Properties

Label 1089.2.e.f
Level $1089$
Weight $2$
Character orbit 1089.e
Analytic conductor $8.696$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{3} + 2 \beta_{2} q^{4} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1 + 1) q^{5} + ( - 3 \beta_{2} - \beta_1 + 3) q^{9} - 2 \beta_1 q^{12} + (\beta_{3} + 3 \beta_{2} + \beta_1 + 3) q^{15} + (4 \beta_{2} - 4) q^{16}+ \cdots + ( - 6 \beta_{3} - 10 \beta_{2} + \cdots + 7) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 4 q^{4} - 3 q^{5} + 5 q^{9} - 2 q^{12} + 18 q^{15} - 8 q^{16} + 6 q^{20} + 18 q^{23} - 11 q^{25} + 16 q^{27} - 5 q^{31} + 20 q^{36} - 14 q^{37} - 15 q^{45} - 12 q^{47} - 8 q^{48} + 14 q^{49}+ \cdots + 17 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} + 2\beta _1 + 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
364.1
1.68614 0.396143i
−1.18614 + 1.26217i
1.68614 + 0.396143i
−1.18614 1.26217i
0 −1.18614 1.26217i 1.00000 1.73205i −2.18614 + 3.78651i 0 0 0 −0.186141 + 2.99422i 0
364.2 0 1.68614 + 0.396143i 1.00000 1.73205i 0.686141 1.18843i 0 0 0 2.68614 + 1.33591i 0
727.1 0 −1.18614 + 1.26217i 1.00000 + 1.73205i −2.18614 3.78651i 0 0 0 −0.186141 2.99422i 0
727.2 0 1.68614 0.396143i 1.00000 + 1.73205i 0.686141 + 1.18843i 0 0 0 2.68614 1.33591i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
9.c even 3 1 inner
99.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.2.e.f 4
9.c even 3 1 inner 1089.2.e.f 4
9.c even 3 1 9801.2.a.q 2
9.d odd 6 1 9801.2.a.p 2
11.b odd 2 1 CM 1089.2.e.f 4
99.g even 6 1 9801.2.a.p 2
99.h odd 6 1 inner 1089.2.e.f 4
99.h odd 6 1 9801.2.a.q 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1089.2.e.f 4 1.a even 1 1 trivial
1089.2.e.f 4 9.c even 3 1 inner
1089.2.e.f 4 11.b odd 2 1 CM
1089.2.e.f 4 99.h odd 6 1 inner
9801.2.a.p 2 9.d odd 6 1
9801.2.a.p 2 99.g even 6 1
9801.2.a.q 2 9.c even 3 1
9801.2.a.q 2 99.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1089, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{5}^{4} + 3T_{5}^{3} + 15T_{5}^{2} - 18T_{5} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - T^{3} - 2 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 9 T + 81)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 5 T^{3} + \cdots + 4624 \) Copy content Toggle raw display
$37$ \( (T^{2} + 7 T - 62)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T - 123)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 15 T^{3} + \cdots + 2304 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 13 T^{3} + \cdots + 1024 \) Copy content Toggle raw display
$71$ \( (T^{2} - 3 T - 204)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T + 9)^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 17 T^{3} + \cdots + 4 \) Copy content Toggle raw display
show more
show less