Properties

Label 1080.2.q.e.721.2
Level $1080$
Weight $2$
Character 1080.721
Analytic conductor $8.624$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(361,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.2
Root \(1.07834i\) of defining polynomial
Character \(\chi\) \(=\) 1080.721
Dual form 1080.2.q.e.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{5} +(-0.433868 + 0.751481i) q^{7} +(-2.04334 + 3.53916i) q^{11} +(-0.606223 - 1.05001i) q^{13} -7.82214 q^{17} -4.51156 q^{19} +(1.43387 + 2.48353i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(3.14956 - 5.45520i) q^{29} +(1.26151 + 2.18500i) q^{31} -0.867736 q^{35} -0.523026 q^{37} +(-4.06063 - 7.03322i) q^{41} +(-1.91107 + 3.31007i) q^{43} +(-0.695381 + 1.20444i) q^{47} +(3.12352 + 5.41009i) q^{49} -13.9088 q^{53} -4.08667 q^{55} +(3.43711 + 5.95325i) q^{59} +(-4.54334 + 7.86929i) q^{61} +(0.606223 - 1.05001i) q^{65} +(-1.68965 - 2.92656i) q^{67} -3.21245 q^{71} +8.60970 q^{73} +(-1.77308 - 3.07106i) q^{77} +(-8.12126 + 14.0664i) q^{79} +(3.22142 - 5.57967i) q^{83} +(-3.91107 - 6.77417i) q^{85} +10.2079 q^{89} +1.05208 q^{91} +(-2.25578 - 3.90713i) q^{95} +(4.38503 - 7.59510i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} + q^{7} + q^{11} - 4 q^{13} - 10 q^{17} + 2 q^{19} + 7 q^{23} - 4 q^{25} + 7 q^{29} + 2 q^{31} + 2 q^{35} + 12 q^{37} + 12 q^{41} + 11 q^{43} + 7 q^{47} - 3 q^{49} - 24 q^{53} + 2 q^{55}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.433868 + 0.751481i −0.163987 + 0.284033i −0.936295 0.351215i \(-0.885769\pi\)
0.772308 + 0.635248i \(0.219102\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.04334 + 3.53916i −0.616089 + 1.06710i 0.374104 + 0.927387i \(0.377950\pi\)
−0.990192 + 0.139710i \(0.955383\pi\)
\(12\) 0 0
\(13\) −0.606223 1.05001i −0.168136 0.291220i 0.769629 0.638492i \(-0.220441\pi\)
−0.937764 + 0.347272i \(0.887108\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.82214 −1.89715 −0.948574 0.316555i \(-0.897474\pi\)
−0.948574 + 0.316555i \(0.897474\pi\)
\(18\) 0 0
\(19\) −4.51156 −1.03502 −0.517512 0.855676i \(-0.673142\pi\)
−0.517512 + 0.855676i \(0.673142\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.43387 + 2.48353i 0.298982 + 0.517852i 0.975903 0.218203i \(-0.0700196\pi\)
−0.676921 + 0.736055i \(0.736686\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.14956 5.45520i 0.584858 1.01300i −0.410035 0.912070i \(-0.634483\pi\)
0.994893 0.100934i \(-0.0321832\pi\)
\(30\) 0 0
\(31\) 1.26151 + 2.18500i 0.226574 + 0.392438i 0.956791 0.290778i \(-0.0939140\pi\)
−0.730216 + 0.683216i \(0.760581\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.867736 −0.146674
\(36\) 0 0
\(37\) −0.523026 −0.0859850 −0.0429925 0.999075i \(-0.513689\pi\)
−0.0429925 + 0.999075i \(0.513689\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.06063 7.03322i −0.634164 1.09840i −0.986692 0.162603i \(-0.948011\pi\)
0.352528 0.935801i \(-0.385322\pi\)
\(42\) 0 0
\(43\) −1.91107 + 3.31007i −0.291436 + 0.504781i −0.974149 0.225905i \(-0.927466\pi\)
0.682714 + 0.730686i \(0.260800\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.695381 + 1.20444i −0.101432 + 0.175685i −0.912275 0.409579i \(-0.865676\pi\)
0.810843 + 0.585264i \(0.199009\pi\)
\(48\) 0 0
\(49\) 3.12352 + 5.41009i 0.446217 + 0.772870i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.9088 −1.91052 −0.955261 0.295763i \(-0.904426\pi\)
−0.955261 + 0.295763i \(0.904426\pi\)
\(54\) 0 0
\(55\) −4.08667 −0.551047
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.43711 + 5.95325i 0.447474 + 0.775048i 0.998221 0.0596246i \(-0.0189904\pi\)
−0.550747 + 0.834672i \(0.685657\pi\)
\(60\) 0 0
\(61\) −4.54334 + 7.86929i −0.581715 + 1.00756i 0.413562 + 0.910476i \(0.364285\pi\)
−0.995276 + 0.0970830i \(0.969049\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.606223 1.05001i 0.0751927 0.130238i
\(66\) 0 0
\(67\) −1.68965 2.92656i −0.206424 0.357536i 0.744162 0.667999i \(-0.232849\pi\)
−0.950585 + 0.310463i \(0.899516\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.21245 −0.381247 −0.190624 0.981663i \(-0.561051\pi\)
−0.190624 + 0.981663i \(0.561051\pi\)
\(72\) 0 0
\(73\) 8.60970 1.00769 0.503844 0.863794i \(-0.331918\pi\)
0.503844 + 0.863794i \(0.331918\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.77308 3.07106i −0.202061 0.349979i
\(78\) 0 0
\(79\) −8.12126 + 14.0664i −0.913713 + 1.58260i −0.104939 + 0.994479i \(0.533465\pi\)
−0.808774 + 0.588119i \(0.799869\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.22142 5.57967i 0.353597 0.612448i −0.633280 0.773923i \(-0.718292\pi\)
0.986877 + 0.161475i \(0.0516251\pi\)
\(84\) 0 0
\(85\) −3.91107 6.77417i −0.424215 0.734762i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.2079 1.08204 0.541019 0.841010i \(-0.318039\pi\)
0.541019 + 0.841010i \(0.318039\pi\)
\(90\) 0 0
\(91\) 1.05208 0.110288
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.25578 3.90713i −0.231438 0.400863i
\(96\) 0 0
\(97\) 4.38503 7.59510i 0.445232 0.771165i −0.552836 0.833290i \(-0.686454\pi\)
0.998068 + 0.0621250i \(0.0197877\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.13226 1.96114i 0.112664 0.195141i −0.804179 0.594387i \(-0.797395\pi\)
0.916844 + 0.399246i \(0.130728\pi\)
\(102\) 0 0
\(103\) 7.69289 + 13.3245i 0.758003 + 1.31290i 0.943867 + 0.330325i \(0.107158\pi\)
−0.185864 + 0.982575i \(0.559508\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −14.3402 −1.38632 −0.693160 0.720784i \(-0.743782\pi\)
−0.693160 + 0.720784i \(0.743782\pi\)
\(108\) 0 0
\(109\) −5.35120 −0.512552 −0.256276 0.966604i \(-0.582496\pi\)
−0.256276 + 0.966604i \(0.582496\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.34471 + 2.32911i 0.126500 + 0.219104i 0.922318 0.386431i \(-0.126292\pi\)
−0.795818 + 0.605535i \(0.792959\pi\)
\(114\) 0 0
\(115\) −1.43387 + 2.48353i −0.133709 + 0.231591i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.39378 5.87819i 0.311107 0.538853i
\(120\) 0 0
\(121\) −2.85044 4.93711i −0.259131 0.448828i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −21.5641 −1.91350 −0.956752 0.290903i \(-0.906044\pi\)
−0.956752 + 0.290903i \(0.906044\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.24703 + 16.0163i 0.807917 + 1.39935i 0.914304 + 0.405029i \(0.132738\pi\)
−0.106387 + 0.994325i \(0.533928\pi\)
\(132\) 0 0
\(133\) 1.95742 3.39036i 0.169730 0.293981i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.86200 8.42124i 0.415389 0.719475i −0.580080 0.814559i \(-0.696979\pi\)
0.995469 + 0.0950845i \(0.0303121\pi\)
\(138\) 0 0
\(139\) 8.04032 + 13.9262i 0.681971 + 1.18121i 0.974378 + 0.224915i \(0.0722104\pi\)
−0.292407 + 0.956294i \(0.594456\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.95487 0.414347
\(144\) 0 0
\(145\) 6.29912 0.523113
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.92263 + 13.7224i 0.649047 + 1.12418i 0.983351 + 0.181718i \(0.0581657\pi\)
−0.334303 + 0.942466i \(0.608501\pi\)
\(150\) 0 0
\(151\) 7.56063 13.0954i 0.615275 1.06569i −0.375061 0.927000i \(-0.622378\pi\)
0.990336 0.138688i \(-0.0442885\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.26151 + 2.18500i −0.101327 + 0.175504i
\(156\) 0 0
\(157\) −8.77655 15.2014i −0.700445 1.21321i −0.968310 0.249750i \(-0.919652\pi\)
0.267865 0.963456i \(-0.413682\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.48844 −0.196116
\(162\) 0 0
\(163\) 6.85673 0.537061 0.268530 0.963271i \(-0.413462\pi\)
0.268530 + 0.963271i \(0.413462\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.95991 + 3.39466i 0.151662 + 0.262687i 0.931839 0.362873i \(-0.118204\pi\)
−0.780176 + 0.625560i \(0.784871\pi\)
\(168\) 0 0
\(169\) 5.76499 9.98525i 0.443461 0.768096i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −4.08667 + 7.07832i −0.310704 + 0.538155i −0.978515 0.206176i \(-0.933898\pi\)
0.667811 + 0.744331i \(0.267231\pi\)
\(174\) 0 0
\(175\) −0.433868 0.751481i −0.0327973 0.0568066i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.85673 0.512496 0.256248 0.966611i \(-0.417514\pi\)
0.256248 + 0.966611i \(0.417514\pi\)
\(180\) 0 0
\(181\) 16.2991 1.21150 0.605752 0.795654i \(-0.292872\pi\)
0.605752 + 0.795654i \(0.292872\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.261513 0.452954i −0.0192268 0.0333018i
\(186\) 0 0
\(187\) 15.9833 27.6838i 1.16881 2.02444i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.91680 10.2482i 0.428125 0.741534i −0.568582 0.822627i \(-0.692508\pi\)
0.996707 + 0.0810928i \(0.0258410\pi\)
\(192\) 0 0
\(193\) 0.911072 + 1.57802i 0.0655804 + 0.113589i 0.896951 0.442129i \(-0.145777\pi\)
−0.831371 + 0.555718i \(0.812443\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.3798 −1.38075 −0.690375 0.723451i \(-0.742555\pi\)
−0.690375 + 0.723451i \(0.742555\pi\)
\(198\) 0 0
\(199\) 6.69637 0.474693 0.237347 0.971425i \(-0.423722\pi\)
0.237347 + 0.971425i \(0.423722\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.73298 + 4.73367i 0.191818 + 0.332238i
\(204\) 0 0
\(205\) 4.06063 7.03322i 0.283607 0.491221i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.21864 15.9671i 0.637666 1.10447i
\(210\) 0 0
\(211\) −4.26151 7.38116i −0.293375 0.508140i 0.681231 0.732069i \(-0.261445\pi\)
−0.974605 + 0.223929i \(0.928112\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.82214 −0.260668
\(216\) 0 0
\(217\) −2.18932 −0.148621
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.74196 + 8.21332i 0.318979 + 0.552488i
\(222\) 0 0
\(223\) 5.43085 9.40651i 0.363677 0.629907i −0.624886 0.780716i \(-0.714855\pi\)
0.988563 + 0.150809i \(0.0481879\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.34245 + 16.1816i −0.620080 + 1.07401i 0.369390 + 0.929274i \(0.379567\pi\)
−0.989470 + 0.144736i \(0.953767\pi\)
\(228\) 0 0
\(229\) −4.79836 8.31100i −0.317084 0.549206i 0.662794 0.748802i \(-0.269371\pi\)
−0.979878 + 0.199595i \(0.936037\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.5807 1.34829 0.674145 0.738599i \(-0.264512\pi\)
0.674145 + 0.738599i \(0.264512\pi\)
\(234\) 0 0
\(235\) −1.39076 −0.0907233
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 5.08018 + 8.79913i 0.328610 + 0.569169i 0.982236 0.187649i \(-0.0600866\pi\)
−0.653627 + 0.756817i \(0.726753\pi\)
\(240\) 0 0
\(241\) −7.10622 + 12.3083i −0.457752 + 0.792850i −0.998842 0.0481150i \(-0.984679\pi\)
0.541090 + 0.840965i \(0.318012\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.12352 + 5.41009i −0.199554 + 0.345638i
\(246\) 0 0
\(247\) 2.73501 + 4.73718i 0.174025 + 0.301420i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.247034 0.0155927 0.00779634 0.999970i \(-0.497518\pi\)
0.00779634 + 0.999970i \(0.497518\pi\)
\(252\) 0 0
\(253\) −11.7195 −0.736798
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.43062 + 4.20996i 0.151618 + 0.262610i 0.931822 0.362914i \(-0.118218\pi\)
−0.780204 + 0.625525i \(0.784885\pi\)
\(258\) 0 0
\(259\) 0.226924 0.393044i 0.0141004 0.0244226i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.2159 17.6945i 0.629941 1.09109i −0.357622 0.933866i \(-0.616413\pi\)
0.987563 0.157223i \(-0.0502541\pi\)
\(264\) 0 0
\(265\) −6.95441 12.0454i −0.427206 0.739942i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 25.5125 1.55552 0.777762 0.628559i \(-0.216355\pi\)
0.777762 + 0.628559i \(0.216355\pi\)
\(270\) 0 0
\(271\) 5.12126 0.311094 0.155547 0.987828i \(-0.450286\pi\)
0.155547 + 0.987828i \(0.450286\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.04334 3.53916i −0.123218 0.213419i
\(276\) 0 0
\(277\) −5.70436 + 9.88024i −0.342742 + 0.593646i −0.984941 0.172892i \(-0.944689\pi\)
0.642199 + 0.766538i \(0.278022\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.7969 18.7007i 0.644087 1.11559i −0.340425 0.940272i \(-0.610571\pi\)
0.984512 0.175319i \(-0.0560957\pi\)
\(282\) 0 0
\(283\) −9.96338 17.2571i −0.592262 1.02583i −0.993927 0.110041i \(-0.964902\pi\)
0.401665 0.915787i \(-0.368432\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.04711 0.415978
\(288\) 0 0
\(289\) 44.1859 2.59917
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.916803 + 1.58795i 0.0535602 + 0.0927690i 0.891562 0.452898i \(-0.149610\pi\)
−0.838002 + 0.545667i \(0.816276\pi\)
\(294\) 0 0
\(295\) −3.43711 + 5.95325i −0.200116 + 0.346612i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.73849 3.01115i 0.100539 0.174139i
\(300\) 0 0
\(301\) −1.65831 2.87227i −0.0955831 0.165555i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.08667 −0.520301
\(306\) 0 0
\(307\) 9.02962 0.515347 0.257674 0.966232i \(-0.417044\pi\)
0.257674 + 0.966232i \(0.417044\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.48045 + 2.56421i 0.0839485 + 0.145403i 0.904943 0.425533i \(-0.139914\pi\)
−0.820994 + 0.570937i \(0.806580\pi\)
\(312\) 0 0
\(313\) −9.64157 + 16.6997i −0.544974 + 0.943922i 0.453635 + 0.891188i \(0.350127\pi\)
−0.998609 + 0.0527345i \(0.983206\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.08366 + 5.34105i −0.173195 + 0.299983i −0.939535 0.342452i \(-0.888743\pi\)
0.766340 + 0.642435i \(0.222076\pi\)
\(318\) 0 0
\(319\) 12.8712 + 22.2936i 0.720649 + 1.24820i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 35.2901 1.96359
\(324\) 0 0
\(325\) 1.21245 0.0672544
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.603407 1.04513i −0.0332669 0.0576200i
\(330\) 0 0
\(331\) −10.3447 + 17.9176i −0.568597 + 0.984838i 0.428108 + 0.903727i \(0.359180\pi\)
−0.996705 + 0.0811109i \(0.974153\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.68965 2.92656i 0.0923154 0.159895i
\(336\) 0 0
\(337\) 0.862004 + 1.49303i 0.0469564 + 0.0813308i 0.888548 0.458783i \(-0.151714\pi\)
−0.841592 + 0.540114i \(0.818381\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.3108 −0.558360
\(342\) 0 0
\(343\) −11.4949 −0.620668
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.2448 28.1368i −0.872065 1.51046i −0.859856 0.510536i \(-0.829447\pi\)
−0.0122090 0.999925i \(-0.503886\pi\)
\(348\) 0 0
\(349\) −2.59240 + 4.49017i −0.138768 + 0.240354i −0.927031 0.374986i \(-0.877648\pi\)
0.788262 + 0.615339i \(0.210981\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.43062 + 2.47791i −0.0761444 + 0.131886i −0.901583 0.432605i \(-0.857594\pi\)
0.825439 + 0.564491i \(0.190928\pi\)
\(354\) 0 0
\(355\) −1.60622 2.78206i −0.0852495 0.147656i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −37.0301 −1.95437 −0.977186 0.212384i \(-0.931877\pi\)
−0.977186 + 0.212384i \(0.931877\pi\)
\(360\) 0 0
\(361\) 1.35420 0.0712736
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4.30485 + 7.45622i 0.225326 + 0.390276i
\(366\) 0 0
\(367\) 18.2159 31.5509i 0.950863 1.64694i 0.207301 0.978277i \(-0.433532\pi\)
0.743563 0.668666i \(-0.233135\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.03459 10.4522i 0.313300 0.542652i
\(372\) 0 0
\(373\) 8.26499 + 14.3154i 0.427945 + 0.741222i 0.996690 0.0812913i \(-0.0259044\pi\)
−0.568746 + 0.822514i \(0.692571\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −7.63734 −0.393343
\(378\) 0 0
\(379\) −31.8062 −1.63377 −0.816886 0.576798i \(-0.804302\pi\)
−0.816886 + 0.576798i \(0.804302\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.1178 + 17.5245i 0.516995 + 0.895461i 0.999805 + 0.0197362i \(0.00628264\pi\)
−0.482811 + 0.875725i \(0.660384\pi\)
\(384\) 0 0
\(385\) 1.77308 3.07106i 0.0903643 0.156516i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.0028 + 20.7895i −0.608567 + 1.05407i 0.382910 + 0.923786i \(0.374922\pi\)
−0.991477 + 0.130283i \(0.958411\pi\)
\(390\) 0 0
\(391\) −11.2159 19.4265i −0.567213 0.982443i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.2425 −0.817250
\(396\) 0 0
\(397\) −35.8868 −1.80111 −0.900554 0.434745i \(-0.856839\pi\)
−0.900554 + 0.434745i \(0.856839\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.60894 2.78676i −0.0803466 0.139164i 0.823052 0.567966i \(-0.192269\pi\)
−0.903399 + 0.428801i \(0.858936\pi\)
\(402\) 0 0
\(403\) 1.52952 2.64920i 0.0761906 0.131966i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.06872 1.85107i 0.0529744 0.0917543i
\(408\) 0 0
\(409\) 13.1155 + 22.7168i 0.648521 + 1.12327i 0.983476 + 0.181037i \(0.0579455\pi\)
−0.334955 + 0.942234i \(0.608721\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.96501 −0.293519
\(414\) 0 0
\(415\) 6.44284 0.316267
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.3828 19.7155i −0.556085 0.963167i −0.997818 0.0660209i \(-0.978970\pi\)
0.441733 0.897146i \(-0.354364\pi\)
\(420\) 0 0
\(421\) −14.1213 + 24.4587i −0.688228 + 1.19205i 0.284182 + 0.958770i \(0.408278\pi\)
−0.972411 + 0.233276i \(0.925055\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.91107 6.77417i 0.189715 0.328596i
\(426\) 0 0
\(427\) −3.94242 6.82846i −0.190787 0.330453i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.4480 1.03311 0.516557 0.856253i \(-0.327213\pi\)
0.516557 + 0.856253i \(0.327213\pi\)
\(432\) 0 0
\(433\) −0.498583 −0.0239604 −0.0119802 0.999928i \(-0.503814\pi\)
−0.0119802 + 0.999928i \(0.503814\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.46899 11.2046i −0.309454 0.535989i
\(438\) 0 0
\(439\) 12.2075 21.1440i 0.582631 1.00915i −0.412535 0.910942i \(-0.635357\pi\)
0.995166 0.0982047i \(-0.0313100\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.07544 13.9871i 0.383676 0.664546i −0.607909 0.794007i \(-0.707991\pi\)
0.991584 + 0.129461i \(0.0413247\pi\)
\(444\) 0 0
\(445\) 5.10397 + 8.84033i 0.241951 + 0.419072i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.8392 1.45539 0.727697 0.685899i \(-0.240591\pi\)
0.727697 + 0.685899i \(0.240591\pi\)
\(450\) 0 0
\(451\) 33.1889 1.56281
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.526041 + 0.911130i 0.0246612 + 0.0427144i
\(456\) 0 0
\(457\) 7.61844 13.1955i 0.356376 0.617261i −0.630977 0.775802i \(-0.717346\pi\)
0.987352 + 0.158541i \(0.0506790\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.8805 + 36.1661i −0.972503 + 1.68442i −0.284561 + 0.958658i \(0.591848\pi\)
−0.687942 + 0.725766i \(0.741486\pi\)
\(462\) 0 0
\(463\) 9.47396 + 16.4094i 0.440292 + 0.762608i 0.997711 0.0676230i \(-0.0215415\pi\)
−0.557419 + 0.830232i \(0.688208\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.90035 0.0879377 0.0439688 0.999033i \(-0.486000\pi\)
0.0439688 + 0.999033i \(0.486000\pi\)
\(468\) 0 0
\(469\) 2.93234 0.135403
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −7.80992 13.5272i −0.359101 0.621980i
\(474\) 0 0
\(475\) 2.25578 3.90713i 0.103502 0.179271i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.9088 + 25.8228i −0.681201 + 1.17987i 0.293413 + 0.955986i \(0.405209\pi\)
−0.974615 + 0.223889i \(0.928125\pi\)
\(480\) 0 0
\(481\) 0.317070 + 0.549182i 0.0144572 + 0.0250405i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.77006 0.398228
\(486\) 0 0
\(487\) −43.1213 −1.95401 −0.977005 0.213215i \(-0.931607\pi\)
−0.977005 + 0.213215i \(0.931607\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.89659 10.2132i −0.266110 0.460915i 0.701744 0.712429i \(-0.252405\pi\)
−0.967854 + 0.251514i \(0.919072\pi\)
\(492\) 0 0
\(493\) −24.6363 + 42.6713i −1.10956 + 1.92182i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.39378 2.41409i 0.0625195 0.108287i
\(498\) 0 0
\(499\) 9.55837 + 16.5556i 0.427892 + 0.741130i 0.996686 0.0813501i \(-0.0259232\pi\)
−0.568794 + 0.822480i \(0.692590\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.1522 −0.943130 −0.471565 0.881831i \(-0.656311\pi\)
−0.471565 + 0.881831i \(0.656311\pi\)
\(504\) 0 0
\(505\) 2.26453 0.100770
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.982706 1.70210i −0.0435577 0.0754441i 0.843425 0.537247i \(-0.180536\pi\)
−0.886982 + 0.461803i \(0.847203\pi\)
\(510\) 0 0
\(511\) −3.73547 + 6.47003i −0.165248 + 0.286217i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.69289 + 13.3245i −0.338989 + 0.587147i
\(516\) 0 0
\(517\) −2.84179 4.92213i −0.124982 0.216475i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 14.1143 0.618359 0.309180 0.951004i \(-0.399946\pi\)
0.309180 + 0.951004i \(0.399946\pi\)
\(522\) 0 0
\(523\) 5.03413 0.220127 0.110064 0.993925i \(-0.464895\pi\)
0.110064 + 0.993925i \(0.464895\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.86774 17.0914i −0.429845 0.744514i
\(528\) 0 0
\(529\) 7.38805 12.7965i 0.321219 0.556368i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.92329 + 8.52739i −0.213252 + 0.369362i
\(534\) 0 0
\(535\) −7.17010 12.4190i −0.309990 0.536919i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −25.5296 −1.09964
\(540\) 0 0
\(541\) −9.30926 −0.400236 −0.200118 0.979772i \(-0.564133\pi\)
−0.200118 + 0.979772i \(0.564133\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.67560 4.63427i −0.114610 0.198511i
\(546\) 0 0
\(547\) −15.1245 + 26.1964i −0.646677 + 1.12008i 0.337234 + 0.941421i \(0.390509\pi\)
−0.983911 + 0.178657i \(0.942825\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −14.2094 + 24.6115i −0.605342 + 1.04848i
\(552\) 0 0
\(553\) −7.04711 12.2060i −0.299674 0.519050i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.6903 −0.622450 −0.311225 0.950336i \(-0.600739\pi\)
−0.311225 + 0.950336i \(0.600739\pi\)
\(558\) 0 0
\(559\) 4.63414 0.196003
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.64857 2.85541i −0.0694790 0.120341i 0.829193 0.558962i \(-0.188800\pi\)
−0.898672 + 0.438621i \(0.855467\pi\)
\(564\) 0 0
\(565\) −1.34471 + 2.32911i −0.0565724 + 0.0979862i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.9943 + 20.7747i −0.502826 + 0.870920i 0.497169 + 0.867654i \(0.334373\pi\)
−0.999995 + 0.00326613i \(0.998960\pi\)
\(570\) 0 0
\(571\) −10.0403 17.3903i −0.420174 0.727763i 0.575782 0.817603i \(-0.304698\pi\)
−0.995956 + 0.0898400i \(0.971364\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.86774 −0.119593
\(576\) 0 0
\(577\) 22.8622 0.951764 0.475882 0.879509i \(-0.342129\pi\)
0.475882 + 0.879509i \(0.342129\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 2.79534 + 4.84168i 0.115970 + 0.200867i
\(582\) 0 0
\(583\) 28.4204 49.2255i 1.17705 2.03871i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.9447 + 22.4208i −0.534284 + 0.925407i 0.464914 + 0.885356i \(0.346085\pi\)
−0.999198 + 0.0400508i \(0.987248\pi\)
\(588\) 0 0
\(589\) −5.69140 9.85779i −0.234510 0.406183i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −39.7887 −1.63392 −0.816962 0.576691i \(-0.804344\pi\)
−0.816962 + 0.576691i \(0.804344\pi\)
\(594\) 0 0
\(595\) 6.78755 0.278263
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.9434 24.1507i −0.569712 0.986770i −0.996594 0.0824629i \(-0.973721\pi\)
0.426882 0.904307i \(-0.359612\pi\)
\(600\) 0 0
\(601\) −13.5633 + 23.4924i −0.553260 + 0.958275i 0.444776 + 0.895642i \(0.353283\pi\)
−0.998037 + 0.0626334i \(0.980050\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.85044 4.93711i 0.115887 0.200722i
\(606\) 0 0
\(607\) 6.43085 + 11.1386i 0.261020 + 0.452100i 0.966513 0.256616i \(-0.0826077\pi\)
−0.705493 + 0.708717i \(0.749274\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.68622 0.0682173
\(612\) 0 0
\(613\) −29.2726 −1.18231 −0.591154 0.806558i \(-0.701328\pi\)
−0.591154 + 0.806558i \(0.701328\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.3865 + 30.1144i 0.699956 + 1.21236i 0.968481 + 0.249087i \(0.0801304\pi\)
−0.268525 + 0.963273i \(0.586536\pi\)
\(618\) 0 0
\(619\) −17.7282 + 30.7062i −0.712558 + 1.23419i 0.251336 + 0.967900i \(0.419130\pi\)
−0.963894 + 0.266287i \(0.914203\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.42889 + 7.67107i −0.177440 + 0.307335i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.09119 0.163126
\(630\) 0 0
\(631\) 6.68942 0.266302 0.133151 0.991096i \(-0.457491\pi\)
0.133151 + 0.991096i \(0.457491\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10.7821 18.6751i −0.427873 0.741097i
\(636\) 0 0
\(637\) 3.78709 6.55944i 0.150050 0.259894i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.46889 + 4.27624i −0.0975151 + 0.168901i −0.910656 0.413166i \(-0.864423\pi\)
0.813140 + 0.582068i \(0.197756\pi\)
\(642\) 0 0
\(643\) 7.64406 + 13.2399i 0.301452 + 0.522130i 0.976465 0.215675i \(-0.0691953\pi\)
−0.675013 + 0.737806i \(0.735862\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.2304 1.22779 0.613897 0.789386i \(-0.289601\pi\)
0.613897 + 0.789386i \(0.289601\pi\)
\(648\) 0 0
\(649\) −28.0927 −1.10273
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.82516 6.62537i −0.149690 0.259271i 0.781423 0.624002i \(-0.214494\pi\)
−0.931113 + 0.364731i \(0.881161\pi\)
\(654\) 0 0
\(655\) −9.24703 + 16.0163i −0.361312 + 0.625810i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.9775 36.3342i 0.817169 1.41538i −0.0905915 0.995888i \(-0.528876\pi\)
0.907760 0.419489i \(-0.137791\pi\)
\(660\) 0 0
\(661\) −20.2991 35.1591i −0.789544 1.36753i −0.926246 0.376918i \(-0.876984\pi\)
0.136702 0.990612i \(-0.456350\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.91484 0.151811
\(666\) 0 0
\(667\) 18.0642 0.699449
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −18.5671 32.1592i −0.716776 1.24149i
\(672\) 0 0
\(673\) −7.43486 + 12.8775i −0.286593 + 0.496393i −0.972994 0.230830i \(-0.925856\pi\)
0.686402 + 0.727223i \(0.259189\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5.61271 + 9.72150i −0.215714 + 0.373628i −0.953493 0.301414i \(-0.902541\pi\)
0.737779 + 0.675042i \(0.235875\pi\)
\(678\) 0 0
\(679\) 3.80505 + 6.59054i 0.146024 + 0.252922i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 6.60275 0.252647 0.126324 0.991989i \(-0.459682\pi\)
0.126324 + 0.991989i \(0.459682\pi\)
\(684\) 0 0
\(685\) 9.72401 0.371535
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 8.43184 + 14.6044i 0.321228 + 0.556382i
\(690\) 0 0
\(691\) −5.87423 + 10.1745i −0.223466 + 0.387055i −0.955858 0.293829i \(-0.905071\pi\)
0.732392 + 0.680883i \(0.238404\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.04032 + 13.9262i −0.304987 + 0.528253i
\(696\) 0 0
\(697\) 31.7628 + 55.0148i 1.20310 + 2.08384i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 6.21396 0.234698 0.117349 0.993091i \(-0.462560\pi\)
0.117349 + 0.993091i \(0.462560\pi\)
\(702\) 0 0
\(703\) 2.35967 0.0889965
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0.982506 + 1.70175i 0.0369509 + 0.0640009i
\(708\) 0 0
\(709\) 6.49473 11.2492i 0.243915 0.422473i −0.717911 0.696135i \(-0.754902\pi\)
0.961826 + 0.273662i \(0.0882350\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −3.61769 + 6.26602i −0.135483 + 0.234664i
\(714\) 0 0
\(715\) 2.47743 + 4.29104i 0.0926508 + 0.160476i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.4610 −0.576598 −0.288299 0.957540i \(-0.593090\pi\)
−0.288299 + 0.957540i \(0.593090\pi\)
\(720\) 0 0
\(721\) −13.3508 −0.497210
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.14956 + 5.45520i 0.116972 + 0.202601i
\(726\) 0 0
\(727\) −6.42588 + 11.1299i −0.238323 + 0.412787i −0.960233 0.279200i \(-0.909931\pi\)
0.721910 + 0.691986i \(0.243264\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 14.9487 25.8919i 0.552897 0.957645i
\(732\) 0 0
\(733\) 10.5636 + 18.2968i 0.390177 + 0.675807i 0.992473 0.122467i \(-0.0390804\pi\)
−0.602295 + 0.798273i \(0.705747\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.8101 0.508701
\(738\) 0 0
\(739\) −18.8652 −0.693968 −0.346984 0.937871i \(-0.612794\pi\)
−0.346984 + 0.937871i \(0.612794\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.99751 6.92390i −0.146655 0.254013i 0.783334 0.621600i \(-0.213517\pi\)
−0.929989 + 0.367587i \(0.880184\pi\)
\(744\) 0 0
\(745\) −7.92263 + 13.7224i −0.290263 + 0.502750i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.22175 10.7764i 0.227338 0.393761i
\(750\) 0 0
\(751\) 15.2390 + 26.3948i 0.556081 + 0.963160i 0.997819 + 0.0660158i \(0.0210288\pi\)
−0.441738 + 0.897144i \(0.645638\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.1213 0.550319
\(756\) 0 0
\(757\) −30.4318 −1.10606 −0.553032 0.833160i \(-0.686529\pi\)
−0.553032 + 0.833160i \(0.686529\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.3575 40.4564i −0.846708 1.46654i −0.884129 0.467242i \(-0.845248\pi\)
0.0374210 0.999300i \(-0.488086\pi\)
\(762\) 0 0
\(763\) 2.32171 4.02133i 0.0840517 0.145582i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.16731 7.21800i 0.150473 0.260627i
\(768\) 0 0
\(769\) −18.4947 32.0338i −0.666937 1.15517i −0.978756 0.205027i \(-0.934272\pi\)
0.311819 0.950141i \(-0.399062\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 33.7485 1.21385 0.606924 0.794760i \(-0.292403\pi\)
0.606924 + 0.794760i \(0.292403\pi\)
\(774\) 0 0
\(775\) −2.52303 −0.0906298
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 18.3198 + 31.7308i 0.656374 + 1.13687i
\(780\) 0 0
\(781\) 6.56410 11.3694i 0.234882 0.406828i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.77655 15.2014i 0.313249 0.542562i
\(786\) 0 0
\(787\) 20.9745 + 36.3289i 0.747661 + 1.29499i 0.948941 + 0.315453i \(0.102156\pi\)
−0.201280 + 0.979534i \(0.564510\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.33371 −0.0829770
\(792\) 0 0
\(793\) 11.0171 0.391229
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 6.56666 + 11.3738i 0.232603 + 0.402880i 0.958573 0.284846i \(-0.0919424\pi\)
−0.725970 + 0.687726i \(0.758609\pi\)
\(798\) 0 0
\(799\) 5.43937 9.42127i 0.192431 0.333300i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.5925 + 30.4711i −0.620826 + 1.07530i
\(804\) 0 0
\(805\) −1.24422 2.15505i −0.0438529 0.0759555i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 26.0015 0.914165 0.457082 0.889424i \(-0.348894\pi\)
0.457082 + 0.889424i \(0.348894\pi\)
\(810\) 0 0
\(811\) 14.9425 0.524702 0.262351 0.964973i \(-0.415502\pi\)
0.262351 + 0.964973i \(0.415502\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.42837 + 5.93810i 0.120090 + 0.208003i
\(816\) 0 0
\(817\) 8.62192 14.9336i 0.301643 0.522461i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.8310 + 18.7598i −0.378004 + 0.654722i −0.990772 0.135541i \(-0.956723\pi\)
0.612768 + 0.790263i \(0.290056\pi\)
\(822\) 0 0
\(823\) −19.9770 34.6012i −0.696355 1.20612i −0.969722 0.244212i \(-0.921471\pi\)
0.273367 0.961910i \(-0.411863\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 7.04711 0.245052 0.122526 0.992465i \(-0.460901\pi\)
0.122526 + 0.992465i \(0.460901\pi\)
\(828\) 0 0
\(829\) −7.21376 −0.250544 −0.125272 0.992122i \(-0.539980\pi\)
−0.125272 + 0.992122i \(0.539980\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −24.4326 42.3185i −0.846539 1.46625i
\(834\) 0 0
\(835\) −1.95991 + 3.39466i −0.0678255 + 0.117477i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.16338 2.01503i 0.0401643 0.0695666i −0.845244 0.534380i \(-0.820545\pi\)
0.885409 + 0.464813i \(0.153879\pi\)
\(840\) 0 0
\(841\) −5.33944 9.24818i −0.184119 0.318903i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.5300 0.396643
\(846\) 0 0
\(847\) 4.94686 0.169976
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.749950 1.29895i −0.0257080 0.0445275i
\(852\) 0 0
\(853\) 18.3713 31.8200i 0.629022 1.08950i −0.358727 0.933443i \(-0.616789\pi\)
0.987748 0.156055i \(-0.0498777\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.45732 7.72031i 0.152259 0.263721i −0.779798 0.626031i \(-0.784678\pi\)
0.932058 + 0.362310i \(0.118012\pi\)
\(858\) 0 0
\(859\) −19.4817 33.7432i −0.664706 1.15130i −0.979365 0.202100i \(-0.935224\pi\)
0.314659 0.949205i \(-0.398110\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.2084 0.517700 0.258850 0.965918i \(-0.416657\pi\)
0.258850 + 0.965918i \(0.416657\pi\)
\(864\) 0 0
\(865\) −8.17334 −0.277902
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −33.1889 57.4849i −1.12586 1.95004i
\(870\) 0 0
\(871\) −2.04861 + 3.54829i −0.0694144 + 0.120229i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.433868 0.751481i 0.0146674 0.0254047i
\(876\) 0 0
\(877\) 5.21592 + 9.03424i 0.176129 + 0.305065i 0.940551 0.339651i \(-0.110309\pi\)
−0.764422 + 0.644716i \(0.776976\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −22.9272 −0.772438 −0.386219 0.922407i \(-0.626219\pi\)
−0.386219 + 0.922407i \(0.626219\pi\)
\(882\) 0 0
\(883\) 10.9773 0.369417 0.184708 0.982793i \(-0.440866\pi\)
0.184708 + 0.982793i \(0.440866\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −6.48496 11.2323i −0.217744 0.377143i 0.736374 0.676575i \(-0.236536\pi\)
−0.954118 + 0.299431i \(0.903203\pi\)
\(888\) 0 0
\(889\) 9.35597 16.2050i 0.313789 0.543499i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 3.13726 5.43389i 0.104984 0.181838i
\(894\) 0 0
\(895\) 3.42837 + 5.93810i 0.114598 + 0.198489i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 15.8928 0.530056
\(900\) 0 0
\(901\) 108.797 3.62454
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.14956 + 14.1154i 0.270900 + 0.469213i
\(906\) 0 0
\(907\) 5.74173 9.94497i 0.190651 0.330217i −0.754815 0.655938i \(-0.772273\pi\)
0.945466 + 0.325720i \(0.105607\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7.64383 + 13.2395i −0.253251 + 0.438644i −0.964419 0.264378i \(-0.914833\pi\)
0.711168 + 0.703022i \(0.248167\pi\)
\(912\) 0 0
\(913\) 13.1649 + 22.8023i 0.435694 + 0.754645i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.0480 −0.529951
\(918\) 0 0
\(919\) −43.5890 −1.43787 −0.718934 0.695078i \(-0.755370\pi\)
−0.718934 + 0.695078i \(0.755370\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.94746 + 3.37310i 0.0641014 + 0.111027i
\(924\) 0 0
\(925\) 0.261513 0.452954i 0.00859850 0.0148930i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.741502 1.28432i 0.0243279 0.0421371i −0.853605 0.520921i \(-0.825589\pi\)
0.877933 + 0.478783i \(0.158922\pi\)
\(930\) 0 0
\(931\) −14.0919 24.4080i −0.461845 0.799939i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 31.9665 1.04542
\(936\) 0 0
\(937\) 5.12821 0.167531 0.0837657 0.996485i \(-0.473305\pi\)
0.0837657 + 0.996485i \(0.473305\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 23.4381 + 40.5960i 0.764061 + 1.32339i 0.940741 + 0.339125i \(0.110131\pi\)
−0.176680 + 0.984268i \(0.556536\pi\)
\(942\) 0 0
\(943\) 11.6448 20.1694i 0.379207 0.656806i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.1850 29.7654i 0.558439 0.967244i −0.439188 0.898395i \(-0.644734\pi\)
0.997627 0.0688491i \(-0.0219327\pi\)
\(948\) 0 0
\(949\) −5.21940 9.04026i −0.169429 0.293459i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.8092 0.771254 0.385627 0.922655i \(-0.373985\pi\)
0.385627 + 0.922655i \(0.373985\pi\)
\(954\) 0 0
\(955\) 11.8336 0.382927
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.21894 + 7.30741i 0.136237 + 0.235969i
\(960\) 0 0
\(961\) 12.3172 21.3340i 0.397328 0.688192i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.911072 + 1.57802i −0.0293284 + 0.0507983i
\(966\) 0 0
\(967\) −1.42889 2.47492i −0.0459501 0.0795880i 0.842136 0.539266i \(-0.181298\pi\)
−0.888086 + 0.459678i \(0.847965\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.55821 −0.114188 −0.0570942 0.998369i \(-0.518184\pi\)
−0.0570942 + 0.998369i \(0.518184\pi\)
\(972\) 0 0
\(973\) −13.9537 −0.447337
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.8480 + 25.7175i 0.475029 + 0.822775i 0.999591 0.0285977i \(-0.00910419\pi\)
−0.524562 + 0.851372i \(0.675771\pi\)
\(978\) 0 0
\(979\) −20.8582 + 36.1275i −0.666632 + 1.15464i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −29.0557 + 50.3259i −0.926732 + 1.60515i −0.137982 + 0.990435i \(0.544061\pi\)
−0.788751 + 0.614713i \(0.789272\pi\)
\(984\) 0 0
\(985\) −9.68988 16.7834i −0.308745 0.534762i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.9609 −0.348536
\(990\) 0 0
\(991\) −19.4489 −0.617816 −0.308908 0.951092i \(-0.599963\pi\)
−0.308908 + 0.951092i \(0.599963\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.34818 + 5.79923i 0.106145 + 0.183848i
\(996\) 0 0
\(997\) 4.25201 7.36469i 0.134662 0.233242i −0.790806 0.612067i \(-0.790338\pi\)
0.925468 + 0.378825i \(0.123672\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.q.e.721.2 8
3.2 odd 2 360.2.q.e.241.4 yes 8
4.3 odd 2 2160.2.q.l.721.3 8
9.2 odd 6 3240.2.a.u.1.3 4
9.4 even 3 inner 1080.2.q.e.361.2 8
9.5 odd 6 360.2.q.e.121.4 8
9.7 even 3 3240.2.a.s.1.3 4
12.11 even 2 720.2.q.l.241.1 8
36.7 odd 6 6480.2.a.bz.1.2 4
36.11 even 6 6480.2.a.cb.1.2 4
36.23 even 6 720.2.q.l.481.1 8
36.31 odd 6 2160.2.q.l.1441.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.4 8 9.5 odd 6
360.2.q.e.241.4 yes 8 3.2 odd 2
720.2.q.l.241.1 8 12.11 even 2
720.2.q.l.481.1 8 36.23 even 6
1080.2.q.e.361.2 8 9.4 even 3 inner
1080.2.q.e.721.2 8 1.1 even 1 trivial
2160.2.q.l.721.3 8 4.3 odd 2
2160.2.q.l.1441.3 8 36.31 odd 6
3240.2.a.s.1.3 4 9.7 even 3
3240.2.a.u.1.3 4 9.2 odd 6
6480.2.a.bz.1.2 4 36.7 odd 6
6480.2.a.cb.1.2 4 36.11 even 6