.1131 0.835200 0.417600 0.908631i \(-0.362871\pi\)
0.417600 + 0.908631i \(0.362871\pi\)
\(702\) 0 0
\(703\) 12.4896 0.471055
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 27.5081 47.6454i 1.03455 1.79189i
\(708\) 0 0
\(709\) −8.70561 15.0786i −0.326946 0.566287i 0.654958 0.755665i \(-0.272686\pi\)
−0.981904 + 0.189378i \(0.939353\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.4949 + 37.2303i 0.804991 + 1.39429i
\(714\) 0 0
\(715\) −5.10083 + 8.83490i −0.190760 + 0.330406i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.4689 0.726068 0.363034 0.931776i \(-0.381741\pi\)
0.363034 + 0.931776i \(0.381741\pi\)
\(720\) 0 0
\(721\) −21.5288 −0.801776
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.928007 + 1.60735i −0.0344653 + 0.0596957i
\(726\) 0 0
\(727\) 11.9628 + 20.7201i 0.443675 + 0.768467i 0.997959 0.0638604i \(-0.0203412\pi\)
−0.554284 + 0.832328i \(0.687008\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.22635 + 10.7843i 0.230290 + 0.398873i
\(732\) 0 0
\(733\) 2.05767 3.56400i 0.0760019 0.131639i −0.825520 0.564373i \(-0.809118\pi\)
0.901522 + 0.432734i \(0.142451\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.29854 0.0846678
\(738\) 0 0
\(739\) 16.8145 0.618533 0.309267 0.950975i \(-0.399916\pi\)
0.309267 + 0.950975i \(0.399916\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.6801 23.6946i 0.501874 0.869271i −0.498124 0.867106i \(-0.665978\pi\)
0.999998 0.00216476i \(-0.000689064\pi\)
\(744\) 0 0
\(745\) −1.93724 3.35540i −0.0709751 0.122932i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 51.7518 + 89.6367i 1.89097 + 3.27525i
\(750\) 0 0
\(751\) −2.23558 + 3.87214i −0.0815775 + 0.141296i −0.903928 0.427685i \(-0.859329\pi\)
0.822350 + 0.568982i \(0.192662\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 14.6728 0.533999
\(756\) 0 0
\(757\) −17.7753 −0.646056 −0.323028 0.946389i \(-0.604701\pi\)
−0.323028 + 0.946389i \(0.604701\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −20.1952 + 34.9792i −0.732077 + 1.26799i 0.223917 + 0.974608i \(0.428116\pi\)
−0.955994 + 0.293387i \(0.905218\pi\)
\(762\) 0 0
\(763\) −24.9341 43.1872i −0.902676 1.56348i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.01847 + 13.8884i 0.289530 + 0.501481i
\(768\) 0 0
\(769\) 19.8496 34.3805i 0.715795 1.23979i −0.246857 0.969052i \(-0.579398\pi\)
0.962652 0.270741i \(-0.0872688\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −8.97927 −0.322962 −0.161481 0.986876i \(-0.551627\pi\)
−0.161481 + 0.986876i \(0.551627\pi\)
\(774\) 0 0
\(775\) −8.67282 −0.311537
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.58123 14.8631i 0.307454 0.532527i
\(780\) 0 0
\(781\) 20.2633 + 35.0970i 0.725077 + 1.25587i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6.59046 11.4150i −0.235224 0.407420i
\(786\) 0 0
\(787\) −17.9476 + 31.0862i −0.639763 + 1.10810i 0.345721 + 0.938337i \(0.387634\pi\)
−0.985485 + 0.169765i \(0.945699\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −49.4689 −1.75891
\(792\) 0 0
\(793\) −30.3849 −1.07900
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.9229 32.7755i 0.670284 1.16097i −0.307539 0.951535i \(-0.599505\pi\)
0.977823 0.209431i \(-0.0671612\pi\)
\(798\) 0 0
\(799\) −16.3443 28.3092i −0.578220 1.00151i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.40332 + 14.5550i 0.296547 + 0.513634i
\(804\) 0 0
\(805\) −12.9989 + 22.5147i −0.458150 + 0.793539i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27.8722 0.979935 0.489968 0.871741i \(-0.337009\pi\)
0.489968 + 0.871741i \(0.337009\pi\)
\(810\) 0 0
\(811\) 48.3249 1.69692 0.848459 0.529262i \(-0.177531\pi\)
0.848459 + 0.529262i \(0.177531\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 10.4372 18.0778i 0.365601 0.633239i
\(816\) 0 0
\(817\) 8.24482 + 14.2804i 0.288450 + 0.499609i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −14.8549 25.7294i −0.518439 0.897963i −0.999770 0.0214240i \(-0.993180\pi\)
0.481331 0.876539i \(-0.340153\pi\)
\(822\) 0 0
\(823\) 15.1028 26.1588i 0.526451 0.911839i −0.473074 0.881023i \(-0.656856\pi\)
0.999525 0.0308169i \(-0.00981088\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.14003 0.0396429 0.0198214 0.999804i \(-0.493690\pi\)
0.0198214 + 0.999804i \(0.493690\pi\)
\(828\) 0 0
\(829\) −17.9608 −0.623804 −0.311902 0.950114i \(-0.600966\pi\)
−0.311902 + 0.950114i \(0.600966\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 36.1849 62.6741i 1.25373 2.17153i
\(834\) 0 0
\(835\) −0.00197644 0.00342329i −6.83975e−5 0.000118468i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0.605914 + 1.04947i 0.0209185 + 0.0362318i 0.876295 0.481775i \(-0.160008\pi\)
−0.855377 + 0.518007i \(0.826674\pi\)
\(840\) 0 0
\(841\) 12.7776 22.1315i 0.440607 0.763154i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.56804 −0.0539422
\(846\) 0 0
\(847\) 20.2241 0.694908
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.62438 11.4738i 0.227081 0.393316i
\(852\) 0 0
\(853\) −17.6821 30.6262i −0.605422 1.04862i −0.991985 0.126359i \(-0.959671\pi\)
0.386562 0.922263i \(-0.373662\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.9061 36.2105i −0.714140 1.23693i −0.963290 0.268462i \(-0.913485\pi\)
0.249150 0.968465i \(-0.419849\pi\)
\(858\) 0 0
\(859\) 5.88767 10.1977i 0.200885 0.347943i −0.747929 0.663779i \(-0.768952\pi\)
0.948814 + 0.315836i \(0.102285\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.1193 0.889111 0.444556 0.895751i \(-0.353362\pi\)
0.444556 + 0.895751i \(0.353362\pi\)
\(864\) 0 0
\(865\) −20.6129 −0.700859
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 7.52884 13.0403i 0.255398 0.442363i
\(870\) 0 0
\(871\) 1.64116 + 2.84258i 0.0556087 + 0.0963171i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.62241 4.54214i −0.0886536 0.153553i
\(876\) 0 0
\(877\) 26.3117 45.5732i 0.888484 1.53890i 0.0468161 0.998904i \(-0.485093\pi\)
0.841668 0.539996i \(-0.181574\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.8089 0.431543 0.215771 0.976444i \(-0.430773\pi\)
0.215771 + 0.976444i \(0.430773\pi\)
\(882\) 0 0
\(883\) 21.7529 0.732044 0.366022 0.930606i \(-0.380719\pi\)
0.366022 + 0.930606i \(0.380719\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.5236 + 28.6196i −0.554807 + 0.960953i 0.443112 + 0.896466i \(0.353874\pi\)
−0.997919 + 0.0644870i \(0.979459\pi\)
\(888\) 0 0
\(889\) 48.8002 + 84.5245i 1.63671 + 2.83486i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21.6429 37.4865i −0.724251 1.25444i
\(894\) 0 0
\(895\) −2.05239 + 3.55485i −0.0686039 + 0.118825i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −16.0969 −0.536861
\(900\) 0 0
\(901\) −10.0784 −0.335760
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.21598 + 3.83819i −0.0736617 + 0.127586i
\(906\) 0 0
\(907\) −24.5924 42.5954i −0.816579 1.41436i −0.908189 0.418561i \(-0.862535\pi\)
0.0916102 0.995795i \(-0.470799\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −3.22635 5.58819i −0.106894 0.185145i 0.807617 0.589708i \(-0.200757\pi\)
−0.914510 + 0.404563i \(0.867424\pi\)
\(912\) 0 0
\(913\) 5.21090 9.02554i 0.172456 0.298702i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −80.4851 −2.65785
\(918\) 0 0
\(919\) −19.5552 −0.645067 −0.322533 0.946558i \(-0.604534\pi\)
−0.322533 + 0.946558i \(0.604534\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −28.9361 + 50.1188i −0.952444 + 1.64968i
\(924\) 0 0
\(925\) 1.33641 + 2.31473i 0.0439410 + 0.0761080i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −25.5865 44.3171i −0.839466 1.45400i −0.890342 0.455293i \(-0.849534\pi\)
0.0508754 0.998705i \(-0.483799\pi\)
\(930\) 0 0
\(931\) 47.9154 82.9919i 1.57036 2.71995i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −9.43196 −0.308458
\(936\) 0 0
\(937\) −37.6627 −1.23039 −0.615193 0.788377i \(-0.710922\pi\)
−0.615193 + 0.788377i \(0.710922\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.9073 + 22.3561i −0.420765 + 0.728787i −0.996014 0.0891915i \(-0.971572\pi\)
0.575249 + 0.817978i \(0.304905\pi\)
\(942\) 0 0
\(943\) −9.10281 15.7665i −0.296428 0.513429i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −0.919617 1.59282i −0.0298835 0.0517598i 0.850697 0.525657i \(-0.176180\pi\)
−0.880580 + 0.473897i \(0.842847\pi\)
\(948\) 0 0
\(949\) −12.0000 + 20.7846i −0.389536 + 0.674697i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −39.7674 −1.28819 −0.644097 0.764944i \(-0.722767\pi\)
−0.644097 + 0.764944i \(0.722767\pi\)
\(954\) 0 0
\(955\) −17.1625 −0.555364
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.28402 + 2.22399i −0.0414632 + 0.0718163i
\(960\) 0 0
\(961\) −22.1089 38.2938i −0.713191 1.23528i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.94761 + 5.10541i 0.0948869 + 0.164349i
\(966\) 0 0
\(967\) −4.85271 + 8.40514i −0.156053 + 0.270291i −0.933442 0.358729i \(-0.883210\pi\)
0.777389 + 0.629020i \(0.216544\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −13.8247 −0.443656 −0.221828 0.975086i \(-0.571202\pi\)
−0.221828 + 0.975086i \(0.571202\pi\)
\(972\) 0 0
\(973\) 56.0739 1.79765
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.9885 31.1570i 0.575503 0.996801i −0.420484 0.907300i \(-0.638140\pi\)
0.995987 0.0895006i \(-0.0285271\pi\)
\(978\) 0 0
\(979\) 14.7005 + 25.4621i 0.469831 + 0.813771i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.2745 19.5280i −0.359601 0.622847i 0.628293 0.777976i \(-0.283754\pi\)
−0.987894 + 0.155130i \(0.950420\pi\)
\(984\) 0 0
\(985\) 10.9176 18.9099i 0.347865 0.602520i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 17.4919 0.556210
\(990\) 0 0
\(991\) −13.8767 −0.440809 −0.220405 0.975409i \(-0.570738\pi\)
−0.220405 + 0.975409i \(0.570738\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.62438 + 11.4738i −0.210007 + 0.363743i
\(996\) 0 0
\(997\) −17.7529 30.7490i −0.562241 0.973829i −0.997301 0.0734279i \(-0.976606\pi\)
0.435060 0.900402i \(-0.356727\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.q.d.361.3 6
3.2 odd 2 360.2.q.d.121.3 6
4.3 odd 2 2160.2.q.j.1441.1 6
9.2 odd 6 360.2.q.d.241.3 yes 6
9.4 even 3 3240.2.a.q.1.1 3
9.5 odd 6 3240.2.a.r.1.1 3
9.7 even 3 inner 1080.2.q.d.721.3 6
12.11 even 2 720.2.q.j.481.1 6
36.7 odd 6 2160.2.q.j.721.1 6
36.11 even 6 720.2.q.j.241.1 6
36.23 even 6 6480.2.a.bx.1.3 3
36.31 odd 6 6480.2.a.bu.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.d.121.3 6 3.2 odd 2
360.2.q.d.241.3 yes 6 9.2 odd 6
720.2.q.j.241.1 6 36.11 even 6
720.2.q.j.481.1 6 12.11 even 2
1080.2.q.d.361.3 6 1.1 even 1 trivial
1080.2.q.d.721.3 6 9.7 even 3 inner
2160.2.q.j.721.1 6 36.7 odd 6
2160.2.q.j.1441.1 6 4.3 odd 2
3240.2.a.q.1.1 3 9.4 even 3
3240.2.a.r.1.1 3 9.5 odd 6
6480.2.a.bu.1.3 3 36.31 odd 6
6480.2.a.bx.1.3 3 36.23 even 6