Properties

Label 1089.2.a.d
Level $1089$
Weight $2$
Character orbit 1089.a
Self dual yes
Analytic conductor $8.696$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{4} + 4 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{13} - 2 q^{14} - q^{16} + 2 q^{17} + 6 q^{19} - 4 q^{20} - 4 q^{23} + 11 q^{25} - 2 q^{26} - 2 q^{28} - 6 q^{29} + 4 q^{31} - 5 q^{32}+ \cdots + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 −1.00000 4.00000 0 2.00000 3.00000 0 −4.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.2.a.d 1
3.b odd 2 1 1089.2.a.h 1
11.b odd 2 1 99.2.a.c yes 1
33.d even 2 1 99.2.a.a 1
44.c even 2 1 1584.2.a.r 1
55.d odd 2 1 2475.2.a.c 1
55.e even 4 2 2475.2.c.g 2
77.b even 2 1 4851.2.a.o 1
88.b odd 2 1 6336.2.a.b 1
88.g even 2 1 6336.2.a.f 1
99.g even 6 2 891.2.e.j 2
99.h odd 6 2 891.2.e.c 2
132.d odd 2 1 1584.2.a.b 1
165.d even 2 1 2475.2.a.j 1
165.l odd 4 2 2475.2.c.b 2
231.h odd 2 1 4851.2.a.g 1
264.m even 2 1 6336.2.a.cl 1
264.p odd 2 1 6336.2.a.cm 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
99.2.a.a 1 33.d even 2 1
99.2.a.c yes 1 11.b odd 2 1
891.2.e.c 2 99.h odd 6 2
891.2.e.j 2 99.g even 6 2
1089.2.a.d 1 1.a even 1 1 trivial
1089.2.a.h 1 3.b odd 2 1
1584.2.a.b 1 132.d odd 2 1
1584.2.a.r 1 44.c even 2 1
2475.2.a.c 1 55.d odd 2 1
2475.2.a.j 1 165.d even 2 1
2475.2.c.b 2 165.l odd 4 2
2475.2.c.g 2 55.e even 4 2
4851.2.a.g 1 231.h odd 2 1
4851.2.a.o 1 77.b even 2 1
6336.2.a.b 1 88.b odd 2 1
6336.2.a.f 1 88.g even 2 1
6336.2.a.cl 1 264.m even 2 1
6336.2.a.cm 1 264.p odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2} + 1 \) Copy content Toggle raw display
\( T_{5} - 4 \) Copy content Toggle raw display
\( T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 4 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T - 2 \) Copy content Toggle raw display
$19$ \( T - 6 \) Copy content Toggle raw display
$23$ \( T + 4 \) Copy content Toggle raw display
$29$ \( T + 6 \) Copy content Toggle raw display
$31$ \( T - 4 \) Copy content Toggle raw display
$37$ \( T + 6 \) Copy content Toggle raw display
$41$ \( T + 10 \) Copy content Toggle raw display
$43$ \( T + 6 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T - 6 \) Copy content Toggle raw display
$67$ \( T - 8 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 2 \) Copy content Toggle raw display
$79$ \( T - 10 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less