Properties

Label 1089.2.a.f
Level 10891089
Weight 22
Character orbit 1089.a
Self dual yes
Analytic conductor 8.6968.696
Analytic rank 00
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(1,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1089=32112 1089 = 3^{2} \cdot 11^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1089.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.695708780128.69570878012
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2q4+5q7+2q13+4q167q195q2510q28+11q31+11q37+8q43+18q494q52q618q64+11q67+17q73+14q7613q79++5q97+O(q100) q - 2 q^{4} + 5 q^{7} + 2 q^{13} + 4 q^{16} - 7 q^{19} - 5 q^{25} - 10 q^{28} + 11 q^{31} + 11 q^{37} + 8 q^{43} + 18 q^{49} - 4 q^{52} - q^{61} - 8 q^{64} + 11 q^{67} + 17 q^{73} + 14 q^{76} - 13 q^{79}+ \cdots + 5 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 −2.00000 0 0 5.00000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
1111 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.2.a.f yes 1
3.b odd 2 1 CM 1089.2.a.f yes 1
11.b odd 2 1 1089.2.a.e 1
33.d even 2 1 1089.2.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1089.2.a.e 1 11.b odd 2 1
1089.2.a.e 1 33.d even 2 1
1089.2.a.f yes 1 1.a even 1 1 trivial
1089.2.a.f yes 1 3.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1089))S_{2}^{\mathrm{new}}(\Gamma_0(1089)):

T2 T_{2} Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display
T75 T_{7} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T5 T - 5 Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T2 T - 2 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T+7 T + 7 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T11 T - 11 Copy content Toggle raw display
3737 T11 T - 11 Copy content Toggle raw display
4141 T T Copy content Toggle raw display
4343 T8 T - 8 Copy content Toggle raw display
4747 T T Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T11 T - 11 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T17 T - 17 Copy content Toggle raw display
7979 T+13 T + 13 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T5 T - 5 Copy content Toggle raw display
show more
show less