Properties

Label 1080.4.a.o
Level $1080$
Weight $4$
Character orbit 1080.a
Self dual yes
Analytic conductor $63.722$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,4,Mod(1,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 141x^{2} + 200x + 3500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 5 q^{5} + ( - \beta_{2} + 3) q^{7} + ( - \beta_1 + 1) q^{11} + (\beta_{3} - \beta_{2} - \beta_1 + 7) q^{13} + ( - \beta_{3} - 2 \beta_{2} - \beta_1 + 6) q^{17} + ( - \beta_{3} - 3 \beta_{2} + 18) q^{19}+ \cdots + ( - 7 \beta_{3} + 19 \beta_{2} + \cdots + 844) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{5} + 14 q^{7} + 4 q^{11} + 30 q^{13} + 28 q^{17} + 78 q^{19} - 182 q^{23} + 100 q^{25} - 202 q^{29} - 76 q^{31} - 70 q^{35} + 302 q^{37} - 380 q^{41} + 178 q^{43} - 114 q^{47} + 958 q^{49} + 256 q^{53}+ \cdots + 3338 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 141x^{2} + 200x + 3500 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 7\nu^{3} + 3\nu^{2} - 617\nu + 250 ) / 40 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} - 9\nu^{2} + 131\nu + 550 ) / 20 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 9\nu^{2} - 71\nu - 575 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + 4\beta_{2} + 5 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{3} - 8\beta_{2} - 8\beta _1 + 845 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 43\beta_{3} + 178\beta_{2} + 36\beta _1 - 175 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.09129
9.55367
−4.73555
−10.9094
0 0 0 −5.00000 0 −30.4893 0 0 0
1.2 0 0 0 −5.00000 0 −2.40438 0 0 0
1.3 0 0 0 −5.00000 0 11.2995 0 0 0
1.4 0 0 0 −5.00000 0 35.5942 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.4.a.o 4
3.b odd 2 1 1080.4.a.p yes 4
4.b odd 2 1 2160.4.a.bu 4
12.b even 2 1 2160.4.a.bv 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.4.a.o 4 1.a even 1 1 trivial
1080.4.a.p yes 4 3.b odd 2 1
2160.4.a.bu 4 4.b odd 2 1
2160.4.a.bv 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1080))\):

\( T_{7}^{4} - 14T_{7}^{3} - 1067T_{7}^{2} + 9792T_{7} + 29484 \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{3} - 3749T_{11}^{2} + 45756T_{11} + 1807596 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 5)^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 14 T^{3} + \cdots + 29484 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 1807596 \) Copy content Toggle raw display
$13$ \( T^{4} - 30 T^{3} + \cdots + 18230751 \) Copy content Toggle raw display
$17$ \( T^{4} - 28 T^{3} + \cdots + 4462704 \) Copy content Toggle raw display
$19$ \( T^{4} - 78 T^{3} + \cdots + 21407584 \) Copy content Toggle raw display
$23$ \( T^{4} + 182 T^{3} + \cdots - 146544156 \) Copy content Toggle raw display
$29$ \( T^{4} + 202 T^{3} + \cdots - 561688740 \) Copy content Toggle raw display
$31$ \( T^{4} + 76 T^{3} + \cdots + 901737216 \) Copy content Toggle raw display
$37$ \( T^{4} - 302 T^{3} + \cdots + 9791964 \) Copy content Toggle raw display
$41$ \( T^{4} + 380 T^{3} + \cdots + 1440000 \) Copy content Toggle raw display
$43$ \( T^{4} - 178 T^{3} + \cdots - 372768336 \) Copy content Toggle raw display
$47$ \( T^{4} + 114 T^{3} + \cdots + 465218416 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 26357772096 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 3841737984 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 50264811540 \) Copy content Toggle raw display
$67$ \( T^{4} - 330 T^{3} + \cdots + 415421296 \) Copy content Toggle raw display
$71$ \( T^{4} - 1060 T^{3} + \cdots - 897110784 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 1120468716 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 364066942735 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 4935879504 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 16886941696 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 650133282260 \) Copy content Toggle raw display
show more
show less