Properties

Label 1092.2.e.d
Level $1092$
Weight $2$
Character orbit 1092.e
Analytic conductor $8.720$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1092,2,Mod(337,1092)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1092, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1092.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1092.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.71966390072\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + i q^{5} - i q^{7} + q^{9} + (3 i + 2) q^{13} + i q^{15} - 2 q^{17} + 5 i q^{19} - i q^{21} + 9 q^{23} + 4 q^{25} + q^{27} - 3 q^{29} - 3 i q^{31} + q^{35} + 8 i q^{37} + (3 i + 2) q^{39} + \cdots - 7 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{9} + 4 q^{13} - 4 q^{17} + 18 q^{23} + 8 q^{25} + 2 q^{27} - 6 q^{29} + 2 q^{35} + 4 q^{39} + 14 q^{43} - 2 q^{49} - 4 q^{51} + 2 q^{53} - 6 q^{65} + 18 q^{69} + 8 q^{75} - 6 q^{79}+ \cdots - 10 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1092\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(547\) \(925\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
0 1.00000 0 1.00000i 0 1.00000i 0 1.00000 0
337.2 0 1.00000 0 1.00000i 0 1.00000i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1092.2.e.d 2
3.b odd 2 1 3276.2.e.c 2
4.b odd 2 1 4368.2.h.d 2
7.b odd 2 1 7644.2.e.c 2
13.b even 2 1 inner 1092.2.e.d 2
39.d odd 2 1 3276.2.e.c 2
52.b odd 2 1 4368.2.h.d 2
91.b odd 2 1 7644.2.e.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.e.d 2 1.a even 1 1 trivial
1092.2.e.d 2 13.b even 2 1 inner
3276.2.e.c 2 3.b odd 2 1
3276.2.e.c 2 39.d odd 2 1
4368.2.h.d 2 4.b odd 2 1
4368.2.h.d 2 52.b odd 2 1
7644.2.e.c 2 7.b odd 2 1
7644.2.e.c 2 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1092, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 4T + 13 \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 25 \) Copy content Toggle raw display
$23$ \( (T - 9)^{2} \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{2} + 64 \) Copy content Toggle raw display
$41$ \( T^{2} + 36 \) Copy content Toggle raw display
$43$ \( (T - 7)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 25 \) Copy content Toggle raw display
$53$ \( (T - 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( (T + 3)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 49 \) Copy content Toggle raw display
$89$ \( T^{2} + 49 \) Copy content Toggle raw display
$97$ \( T^{2} + 49 \) Copy content Toggle raw display
show more
show less