Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1089,2,Mod(1,1089)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1089.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1089.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 99) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1089.2.a.d | 1 | |
3.b | odd | 2 | 1 | 1089.2.a.h | 1 | ||
11.b | odd | 2 | 1 | 99.2.a.c | yes | 1 | |
33.d | even | 2 | 1 | 99.2.a.a | ✓ | 1 | |
44.c | even | 2 | 1 | 1584.2.a.r | 1 | ||
55.d | odd | 2 | 1 | 2475.2.a.c | 1 | ||
55.e | even | 4 | 2 | 2475.2.c.g | 2 | ||
77.b | even | 2 | 1 | 4851.2.a.o | 1 | ||
88.b | odd | 2 | 1 | 6336.2.a.b | 1 | ||
88.g | even | 2 | 1 | 6336.2.a.f | 1 | ||
99.g | even | 6 | 2 | 891.2.e.j | 2 | ||
99.h | odd | 6 | 2 | 891.2.e.c | 2 | ||
132.d | odd | 2 | 1 | 1584.2.a.b | 1 | ||
165.d | even | 2 | 1 | 2475.2.a.j | 1 | ||
165.l | odd | 4 | 2 | 2475.2.c.b | 2 | ||
231.h | odd | 2 | 1 | 4851.2.a.g | 1 | ||
264.m | even | 2 | 1 | 6336.2.a.cl | 1 | ||
264.p | odd | 2 | 1 | 6336.2.a.cm | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
99.2.a.a | ✓ | 1 | 33.d | even | 2 | 1 | |
99.2.a.c | yes | 1 | 11.b | odd | 2 | 1 | |
891.2.e.c | 2 | 99.h | odd | 6 | 2 | ||
891.2.e.j | 2 | 99.g | even | 6 | 2 | ||
1089.2.a.d | 1 | 1.a | even | 1 | 1 | trivial | |
1089.2.a.h | 1 | 3.b | odd | 2 | 1 | ||
1584.2.a.b | 1 | 132.d | odd | 2 | 1 | ||
1584.2.a.r | 1 | 44.c | even | 2 | 1 | ||
2475.2.a.c | 1 | 55.d | odd | 2 | 1 | ||
2475.2.a.j | 1 | 165.d | even | 2 | 1 | ||
2475.2.c.b | 2 | 165.l | odd | 4 | 2 | ||
2475.2.c.g | 2 | 55.e | even | 4 | 2 | ||
4851.2.a.g | 1 | 231.h | odd | 2 | 1 | ||
4851.2.a.o | 1 | 77.b | even | 2 | 1 | ||
6336.2.a.b | 1 | 88.b | odd | 2 | 1 | ||
6336.2.a.f | 1 | 88.g | even | 2 | 1 | ||
6336.2.a.cl | 1 | 264.m | even | 2 | 1 | ||
6336.2.a.cm | 1 | 264.p | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|