Properties

Label 1089.1.r.a.245.1
Level 10891089
Weight 11
Character 1089.245
Analytic conductor 0.5430.543
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -11
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,1,Mod(245,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([5, 24]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.245");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1089.r (of order 3030, degree 88, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5434817987570.543481798757
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ15)\Q(\zeta_{15})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+x5x4+x3x+1 x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.2.26198073.1

Embedding invariants

Embedding label 245.1
Root 0.104528+0.994522i-0.104528 + 0.994522i of defining polynomial
Character χ\chi == 1089.245
Dual form 1089.1.r.a.1049.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.669131+0.743145i)q3+(0.978148+0.207912i)q4+(1.722560.181049i)q5+(0.1045280.994522i)q9+(0.5000000.866025i)q12+(1.287161.15897i)q15+(0.9135450.406737i)q16+(1.722560.181049i)q20+(1.95630+0.415823i)q25+(0.809017+0.587785i)q27+(0.913545+0.406737i)q31+(0.309017+0.951057i)q36+(0.3090170.951057i)q37+1.73205iq45+(0.3601141.69420i)q47+(0.309017+0.951057i)q48+(0.1045280.994522i)q49+(1.018071.40126i)q53+(0.360114+1.69420i)q59+(1.01807+1.40126i)q60+(0.809017+0.587785i)q64+(0.5000000.866025i)q67+(1.018071.40126i)q71+(1.61803+1.17557i)q75+(1.64728+0.535233i)q80+(0.978148+0.207912i)q81+(0.913545+0.406737i)q93+(0.104528+0.994522i)q97+O(q100)q+(-0.669131 + 0.743145i) q^{3} +(-0.978148 + 0.207912i) q^{4} +(-1.72256 - 0.181049i) q^{5} +(-0.104528 - 0.994522i) q^{9} +(0.500000 - 0.866025i) q^{12} +(1.28716 - 1.15897i) q^{15} +(0.913545 - 0.406737i) q^{16} +(1.72256 - 0.181049i) q^{20} +(1.95630 + 0.415823i) q^{25} +(0.809017 + 0.587785i) q^{27} +(0.913545 + 0.406737i) q^{31} +(0.309017 + 0.951057i) q^{36} +(0.309017 - 0.951057i) q^{37} +1.73205i q^{45} +(0.360114 - 1.69420i) q^{47} +(-0.309017 + 0.951057i) q^{48} +(0.104528 - 0.994522i) q^{49} +(-1.01807 - 1.40126i) q^{53} +(0.360114 + 1.69420i) q^{59} +(-1.01807 + 1.40126i) q^{60} +(-0.809017 + 0.587785i) q^{64} +(-0.500000 - 0.866025i) q^{67} +(1.01807 - 1.40126i) q^{71} +(-1.61803 + 1.17557i) q^{75} +(-1.64728 + 0.535233i) q^{80} +(-0.978148 + 0.207912i) q^{81} +(-0.913545 + 0.406737i) q^{93} +(0.104528 + 0.994522i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq3+q43q5+q9+4q123q15+q16+3q202q25+2q27+q312q362q37+3q47+2q48q49+3q592q644q67+q97+O(q100) 8 q - q^{3} + q^{4} - 3 q^{5} + q^{9} + 4 q^{12} - 3 q^{15} + q^{16} + 3 q^{20} - 2 q^{25} + 2 q^{27} + q^{31} - 2 q^{36} - 2 q^{37} + 3 q^{47} + 2 q^{48} - q^{49} + 3 q^{59} - 2 q^{64} - 4 q^{67}+ \cdots - q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1089Z)×\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times.

nn 244244 848848
χ(n)\chi(n) e(45)e\left(\frac{4}{5}\right) e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
33 −0.669131 + 0.743145i −0.669131 + 0.743145i
44 −0.978148 + 0.207912i −0.978148 + 0.207912i
55 −1.72256 0.181049i −1.72256 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
66 0 0
77 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
88 0 0
99 −0.104528 0.994522i −0.104528 0.994522i
1010 0 0
1111 0 0
1212 0.500000 0.866025i 0.500000 0.866025i
1313 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
1414 0 0
1515 1.28716 1.15897i 1.28716 1.15897i
1616 0.913545 0.406737i 0.913545 0.406737i
1717 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
1818 0 0
1919 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
2020 1.72256 0.181049i 1.72256 0.181049i
2121 0 0
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0 0
2525 1.95630 + 0.415823i 1.95630 + 0.415823i
2626 0 0
2727 0.809017 + 0.587785i 0.809017 + 0.587785i
2828 0 0
2929 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
3030 0 0
3131 0.913545 + 0.406737i 0.913545 + 0.406737i 0.809017 0.587785i 0.200000π-0.200000\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0.309017 + 0.951057i 0.309017 + 0.951057i
3737 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
4242 0 0
4343 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4444 0 0
4545 1.73205i 1.73205i
4646 0 0
4747 0.360114 1.69420i 0.360114 1.69420i −0.309017 0.951057i 0.600000π-0.600000\pi
0.669131 0.743145i 0.266667π-0.266667\pi
4848 −0.309017 + 0.951057i −0.309017 + 0.951057i
4949 0.104528 0.994522i 0.104528 0.994522i
5050 0 0
5151 0 0
5252 0 0
5353 −1.01807 1.40126i −1.01807 1.40126i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.104528 0.994522i 0.533333π-0.533333\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0.360114 + 1.69420i 0.360114 + 1.69420i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
6060 −1.01807 + 1.40126i −1.01807 + 1.40126i
6161 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
6262 0 0
6363 0 0
6464 −0.809017 + 0.587785i −0.809017 + 0.587785i
6565 0 0
6666 0 0
6767 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6868 0 0
6969 0 0
7070 0 0
7171 1.01807 1.40126i 1.01807 1.40126i 0.104528 0.994522i 0.466667π-0.466667\pi
0.913545 0.406737i 0.133333π-0.133333\pi
7272 0 0
7373 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
7474 0 0
7575 −1.61803 + 1.17557i −1.61803 + 1.17557i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
8080 −1.64728 + 0.535233i −1.64728 + 0.535233i
8181 −0.978148 + 0.207912i −0.978148 + 0.207912i
8282 0 0
8383 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 −0.913545 + 0.406737i −0.913545 + 0.406737i
9494 0 0
9595 0 0
9696 0 0
9797 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
9898 0 0
9999 0 0
100100 −2.00000 −2.00000
101101 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
102102 0 0
103103 0.978148 0.207912i 0.978148 0.207912i 0.309017 0.951057i 0.400000π-0.400000\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
108108 −0.913545 0.406737i −0.913545 0.406737i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0.500000 + 0.866025i 0.500000 + 0.866025i
112112 0 0
113113 −1.28716 1.15897i −1.28716 1.15897i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.309017 0.951057i 0.600000π-0.600000\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 −0.978148 0.207912i −0.978148 0.207912i
125125 −1.64728 0.535233i −1.64728 0.535233i
126126 0 0
127127 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 0 0
134134 0 0
135135 −1.28716 1.15897i −1.28716 1.15897i
136136 0 0
137137 0.704489 + 1.58231i 0.704489 + 1.58231i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
138138 0 0
139139 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
140140 0 0
141141 1.01807 + 1.40126i 1.01807 + 1.40126i
142142 0 0
143143 0 0
144144 −0.500000 0.866025i −0.500000 0.866025i
145145 0 0
146146 0 0
147147 0.669131 + 0.743145i 0.669131 + 0.743145i
148148 −0.104528 + 0.994522i −0.104528 + 0.994522i
149149 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
150150 0 0
151151 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
152152 0 0
153153 0 0
154154 0 0
155155 −1.50000 0.866025i −1.50000 0.866025i
156156 0 0
157157 0.669131 0.743145i 0.669131 0.743145i −0.309017 0.951057i 0.600000π-0.600000\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
158158 0 0
159159 1.72256 + 0.181049i 1.72256 + 0.181049i
160160 0 0
161161 0 0
162162 0 0
163163 0.809017 0.587785i 0.809017 0.587785i −0.104528 0.994522i 0.533333π-0.533333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
168168 0 0
169169 −0.669131 0.743145i −0.669131 0.743145i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
174174 0 0
175175 0 0
176176 0 0
177177 −1.50000 0.866025i −1.50000 0.866025i
178178 0 0
179179 1.64728 0.535233i 1.64728 0.535233i 0.669131 0.743145i 0.266667π-0.266667\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
180180 −0.360114 1.69420i −0.360114 1.69420i
181181 0.809017 + 0.587785i 0.809017 + 0.587785i 0.913545 0.406737i 0.133333π-0.133333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
182182 0 0
183183 0 0
184184 0 0
185185 −0.704489 + 1.58231i −0.704489 + 1.58231i
186186 0 0
187187 0 0
188188 1.73205i 1.73205i
189189 0 0
190190 0 0
191191 1.28716 1.15897i 1.28716 1.15897i 0.309017 0.951057i 0.400000π-0.400000\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
192192 0.104528 0.994522i 0.104528 0.994522i
193193 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
194194 0 0
195195 0 0
196196 0.104528 + 0.994522i 0.104528 + 0.994522i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0 0
201201 0.978148 + 0.207912i 0.978148 + 0.207912i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
212212 1.28716 + 1.15897i 1.28716 + 1.15897i
213213 0.360114 + 1.69420i 0.360114 + 1.69420i
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −1.95630 0.415823i −1.95630 0.415823i −0.978148 0.207912i 0.933333π-0.933333\pi
−0.978148 0.207912i 0.933333π-0.933333\pi
224224 0 0
225225 0.209057 1.98904i 0.209057 1.98904i
226226 0 0
227227 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
228228 0 0
229229 −1.82709 0.813473i −1.82709 0.813473i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.913545 0.406737i 0.866667π-0.866667\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
234234 0 0
235235 −0.927051 + 2.85317i −0.927051 + 2.85317i
236236 −0.704489 1.58231i −0.704489 1.58231i
237237 0 0
238238 0 0
239239 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
240240 0.704489 1.58231i 0.704489 1.58231i
241241 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
242242 0 0
243243 0.500000 0.866025i 0.500000 0.866025i
244244 0 0
245245 −0.360114 + 1.69420i −0.360114 + 1.69420i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0.669131 0.743145i 0.669131 0.743145i
257257 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 1.50000 + 2.59808i 1.50000 + 2.59808i
266266 0 0
267267 0 0
268268 0.669131 + 0.743145i 0.669131 + 0.743145i
269269 −1.01807 + 1.40126i −1.01807 + 1.40126i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
270270 0 0
271271 0 0 −0.951057 0.309017i 0.900000π-0.900000\pi
0.951057 + 0.309017i 0.100000π0.100000\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
278278 0 0
279279 0.309017 0.951057i 0.309017 0.951057i
280280 0 0
281281 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
282282 0 0
283283 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
284284 −0.704489 + 1.58231i −0.704489 + 1.58231i
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 0.309017 + 0.951057i 0.309017 + 0.951057i
290290 0 0
291291 −0.809017 0.587785i −0.809017 0.587785i
292292 0 0
293293 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
294294 0 0
295295 −0.313585 2.98357i −0.313585 2.98357i
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 1.33826 1.48629i 1.33826 1.48629i
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 −0.500000 + 0.866025i −0.500000 + 0.866025i
310310 0 0
311311 1.28716 + 1.15897i 1.28716 + 1.15897i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
312312 0 0
313313 −1.82709 + 0.813473i −1.82709 + 0.813473i −0.913545 + 0.406737i 0.866667π0.866667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 −0.104528 0.994522i 0.533333π-0.533333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
318318 0 0
319319 0 0
320320 1.50000 0.866025i 1.50000 0.866025i
321321 0 0
322322 0 0
323323 0 0
324324 0.913545 0.406737i 0.913545 0.406737i
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
332332 0 0
333333 −0.978148 0.207912i −0.978148 0.207912i
334334 0 0
335335 0.704489 + 1.58231i 0.704489 + 1.58231i
336336 0 0
337337 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
338338 0 0
339339 1.72256 0.181049i 1.72256 0.181049i
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
348348 0 0
349349 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
354354 0 0
355355 −2.00739 + 2.22943i −2.00739 + 2.22943i
356356 0 0
357357 0 0
358358 0 0
359359 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
360360 0 0
361361 0.809017 0.587785i 0.809017 0.587785i
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i 0.400000π-0.400000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0.809017 0.587785i 0.809017 0.587785i
373373 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
374374 0 0
375375 1.50000 0.866025i 1.50000 0.866025i
376376 0 0
377377 0 0
378378 0 0
379379 −1.61803 1.17557i −1.61803 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 0.587785i 0.800000π-0.800000\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.704489 1.58231i 0.704489 1.58231i −0.104528 0.994522i 0.533333π-0.533333\pi
0.809017 0.587785i 0.200000π-0.200000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −0.309017 0.951057i −0.309017 0.951057i
389389 1.28716 1.15897i 1.28716 1.15897i 0.309017 0.951057i 0.400000π-0.400000\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 1.95630 0.415823i 1.95630 0.415823i
401401 1.72256 + 0.181049i 1.72256 + 0.181049i 0.913545 0.406737i 0.133333π-0.133333\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
402402 0 0
403403 0 0
404404 0 0
405405 1.72256 0.181049i 1.72256 0.181049i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
410410 0 0
411411 −1.64728 0.535233i −1.64728 0.535233i
412412 −0.913545 + 0.406737i −0.913545 + 0.406737i
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
1.00000 00
420420 0 0
421421 −0.978148 0.207912i −0.978148 0.207912i −0.309017 0.951057i 0.600000π-0.600000\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
422422 0 0
423423 −1.72256 0.181049i −1.72256 0.181049i
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
432432 0.978148 + 0.207912i 0.978148 + 0.207912i
433433 0.618034 1.90211i 0.618034 1.90211i 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
440440 0 0
441441 −1.00000 −1.00000
442442 0 0
443443 −0.360114 + 1.69420i −0.360114 + 1.69420i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
444444 −0.669131 0.743145i −0.669131 0.743145i
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 1.01807 + 1.40126i 1.01807 + 1.40126i 0.913545 + 0.406737i 0.133333π0.133333\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
450450 0 0
451451 0 0
452452 1.50000 + 0.866025i 1.50000 + 0.866025i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
464464 0 0
465465 1.64728 0.535233i 1.64728 0.535233i
466466 0 0
467467 1.01807 1.40126i 1.01807 1.40126i 0.104528 0.994522i 0.466667π-0.466667\pi
0.913545 0.406737i 0.133333π-0.133333\pi
468468 0 0
469469 0 0
470470 0 0
471471 0.104528 + 0.994522i 0.104528 + 0.994522i
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 −1.28716 + 1.15897i −1.28716 + 1.15897i
478478 0 0
479479 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 1.73205i 1.73205i
486486 0 0
487487 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
488488 0 0
489489 −0.104528 + 0.994522i −0.104528 + 0.994522i
490490 0 0
491491 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.00000 1.00000
497497 0 0
498498 0 0
499499 −0.978148 + 0.207912i −0.978148 + 0.207912i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
500500 1.72256 + 0.181049i 1.72256 + 0.181049i
501501 0 0
502502 0 0
503503 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
504504 0 0
505505 0 0
506506 0 0
507507 1.00000 1.00000
508508 0 0
509509 0 0 0.669131 0.743145i 0.266667π-0.266667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 −1.72256 + 0.181049i −1.72256 + 0.181049i
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −1.64728 0.535233i −1.64728 0.535233i −0.669131 0.743145i 0.733333π-0.733333\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
522522 0 0
523523 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −0.500000 + 0.866025i −0.500000 + 0.866025i
530530 0 0
531531 1.64728 0.535233i 1.64728 0.535233i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 −0.704489 + 1.58231i −0.704489 + 1.58231i
538538 0 0
539539 0 0
540540 1.50000 + 0.866025i 1.50000 + 0.866025i
541541 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
542542 0 0
543543 −0.978148 + 0.207912i −0.978148 + 0.207912i
544544 0 0
545545 0 0
546546 0 0
547547 0 0 0.207912 0.978148i 0.433333π-0.433333\pi
−0.207912 + 0.978148i 0.566667π0.566667\pi
548548 −1.01807 1.40126i −1.01807 1.40126i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 −0.704489 1.58231i −0.704489 1.58231i
556556 0 0
557557 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
564564 −1.28716 1.15897i −1.28716 1.15897i
565565 2.00739 + 2.22943i 2.00739 + 2.22943i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
570570 0 0
571571 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
572572 0 0
573573 1.73205i 1.73205i
574574 0 0
575575 0 0
576576 0.669131 + 0.743145i 0.669131 + 0.743145i
577577 −0.809017 0.587785i −0.809017 0.587785i 0.104528 0.994522i 0.466667π-0.466667\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −1.28716 + 1.15897i −1.28716 + 1.15897i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
588588 −0.809017 0.587785i −0.809017 0.587785i
589589 0 0
590590 0 0
591591 0 0
592592 −0.104528 0.994522i −0.104528 0.994522i
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 −0.669131 + 0.743145i −0.669131 + 0.743145i
598598 0 0
599599 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
600600 0 0
601601 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
602602 0 0
603603 −0.809017 + 0.587785i −0.809017 + 0.587785i
604604 0 0
605605 0 0
606606 0 0
607607 0 0 0.406737 0.913545i 0.366667π-0.366667\pi
−0.406737 + 0.913545i 0.633333π0.633333\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i 0.666667π0.666667\pi
−1.00000 π\pi
618618 0 0
619619 0.978148 + 0.207912i 0.978148 + 0.207912i 0.669131 0.743145i 0.266667π-0.266667\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
620620 1.64728 + 0.535233i 1.64728 + 0.535233i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 0.913545 + 0.406737i 0.913545 + 0.406737i
626626 0 0
627627 0 0
628628 −0.500000 + 0.866025i −0.500000 + 0.866025i
629629 0 0
630630 0 0
631631 0.309017 0.951057i 0.309017 0.951057i −0.669131 0.743145i 0.733333π-0.733333\pi
0.978148 0.207912i 0.0666667π-0.0666667\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 −1.72256 + 0.181049i −1.72256 + 0.181049i
637637 0 0
638638 0 0
639639 −1.50000 0.866025i −1.50000 0.866025i
640640 0 0
641641 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
642642 0 0
643643 −0.209057 + 1.98904i −0.209057 + 1.98904i −0.104528 + 0.994522i 0.533333π0.533333\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 −0.669131 + 0.743145i −0.669131 + 0.743145i
653653 −0.360114 1.69420i −0.360114 1.69420i −0.669131 0.743145i 0.733333π-0.733333\pi
0.309017 0.951057i 0.400000π-0.400000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 1.61803 1.17557i 1.61803 1.17557i
670670 0 0
671671 0 0
672672 0 0
673673 0 0 0.994522 0.104528i 0.0333333π-0.0333333\pi
−0.994522 + 0.104528i 0.966667π0.966667\pi
674674 0 0
675675 1.33826 + 1.48629i 1.33826 + 1.48629i
676676 0.809017 + 0.587785i 0.809017 + 0.587785i
677677 0 0 0.913545 0.406737i 0.133333π-0.133333\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 1.73205i 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 −0.927051 2.85317i −0.927051 2.85317i
686686 0 0
687687 1.82709 0.813473i 1.82709 0.813473i
688688 0 0
689689 0 0
690690 0 0
691691 0.104528 + 0.994522i 0.104528 + 0.994522i 0.913545 + 0.406737i 0.133333π0.133333\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
702702 0 0
703703 0 0
704704 0 0
705705 −1.50000 2.59808i −1.50000 2.59808i
706706 0 0
707707 0 0
708708 1.64728 + 0.535233i 1.64728 + 0.535233i
709709 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i 0.466667π-0.466667\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 −1.50000 + 0.866025i −1.50000 + 0.866025i
717717 0 0
718718 0 0
719719 1.64728 + 0.535233i 1.64728 + 0.535233i 0.978148 0.207912i 0.0666667π-0.0666667\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
720720 0.704489 + 1.58231i 0.704489 + 1.58231i
721721 0 0
722722 0 0
723723 0 0
724724 −0.913545 0.406737i −0.913545 0.406737i
725725 0 0
726726 0 0
727727 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
728728 0 0
729729 0.309017 + 0.951057i 0.309017 + 0.951057i
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.207912 0.978148i 0.566667π-0.566667\pi
0.207912 + 0.978148i 0.433333π0.433333\pi
734734 0 0
735735 −1.01807 1.40126i −1.01807 1.40126i
736736 0 0
737737 0 0
738738 0 0
739739 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
740740 0.360114 1.69420i 0.360114 1.69420i
741741 0 0
742742 0 0
743743 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0.669131 0.743145i 0.669131 0.743145i −0.309017 0.951057i 0.600000π-0.600000\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
752752 −0.360114 1.69420i −0.360114 1.69420i
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i 0.866667π-0.866667\pi
0.104528 + 0.994522i 0.466667π0.466667\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
762762 0 0
763763 0 0
764764 −1.01807 + 1.40126i −1.01807 + 1.40126i
765765 0 0
766766 0 0
767767 0 0
768768 0.104528 + 0.994522i 0.104528 + 0.994522i
769769 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
774774 0 0
775775 1.61803 + 1.17557i 1.61803 + 1.17557i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.309017 0.951057i −0.309017 0.951057i
785785 −1.28716 + 1.15897i −1.28716 + 1.15897i
786786 0 0
787787 0 0 −0.994522 0.104528i 0.966667π-0.966667\pi
0.994522 + 0.104528i 0.0333333π0.0333333\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 −2.93444 0.623735i −2.93444 0.623735i
796796 −0.978148 + 0.207912i −0.978148 + 0.207912i
797797 −1.72256 0.181049i −1.72256 0.181049i −0.809017 0.587785i 0.800000π-0.800000\pi
−0.913545 + 0.406737i 0.866667π0.866667\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 −1.00000 −1.00000
805805 0 0
806806 0 0
807807 −0.360114 1.69420i −0.360114 1.69420i
808808 0 0
809809 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
810810 0 0
811811 0 0 0.951057 0.309017i 0.100000π-0.100000\pi
−0.951057 + 0.309017i 0.900000π0.900000\pi
812812 0 0
813813 0 0
814814 0 0
815815 −1.50000 + 0.866025i −1.50000 + 0.866025i
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.669131 0.743145i 0.733333π-0.733333\pi
0.669131 + 0.743145i 0.266667π0.266667\pi
822822 0 0
823823 1.82709 + 0.813473i 1.82709 + 0.813473i 0.913545 + 0.406737i 0.133333π0.133333\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 0.809017 0.587785i 0.200000π-0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
828828 0 0
829829 −0.309017 + 0.951057i −0.309017 + 0.951057i 0.669131 + 0.743145i 0.266667π0.266667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0.500000 + 0.866025i 0.500000 + 0.866025i
838838 0 0
839839 0 0 −0.978148 0.207912i 0.933333π-0.933333\pi
0.978148 + 0.207912i 0.0666667π0.0666667\pi
840840 0 0
841841 −0.104528 + 0.994522i −0.104528 + 0.994522i
842842 0 0
843843 0 0
844844 0 0
845845 1.01807 + 1.40126i 1.01807 + 1.40126i
846846 0 0
847847 0 0
848848 −1.50000 0.866025i −1.50000 0.866025i
849849 0 0
850850 0 0
851851 0 0
852852 −0.704489 1.58231i −0.704489 1.58231i
853853 0 0 −0.406737 0.913545i 0.633333π-0.633333\pi
0.406737 + 0.913545i 0.366667π0.366667\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
864864 0 0
865865 0 0
866866 0 0
867867 −0.913545 0.406737i −0.913545 0.406737i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.978148 0.207912i 0.978148 0.207912i
874874 0 0
875875 0 0
876876 0 0
877877 0 0 −0.743145 0.669131i 0.766667π-0.766667\pi
0.743145 + 0.669131i 0.233333π0.233333\pi
878878 0 0
879879 0 0
880880 0 0
881881 1.73205i 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 0.866025i 0.333333π-0.333333\pi
882882 0 0
883883 0.309017 + 0.951057i 0.309017 + 0.951057i 0.978148 + 0.207912i 0.0666667π0.0666667\pi
−0.669131 + 0.743145i 0.733333π0.733333\pi
884884 0 0
885885 2.42705 + 1.76336i 2.42705 + 1.76336i
886886 0 0
887887 0 0 0.978148 0.207912i 0.0666667π-0.0666667\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 2.00000 2.00000
893893 0 0
894894 0 0
895895 −2.93444 + 0.623735i −2.93444 + 0.623735i
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0.209057 + 1.98904i 0.209057 + 1.98904i
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 −1.28716 1.15897i −1.28716 1.15897i
906906 0 0
907907 1.82709 0.813473i 1.82709 0.813473i 0.913545 0.406737i 0.133333π-0.133333\pi
0.913545 0.406737i 0.133333π-0.133333\pi
908908 0 0
909909 0 0
910910 0 0
911911 −1.72256 + 0.181049i −1.72256 + 0.181049i −0.913545 0.406737i 0.866667π-0.866667\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.95630 + 0.415823i 1.95630 + 0.415823i
917917 0 0
918918 0 0
919919 0 0 0.587785 0.809017i 0.300000π-0.300000\pi
−0.587785 + 0.809017i 0.700000π0.700000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 1.00000 1.73205i 1.00000 1.73205i
926926 0 0
927927 −0.309017 0.951057i −0.309017 0.951057i
928928 0 0
929929 −0.704489 1.58231i −0.704489 1.58231i −0.809017 0.587785i 0.800000π-0.800000\pi
0.104528 0.994522i 0.466667π-0.466667\pi
930930 0 0
931931 0 0
932932 0 0
933933 −1.72256 + 0.181049i −1.72256 + 0.181049i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 −0.587785 0.809017i 0.700000π-0.700000\pi
0.587785 + 0.809017i 0.300000π0.300000\pi
938938 0 0
939939 0.618034 1.90211i 0.618034 1.90211i
940940 0.313585 2.98357i 0.313585 2.98357i
941941 0 0 0.104528 0.994522i 0.466667π-0.466667\pi
−0.104528 + 0.994522i 0.533333π0.533333\pi
942942 0 0
943943 0 0
944944 1.01807 + 1.40126i 1.01807 + 1.40126i
945945 0 0
946946 0 0
947947 1.50000 + 0.866025i 1.50000 + 0.866025i 1.00000 00
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 0.309017 0.951057i 0.400000π-0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
954954 0 0
955955 −2.42705 + 1.76336i −2.42705 + 1.76336i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −0.360114 + 1.69420i −0.360114 + 1.69420i
961961 0 0
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
972972 −0.309017 + 0.951057i −0.309017 + 0.951057i
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 −0.913545 0.406737i 0.866667π-0.866667\pi
0.913545 + 0.406737i 0.133333π0.133333\pi
978978 0 0
979979 0 0
980980 1.73205i 1.73205i
981981 0 0
982982 0 0
983983 −1.28716 + 1.15897i −1.28716 + 1.15897i −0.309017 + 0.951057i 0.600000π0.600000\pi
−0.978148 + 0.207912i 0.933333π0.933333\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
992992 0 0
993993 0.309017 + 0.951057i 0.309017 + 0.951057i
994994 0 0
995995 −1.72256 0.181049i −1.72256 0.181049i
996996 0 0
997997 0 0 0.743145 0.669131i 0.233333π-0.233333\pi
−0.743145 + 0.669131i 0.766667π0.766667\pi
998998 0 0
999999 0.809017 0.587785i 0.809017 0.587785i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.1.r.a.245.1 8
3.2 odd 2 3267.1.v.a.2060.1 8
9.4 even 3 3267.1.v.a.3149.1 8
9.5 odd 6 inner 1089.1.r.a.608.1 8
11.2 odd 10 1089.1.i.a.848.1 yes 2
11.3 even 5 inner 1089.1.r.a.632.1 8
11.4 even 5 inner 1089.1.r.a.686.1 8
11.5 even 5 inner 1089.1.r.a.614.1 8
11.6 odd 10 inner 1089.1.r.a.614.1 8
11.7 odd 10 inner 1089.1.r.a.686.1 8
11.8 odd 10 inner 1089.1.r.a.632.1 8
11.9 even 5 1089.1.i.a.848.1 yes 2
11.10 odd 2 CM 1089.1.r.a.245.1 8
33.2 even 10 3267.1.i.a.1574.1 2
33.5 odd 10 3267.1.v.a.251.1 8
33.8 even 10 3267.1.v.a.1358.1 8
33.14 odd 10 3267.1.v.a.1358.1 8
33.17 even 10 3267.1.v.a.251.1 8
33.20 odd 10 3267.1.i.a.1574.1 2
33.26 odd 10 3267.1.v.a.1412.1 8
33.29 even 10 3267.1.v.a.1412.1 8
33.32 even 2 3267.1.v.a.2060.1 8
99.4 even 15 3267.1.v.a.2501.1 8
99.5 odd 30 inner 1089.1.r.a.977.1 8
99.13 odd 30 3267.1.i.a.2663.1 2
99.14 odd 30 inner 1089.1.r.a.995.1 8
99.31 even 15 3267.1.i.a.2663.1 2
99.32 even 6 inner 1089.1.r.a.608.1 8
99.40 odd 30 3267.1.v.a.2501.1 8
99.41 even 30 inner 1089.1.r.a.995.1 8
99.49 even 15 3267.1.v.a.1340.1 8
99.50 even 30 inner 1089.1.r.a.977.1 8
99.58 even 15 3267.1.v.a.2447.1 8
99.59 odd 30 inner 1089.1.r.a.1049.1 8
99.68 even 30 1089.1.i.a.122.1 2
99.76 odd 6 3267.1.v.a.3149.1 8
99.85 odd 30 3267.1.v.a.2447.1 8
99.86 odd 30 1089.1.i.a.122.1 2
99.94 odd 30 3267.1.v.a.1340.1 8
99.95 even 30 inner 1089.1.r.a.1049.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1089.1.i.a.122.1 2 99.68 even 30
1089.1.i.a.122.1 2 99.86 odd 30
1089.1.i.a.848.1 yes 2 11.2 odd 10
1089.1.i.a.848.1 yes 2 11.9 even 5
1089.1.r.a.245.1 8 1.1 even 1 trivial
1089.1.r.a.245.1 8 11.10 odd 2 CM
1089.1.r.a.608.1 8 9.5 odd 6 inner
1089.1.r.a.608.1 8 99.32 even 6 inner
1089.1.r.a.614.1 8 11.5 even 5 inner
1089.1.r.a.614.1 8 11.6 odd 10 inner
1089.1.r.a.632.1 8 11.3 even 5 inner
1089.1.r.a.632.1 8 11.8 odd 10 inner
1089.1.r.a.686.1 8 11.4 even 5 inner
1089.1.r.a.686.1 8 11.7 odd 10 inner
1089.1.r.a.977.1 8 99.5 odd 30 inner
1089.1.r.a.977.1 8 99.50 even 30 inner
1089.1.r.a.995.1 8 99.14 odd 30 inner
1089.1.r.a.995.1 8 99.41 even 30 inner
1089.1.r.a.1049.1 8 99.59 odd 30 inner
1089.1.r.a.1049.1 8 99.95 even 30 inner
3267.1.i.a.1574.1 2 33.2 even 10
3267.1.i.a.1574.1 2 33.20 odd 10
3267.1.i.a.2663.1 2 99.13 odd 30
3267.1.i.a.2663.1 2 99.31 even 15
3267.1.v.a.251.1 8 33.5 odd 10
3267.1.v.a.251.1 8 33.17 even 10
3267.1.v.a.1340.1 8 99.49 even 15
3267.1.v.a.1340.1 8 99.94 odd 30
3267.1.v.a.1358.1 8 33.8 even 10
3267.1.v.a.1358.1 8 33.14 odd 10
3267.1.v.a.1412.1 8 33.26 odd 10
3267.1.v.a.1412.1 8 33.29 even 10
3267.1.v.a.2060.1 8 3.2 odd 2
3267.1.v.a.2060.1 8 33.32 even 2
3267.1.v.a.2447.1 8 99.58 even 15
3267.1.v.a.2447.1 8 99.85 odd 30
3267.1.v.a.2501.1 8 99.4 even 15
3267.1.v.a.2501.1 8 99.40 odd 30
3267.1.v.a.3149.1 8 9.4 even 3
3267.1.v.a.3149.1 8 99.76 odd 6